Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(8): 1610-1626, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37059067

RESUMEN

Intercellular communication is a key feature of cancer progression and metastasis. Extracellular vesicles (EVs) are generated by all cells, including cancer cells, and recent studies have identified EVs as key mediators of cell-cell communication via packaging and transfer of bioactive constituents to impact the biology and function of cancer cells and cells of the tumor microenvironment. Here, we review recent advances in understanding the functional contribution of EVs to cancer progression and metastasis, as cancer biomarkers, and the development of cancer therapeutics.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/patología , Comunicación Celular/fisiología , Biomarcadores de Tumor , Microambiente Tumoral/fisiología
2.
Genes Dev ; 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008138

RESUMEN

Stem cells are fundamental units of tissue remodeling whose functions are dictated by lineage-specific transcription factors. Home to epidermal stem cells and their upward-stratifying progenies, skin relies on its secretory functions to form the outermost protective barrier, of which a transcriptional orchestrator has been elusive. KLF5 is a Krüppel-like transcription factor broadly involved in development and regeneration whose lineage specificity, if any, remains unclear. Here we report KLF5 specifically marks the epidermis, and its deletion leads to skin barrier dysfunction in vivo. Lipid envelopes and secretory lamellar bodies are defective in KLF5-deficient skin, accompanied by preferential loss of complex sphingolipids. KLF5 binds to and transcriptionally regulates genes encoding rate-limiting sphingolipid metabolism enzymes. Remarkably, skin barrier defects elicited by KLF5 ablation can be rescued by dietary interventions. Finally, we found that KLF5 is widely suppressed in human diseases with disrupted epidermal secretion, and its regulation of sphingolipid metabolism is conserved in human skin. Altogether, we established KLF5 as a disease-relevant transcription factor governing sphingolipid metabolism and barrier function in the skin, likely representing a long-sought secretory lineage-defining factor across tissue types.

3.
EMBO J ; 41(7): e109470, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35212000

RESUMEN

Skin wound repair is essential for organismal survival and failure of which leads to non-healing wounds, a leading health issue worldwide. However, mechanistic understanding of chronic wounds remains a major challenge due to lack of appropriate genetic mouse models. αSMA+ myofibroblasts, a unique class of dermal fibroblasts, are associated with cutaneous wound healing but their precise function remains unknown. We demonstrate that genetic depletion of αSMA+ myofibroblasts leads to pleiotropic wound healing defects, including lack of reepithelialization and granulation, dampened angiogenesis, and heightened hypoxia, hallmarks of chronic non-healing wounds. Other wound-associated FAP+ and FSP1+ fibroblasts do not exhibit such dominant functions. While type I collagen (COL1) expressing cells play a role in the repair process, COL1 produced by αSMA+ myofibroblasts is surprisingly dispensable for wound repair. In contrast, we show that ß1 integrin from αSMA+ myofibroblasts, but not TGFßRII, is essential for wound healing, facilitating contractility, reepithelization, and vascularization. Collectively, our study provides evidence for the functions of myofibroblasts in ß1 integrin-mediated wound repair with potential implications for treating chronic non-healing wounds.


Asunto(s)
Colágeno Tipo I , Miofibroblastos , Cicatrización de Heridas , Animales , Colágeno Tipo I/genética , Fibroblastos , Integrina beta1/genética , Ratones , Piel
4.
EMBO J ; 39(19): e106368, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32909627

RESUMEN

Prominent accumulation of mesenchymal cells within tumors has long been appreciated, and recent studies suggest molecular and functional diversity of stromal components. In this issue, Wu et al (2020) employed single-cell RNA sequencing of primary human breast tumors and identified new subsets of stromal mesenchymal cells with distinct transcriptional profiles, tissue localization, and associative immune microenvironments.


Asunto(s)
Neoplasias de la Mama , Células Madre Mesenquimatosas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama/genética , Humanos , Evasión Inmune , Análisis de Secuencia de ARN , Células del Estroma , Microambiente Tumoral
5.
J Biol Chem ; 296: 100523, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33711340

RESUMEN

The Stimulator of Interferon Genes (STING) pathway is implicated in the innate immune response and is important in both oncogenesis and cancer treatment. Specifically, activation of the cytosolic DNA sensor STING in antigen-presenting cells (APCs) induces a type I interferon response and cytokine production that facilitates antitumor immune therapy. However, use of STING agonists (STINGa) as a cancer therapeutic has been limited by unfavorable pharmacological properties and targeting inefficiency due to rapid clearance and limited uptake into the cytosol. Exosomes, a class of extracellular vesicles shed by all cells are under consideration for their use as effective carriers of drugs owing to their innate ability to be taken up by cells and their biocompatibility for optimal drug biodistribution. Therefore, we engineered exosomes to deliver the STING agonist cyclic GMP-AMP (iExoSTINGa), to exploit their favorable pharmacokinetics and pharmacodynamics. Selective targeting of the STING pathway in APCs with iExoSTINGa was associated with superior potency compared with STINGa alone in suppressing B16F10 tumor growth. Moreover, iExoSTINGa showed superior uptake of STINGa into dendritic cells compared with STINGa alone, which led to increased accumulation of activated CD8+ T-cells and an antitumor immune response. Our study highlights the potential of exosomes in general, and iExoSTINGa specifically, in enhancing cancer therapy outcomes.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Exosomas/metabolismo , Inmunidad Innata/inmunología , Melanoma Experimental/inmunología , Proteínas de la Membrana/agonistas , Nucleótidos Cíclicos/farmacología , Animales , Células Presentadoras de Antígenos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Inmunidad Innata/efectos de los fármacos , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Melanoma Experimental/prevención & control , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
6.
FASEB J ; 35(5): e21557, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33855751

RESUMEN

Hepatic fibrosis is a wound healing response that results in excessive extracellular matrix (ECM) accumulation in response to chronic hepatic injury. Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor associated with the pathogenesis of liver fibrosis. Though a promising potential therapeutic target, there are no specific drug candidates for STAT3. Exosomes are extracellular vesicles generated by all cell types with a capacity to efficiently enter cells across different biological barriers. Here, we utilize exosomes as delivery conduit to specifically target STAT3 in liver fibrosis. Exosomes derived from clinical grade fibroblast-like mesenchymal stem cells (MSCs) were engineered to carry siRNA or antisense oligonucleotide (ASO) targeting STAT3 (iExosiRNA-STAT3 or iExomASO-STAT3 ). Compared to scrambled siRNA control, siRNA-STAT3, or ASO-STAT3, iExosiRNA-STAT3 or iExomASO-STAT3 showed enhanced STAT3 targeting efficiency. iExosiRNA-STAT3 or iExomASO-STAT3 treatments suppressed STAT3 levels and ECM deposition in established liver fibrosis in mice, and significantly improved liver function. iExomASO-Stat3 restored liver function more efficiently when compared to iExosiRNA-STAT3 . Our results identify a novel anti-fibrotic approach for direct targeting of STAT3 with exosomes with immediate translational potential.


Asunto(s)
Exosomas/genética , Regulación de la Expresión Génica , Cirrosis Hepática/terapia , Oligonucleótidos Antisentido/farmacología , ARN Interferente Pequeño/genética , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Tetracloruro de Carbono/toxicidad , Femenino , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Ratones , Ratones Endogámicos BALB C , Transducción de Señal
7.
Mol Cancer ; 18(1): 52, 2019 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-30925917

RESUMEN

Intercellular communication between cellular compartments within the tumor and at distant sites is critical for the development and progression of cancer. Exosomes have emerged as potential regulators of intracellular communication in cancer. Exosomes are nanovesicles released by cells that contain biomolecules and are exchanged between cells. Exchange of exosomes between cells has been implicated in a number of processes critical for tumor progression and consequently altering exosome release is an attractive therapeutic target. Here, we review current understanding as well as gaps in knowledge regarding regulators of exosome release in cancer.


Asunto(s)
Comunicación Celular , Membrana Celular/metabolismo , Exosomas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Humanos , Transducción de Señal
8.
Biophys J ; 109(7): 1334-7, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26445434

RESUMEN

For a solid tumor to grow, it must be able to support the compressive stress that is generated as it presses against the surrounding tissue. Although the literature suggests a role for the cytoskeleton in counteracting these stresses, there has been no systematic evaluation of which filaments are responsible or to what degree. Here, using a three-dimensional spheroid model, we show that cytoskeletal filaments do not actively support compressive loads in breast, ovarian, and prostate cancer. However, modulation of tonicity can induce alterations in spheroid size. We find that under compression, tumor cells actively efflux sodium to decrease their intracellular tonicity, and that this is reversible by blockade of sodium channel NHE1. Moreover, although polymerized actin does not actively support the compressive load, it is required for sodium efflux. Compression-induced cell death is increased by both sodium blockade and actin depolymerization, whereas increased actin polymerization offers protective effects and increases sodium efflux. Taken together, these results demonstrate that cancer cells modulate their tonicity to survive under compressive solid stress.


Asunto(s)
Adenocarcinoma/fisiopatología , Neoplasias de la Mama/fisiopatología , Citoesqueleto/metabolismo , Sodio/metabolismo , Actinas/metabolismo , Azidas , Fenómenos Biomecánicos , Proteínas de Transporte de Catión/antagonistas & inhibidores , Proteínas de Transporte de Catión/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular/fisiología , Femenino , Guanosina Trifosfato/análogos & derivados , Humanos , Modelos Biológicos , Ósmosis/fisiología , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/metabolismo , Andamios del Tejido
9.
Phys Biol ; 11(5): 056004, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25156989

RESUMEN

The mechanical properties within the cell are regulated by the organization of the actin cytoskeleton, which is linked to the extracellular environment through focal adhesion proteins that transmit force. Chemical and mechanical stimuli alter the organization of cytoskeletal actin, which results in changes in cell shape, adhesion, and differentiation. By combining particle-tracking microrheology and traction force cytometry, we can monitor the mechanical properties of the actin meshwork and determine how changes in the intracellular network contribute to force generation. In this study, we investigated the effects of chemical (differentiation factors) and mechanical (substrate rigidity) stimuli important in mesenchymal stem cell (MSC) differentiation on the intracellular mechanics and traction stress generation. We found the presence of adipogenic factors resulted in stiffening of the actin meshwork regardless of substrate rigidity. In contrast, these factors increased traction stresses on hard substrates, which was associated with increased expression of contractility genes. Furthermore, MSCs cultured on hard substrates expressed both adipogenic and osteogenic markers indicative of mixed differentiation. On hard substrates, heterogeneity in the local elastic modulus-traction stress correlation was also increased in response to adipogenic factors, indicating that these mechanical properties may be reflective of differences in the level of MSC differentiation. These results suggest intracellular rheology and traction stress generation are spatially regulated and contribute insight into how single cell mechanical forces contribute to MSC differentiation.


Asunto(s)
Citoesqueleto de Actina/fisiología , Diferenciación Celular , Células Madre Mesenquimatosas/fisiología , Fenómenos Biomecánicos , Adhesión Celular , Citoplasma , Regulación de la Expresión Génica , Humanos , Masculino , Microscopía de Fuerza Atómica , Reacción en Cadena de la Polimerasa , Reología , Adulto Joven
10.
Exp Cell Res ; 319(5): 684-96, 2013 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-23228958

RESUMEN

Multipotent human mesenchymal stem cells (hMSCs) are uniquely suited for the growing field of regenerative medicine due to their ease of isolation, expansion, and transplantation. However, during ex vivo expansion necessary to obtain clinically relevant cell quantities, hMSCs undergo fundamental changes culminating in cellular senescence. The molecular changes as hMSCs transition into senescence have been well characterized, but few studies have focused on the mechanical properties that govern many processes necessary for therapeutic efficacy. We show that before detectable differences in classical senescence markers emerge, single-cell mechanical and cytoskeletal properties reveal a subpopulation of 'non-functioning' hMSCs that appears after even limited expansion. This subpopulation, characterized by a loss of dynamic cytoskeletal stiffening and morphological flexibility in response to chemotactic signals grows with extended culture resulting in overall decreased hMSC motility and ability to contract collagen gels. These changes were mitigated with cytoskeletal inhibition. Finally, a xenographic wound healing model was used to demonstrate that these in vitro differences correlate with decreased ability of hMSCs to aid in wound closure in vivo. These data illustrate the importance of analyzing not only the molecular markers, but also mechanical markers of hMSCs as they are investigated for potential therapeutics.


Asunto(s)
Fenómenos Biomecánicos , Diferenciación Celular , Proliferación Celular , Citoesqueleto/fisiología , Células Madre Mesenquimatosas/fisiología , Adulto , Animales , Antineoplásicos/farmacología , Biomarcadores/metabolismo , Adhesión Celular , Movimiento Celular , Senescencia Celular , Medios de Cultivo Condicionados/farmacología , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nocodazol/farmacología , Cicatrización de Heridas , Adulto Joven
11.
Artículo en Inglés | MEDLINE | ID: mdl-38191175

RESUMEN

The tumor microenvironment (TME) is a complex ecosystem of both cellular and noncellular components that functions to impact the evolution of cancer. Various aspects of the TME have been targeted for the control of cancer; however, TME composition is dynamic, with the overall abundance of immune cells, endothelial cells (ECs), fibroblasts, and extracellular matrix (ECM) as well as subsets of TME components changing at different stages of progression and in response to therapy. To effectively treat cancer, an understanding of the functional role of the TME is needed. Genetically engineered mouse models have enabled comprehensive insight into the complex interactions within the TME ecosystem that regulate disease progression. Here, we review recent advances in mouse models that have been employed to understand how the TME regulates cancer initiation, progression, metastasis, and response to therapy.


Asunto(s)
Modelos Animales de Enfermedad , Progresión de la Enfermedad , Neoplasias , Microambiente Tumoral , Animales , Ratones , Neoplasias/patología , Neoplasias/terapia , Neoplasias/inmunología , Humanos , Matriz Extracelular
12.
ACS Nano ; 18(18): 11717-11731, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38651873

RESUMEN

Evaluating the heterogeneity of extracellular vesicles (EVs) is crucial for unraveling their complex actions and biodistribution. Here, we identify consistent architectural heterogeneity of EVs using cryogenic transmission electron microscopy (cryo-TEM), which has an inherent ability to image biological samples without harsh labeling methods while preserving their native conformation. Imaging EVs isolated using different methodologies from distinct sources, such as cancer cells, normal cells, immortalized cells, and body fluids, we identify a structural atlas of their dominantly consistent shapes. We identify EV architectural attributes by utilizing a segmentation neural network model. In total, 7,576 individual EVs were imaged and quantified by our computational pipeline. Across all 7,576 independent EVs, the average eccentricity was 0.5366 ± 0.2, and the average equivalent diameter was 132.43 ± 67 nm. The architectural heterogeneity was consistent across all sources of EVs, independent of purification techniques, and compromised of single spherical, rod-like or tubular, and double shapes. This study will serve as a reference foundation for high-resolution images of EVs and offer insights into their potential biological impact.


Asunto(s)
Microscopía por Crioelectrón , Vesículas Extracelulares , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Redes Neurales de la Computación , Microscopía Electrónica de Transmisión , Procesamiento de Imagen Asistido por Computador/métodos
13.
Science ; 384(6703): eadh4567, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38935717

RESUMEN

Inflammation and tissue damage associated with pancreatitis can precede or occur concurrently with pancreatic ductal adenocarcinoma (PDAC). We demonstrate that in PDAC coupled with pancreatitis (ptPDAC), antigen-presenting type I conventional dendritic cells (cDC1s) are specifically activated. Immune checkpoint blockade therapy (iCBT) leads to cytotoxic CD8+ T cell activation and elimination of ptPDAC with restoration of life span even upon PDAC rechallenge. Using PDAC antigen-loaded cDC1s as a vaccine, immunotherapy-resistant PDAC was rendered sensitive to iCBT with elimination of tumors. cDC1 vaccination coupled with iCBT identified specific CDR3 sequences in the tumor-infiltrating CD8+ T cells with potential therapeutic importance. This study identifies a fundamental difference in the immune microenvironment in PDAC concurrent with, or without, pancreatitis and provides a rationale for combining cDC1 vaccination with iCBT as a potential treatment option.


Asunto(s)
Carcinoma Ductal Pancreático , Células Dendríticas , Inmunoterapia , Neoplasias Pancreáticas , Microambiente Tumoral , Animales , Ratones , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/inmunología , Pancreatitis/inmunología , Pancreatitis/terapia , Microambiente Tumoral/inmunología
14.
bioRxiv ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38168235

RESUMEN

Evaluating the heterogeneity of extracellular vesicles (EVs) is crucial for unraveling their complex actions and biodistribution. Here, we identify consistent architectural heterogeneity of EVs using cryogenic transmission electron microscopy (cryo-TEM) which has an inherent ability to image biological samples without harsh labeling methods and while preserving their native conformation. Imaging EVs isolated using different methodologies from distinct sources such as cancer cells, normal cells, and body fluids, we identify a structural atlas of their dominantly consistent shapes. We identify EV architectural attributes by utilizing a segmentation neural network model. In total, 7,576 individual EVs were imaged and quantified by our computational pipeline. Across all 7,576 independent EVs, the average eccentricity was 0.5366, and the average equivalent diameter was 132.43 nm. The architectural heterogeneity was consistent across all sources of EVs, independent of purification techniques, and compromised of single spherical (S. Spherical), rod-like or tubular, and double shapes. This study will serve as a reference foundation for high-resolution EV images and offer insights into their potential biological impact.

15.
bioRxiv ; 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36945457

RESUMEN

Inflammation and tissue damage associated with pancreatitis can precede or occur concurrently with pancreatic ductal adenocarcinoma (PDAC). We demonstrate that in PDAC coupled with pancreatitis (ptPDAC), antigen-presenting type-I conventional dendritic cells (cDC1s) are specifically activated. Immune checkpoint blockade therapy (iCBT) leads to cytotoxic CD8 + T cell activation and eradication of ptPDAC with restoration of lifespan even upon PDAC re-challenge. Such eradication of ptPDAC was reversed following specific depletion of dendritic cells. Employing PDAC antigen-loaded cDC1s as a vaccine, immunotherapy-resistant PDAC was rendered sensitive to iCBT with a curative outcome. Analysis of the T-cell receptor (TCR) sequences in the tumor infiltrating CD8 + T cells following cDC1 vaccination coupled with iCBT identified unique CDR3 sequences with potential therapeutic significance. Our findings identify a fundamental difference in the immune microenvironment and adaptive immune response in PDAC concurrent with, or without pancreatitis, and provides a rationale for combining cDC1 vaccination with iCBT as a potential treatment option.

16.
bioRxiv ; 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37961535

RESUMEN

Extracellular vesicles (EVs) are generated by all cells and systemic administration of allogenic EVs derived from epithelial and mesenchymal cells have been shown to be safe, despite carrying an array of functional molecules, including thousands of proteins. To address whether epithelial cells derived EVs can be modified to acquire the capacity to induce immune response, we engineered 293T EVs to harbor the immunomodulatory CD80, OX40L and PD-L1 molecules. We demonstrated abundant levels of these proteins on the engineered cells and EVs. Functionally, the engineered EVs efficiently elicit positive and negative co-stimulation in human and murine T cells. In the setting of cancer and auto-immune hepatitis, the engineered EVs modulate T cell functions and alter disease progression. Moreover, OX40L EVs provide additional benefit to anti-CTLA-4 treatment in melanoma-bearing mice. Our work provides evidence that epithelial cell derived EVs can be engineered to induce immune responses with translational potential to modulate T cell functions in distinct pathological settings.

17.
Biomater Adv ; 154: 213643, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37778291

RESUMEN

Triple negative breast cancer (TNBC) is a highly heterogenous disease not sensitive to endocrine or HER2 therapy and standardized treatment regimens are still missing. Therefore, development of novel TNBC treatment approaches is of utmost relevance. Herein, the potential of MAPK/ERK downregulation by RNAi-based therapeutics in a panel of mesenchymal stem-like TNBC cell lines was uncovered. Our data revealed that suppression of one of the central nodes of this signaling pathway, MEK1, affects proliferation, migration, and invasion of TNBC cells, that may be explained by the reversion of the epithelial-mesenchymal transition phenotype, which is facilitated by the MMP-2/MMP-9 downregulation. Moreover, an exosome-based system was successfully generated for the siRNA loading (iExoMEK1). Our data suggested absence of modification of the physical properties and general integrity of the iExoMEK1 comparatively to the unmodified counterparts. Such exosome-mediated downregulation of MEK1 led to a tumor regression accompanied by a decrease of angiogenesis using the chick chorioallantoic-membrane model. Our results highlight the potential of the targeting of MAPK/ERK cascade as a promising therapeutic approach against TNBC.


Asunto(s)
Exosomas , Neoplasias de la Mama Triple Negativas , Humanos , Proliferación Celular/genética , Línea Celular Tumoral , ARN Interferente Pequeño/genética , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Exosomas/genética , Exosomas/metabolismo
18.
Dev Cell ; 58(17): 1562-1577.e8, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625403

RESUMEN

Oncogenic KRASG12D (KRAS∗) is critical for the initiation and maintenance of pancreatic ductal adenocarcinoma (PDAC) and is a known repressor of tumor immunity. Conditional elimination of KRAS∗ in genetic mouse models of PDAC leads to the reactivation of FAS, CD8+ T cell-mediated apoptosis, and complete eradication of tumors. KRAS∗ elimination recruits activated CD4+ and CD8+ T cells and promotes the activation of antigen-presenting cells. Mechanistically, KRAS∗-mediated immune evasion involves the epigenetic regulation of Fas death receptor in cancer cells, via methylation of its promoter region. Furthermore, analysis of human RNA sequencing identifies that high KRAS expression in PDAC tumors shows a lower proportion of CD8+ T cells and demonstrates shorter survival compared with tumors with low KRAS expression. This study highlights the role of CD8+ T cells in the eradication of PDAC following KRAS∗ elimination and provides a rationale for the combination of KRAS∗ targeting with immunotherapy to control PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Ratones , Apoptosis , Carcinoma Ductal Pancreático/genética , Linfocitos T CD8-positivos , Epigénesis Genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
19.
bioRxiv ; 2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36824971

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is associated with mutations in Kras, a known oncogenic driver of PDAC; and the KRAS G12D mutation is present in nearly half of PDAC patients. Recently, a non-covalent small molecule inhibitor (MRTX1133) was identified with specificity to the Kras G12D mutant protein. Here we explore the impact of Kras G12D inhibition by MRTX1133 on advanced PDAC and its influence on the tumor microenvironment. Employing different orthotopic xenograft and syngeneic tumor models, eight different PDXs, and two different autochthonous genetic models, we demonstrate that MRTX1133 reverses early PDAC growth, increases intratumoral CD8 + effector T cells, decreases myeloid infiltration, and reprograms cancer associated fibroblasts. Autochthonous genetic mouse models treated with MRTX1133 leads to regression of both established PanINs and advanced PDAC. Regression of advanced PDAC requires CD8 + T cells and immune checkpoint blockade therapy (iCBT) synergizes with MRTX1133 to eradicate PDAC and prolong overall survival. Mechanistically, inhibition of mutant Kras in advanced PDAC and human patient derived organoids (PDOs) induces Fas expression in cancer cells and facilitates CD8 + T cell mediated death. These results demonstrate the efficacy of MRTX1133 in different mouse models of PDAC associated with reprogramming of stromal fibroblasts and a dependency on CD8 + T cell mediated tumor clearance. Collectively, this study provides a rationale for a synergistic combination of MRTX1133 with iCBT in clinical trials.

20.
Cancer Cell ; 41(9): 1606-1620.e8, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625401

RESUMEN

The KRASG12D mutation is present in nearly half of pancreatic adenocarcinomas (PDAC). We investigated the effects of inhibiting the KRASG12D mutant protein with MRTX1133, a non-covalent small molecule inhibitor of KRASG12D, on early and advanced PDAC and its influence on the tumor microenvironment. Employing 16 different models of KRASG12D-driven PDAC, we demonstrate that MRTX1133 reverses early PDAC growth, increases intratumoral CD8+ effector T cells, decreases myeloid infiltration, and reprograms cancer-associated fibroblasts. MRTX1133 leads to regression of both established PanINs and advanced PDAC. Regression of advanced PDAC requires CD8+ T cells and immune checkpoint blockade (ICB) synergizes with MRTX1133 to eradicate PDAC and prolong overall survival. Mechanistically, inhibition of KRASG12D in advanced PDAC and human patient derived organoids induces FAS expression in cancer cells and facilitates CD8+ T cell-mediated death. Collectively, this study provides a rationale for a synergistic combination of MRTX1133 with ICB in clinical trials.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA