Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 36(1): e22107, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34939700

RESUMEN

Mounting evidence has linked the metabolic disease to neurovascular disorders and cognitive decline. Using a murine model of a high-fat high-sugar diet mimicking obesity-induced type 2 diabetes mellitus (T2DM) in humans, we show that pro-inflammatory mediators and altered immune responses damage the blood-brain barrier (BBB) structure, triggering a proinflammatory metabolic phenotype. We find that disruption to tight junctions and basal lamina due to loss of control in the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) causes BBB impairment. Together the disruption to the structural and functional integrity of the BBB results in enhanced transmigration of leukocytes across the BBB that could contribute to an initiation of a neuroinflammatory response through activation of microglia. Using a humanized in vitro model of the BBB and T2DM patient post-mortem brains, we show the translatable applicability of our results. We find a leaky BBB phenotype in T2DM patients can be attributed to a loss of junctional proteins through changes in inflammatory mediators and MMP/TIMP levels, resulting in increased leukocyte extravasation into the brain parenchyma. We further investigated therapeutic avenues to reduce and restore the BBB damage caused by HFHS-feeding. Pharmacological treatment with recombinant annexin A1 (hrANXA1) or reversion from a high-fat high-sugar diet to a control chow diet (dietary intervention), attenuated T2DM development, reduced inflammation, and restored BBB integrity in the animals. Given the rising incidence of diabetes worldwide, understanding metabolic-disease-associated brain microvessel damage is vital and the proposed therapeutic avenues could help alleviate the burden of these diseases.


Asunto(s)
Barrera Hematoencefálica/inmunología , Colagenasas/inmunología , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 2/inmunología , Inhibidores Tisulares de Metaloproteinasas/inmunología , Animales , Anexina A1/farmacología , Barrera Hematoencefálica/patología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Humanos , Masculino , Ratones , Proteínas Recombinantes/farmacología
2.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37958978

RESUMEN

Neuroinflammation driven primarily by microglia directly contributes to neuronal death in many neurodegenerative diseases. Classical anti-inflammatory approaches aim to suppress pro-inflammatory mediator production, but exploitation of inflammatory resolution may also be of benefit. A key driver of peripheral inflammatory resolution, formyl peptide receptor 2 (Fpr2), is expressed by microglia, but its therapeutic potential in neurodegeneration remains unclear. Here, we studied whether targeting of Fpr2 could reverse inflammatory microglial activation induced by the potent bacterial inflammogen lipopolysaccharide (LPS). Exposure of murine primary or immortalised BV2 microglia to LPS triggered pro-inflammatory phenotypic change and activation of ROS production, effects significantly attenuated by subsequent treatment with the Fpr2 agonist C43. Mechanistic studies showed C43 to act through p38 MAPK phosphorylation and reduction of LPS-induced NFκB nuclear translocation via prevention of IκBα degradation. Here, we provide proof-of-concept data highlighting Fpr2 as a potential target for control of microglial pro-inflammatory activity, suggesting that it may be a promising therapeutic target for the treatment of neuroinflammatory disease.


Asunto(s)
Lipopolisacáridos , Microglía , Animales , Ratones , Antiinflamatorios/farmacología , Muerte Celular , Lipopolisacáridos/farmacología , Microglía/metabolismo , FN-kappa B/metabolismo
3.
J Immunol ; 195(3): 1139-51, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26101324

RESUMEN

Blood-derived monocytes remove apoptotic cells and terminate inflammation in settings as diverse as atherosclerosis and Alzheimer's disease. They express high levels of the proresolving receptor ALX/FPR2, which is activated by the protein annexin A1 (ANXA1), found in high abundance in inflammatory exudates. Using primary human blood monocytes from healthy donors, we identified ANXA1 as a potent CD14(+)CD16(-) monocyte chemoattractant, acting via ALX/FPR2. Downstream signaling pathway analysis revealed the p38 MAPK-mediated activation of a calcium independent phospholipase A2 with resultant synthesis of lysophosphatidic acid (LPA) driving chemotaxis through LPA receptor 2 and actin cytoskeletal mobilization. In vivo experiments confirmed ANXA1 as an independent phospholipase A2-dependent monocyte recruiter; congruently, monocyte recruitment was significantly impaired during ongoing zymosan-induced inflammation in AnxA1(-/-) or alx/fpr2/3(-/-) mice. Using a dorsal air-pouch model, passive transfer of apoptotic neutrophils between AnxA1(-/-) and wild-type mice identified effete neutrophils as the primary source of soluble ANXA1 in inflammatory resolution. Together, these data elucidate a novel proresolving network centered on ANXA1 and LPA generation and identify previously unappreciated determinants of ANXA1 and ALX/FPR2 signaling in monocytes.


Asunto(s)
Anexina A1/inmunología , Apoptosis/inmunología , Monocitos/inmunología , Neutrófilos/inmunología , Receptores del Ácido Lisofosfatídico/inmunología , Citoesqueleto de Actina/metabolismo , Animales , Anexina A1/genética , Células Cultivadas , Activación Enzimática/inmunología , Humanos , Inflamación/inmunología , Receptores de Lipopolisacáridos/metabolismo , Lisofosfolípidos/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/trasplante , Fosfolipasas A2 Calcio-Independiente/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Receptores de Formil Péptido/biosíntesis , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo , Receptores de IgG/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Zimosan , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(52): 18685-90, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512512

RESUMEN

Sepsis is characterized by overlapping phases of excessive inflammation temporally aligned with an immunosuppressed state, defining a complex clinical scenario that explains the lack of successful therapeutic options. Here we tested whether the formyl-peptide receptor 2/3 (Fpr2/3)--ortholog to human FPR2/ALX (receptor for lipoxin A4)--exerted regulatory and organ-protective functions in experimental sepsis. Coecal ligature and puncture was performed to obtain nonlethal polymicrobial sepsis, with animals receiving antibiotics and analgesics. Clinical symptoms, temperature, and heart function were monitored up to 24 h. Peritoneal lavage and plasma samples were analyzed for proinflammatory and proresolving markers of inflammation and organ dysfunction. Compared with wild-type mice, Fpr2/3(-/-) animals exhibited exacerbation of disease severity, including hypothermia and cardiac dysfunction. This scenario was paralleled by higher levels of cytokines [CXCL1 (CXC receptor ligand 1), CCL2 (CC receptor ligand 2), and TNFα] as quantified in cell-free biological fluids. Reduced monocyte recruitment in peritoneal lavages of Fpr2/3(-/-) animals was reflected by a higher granulocyte/monocyte ratio. Monitoring Fpr2/3(-/-) gene promoter activity with a GFP proxy marker revealed an over threefold increase in granulocyte and monocyte signals at 24 h post-coecal ligature and puncture, a response mediated by TNFα. Treatment with a receptor peptido-agonist conferred protection against myocardial dysfunction in wild-type, but not Fpr2/3(-/-), animals. Therefore, coordinated physio-pharmacological analyses indicate nonredundant modulatory functions for Fpr2/3 in experimental sepsis, opening new opportunities to manipulate the host response for therapeutic development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Granulocitos/metabolismo , Monocitos/metabolismo , Receptores de Formil Péptido/metabolismo , Sepsis/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Modelos Animales de Enfermedad , Granulocitos/patología , Humanos , Ratones , Ratones Noqueados , Monocitos/patología , Peritoneo/metabolismo , Peritoneo/patología , Receptores de Formil Péptido/genética , Sepsis/genética , Sepsis/patología , Factores de Tiempo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(45): 18232-7, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24108355

RESUMEN

Formyl-peptide receptor type 2 (FPR2), also called ALX (the lipoxin A4 receptor), conveys the proresolving properties of lipoxin A4 and annexin A1 (AnxA1) and the proinflammatory signals elicited by serum amyloid protein A and cathelicidins, among others. We tested here the hypothesis that ALX might exist as homo- or heterodimer with FPR1 or FPR3 (the two other family members) and operate in a ligand-biased fashion. Coimmunoprecipitation and bioluminescence resonance energy transfer assays with transfected HEK293 cells revealed constitutive dimerization of the receptors; significantly, AnxA1, but not serum amyloid protein A, could activate ALX homodimers. A p38/MAPK-activated protein kinase/heat shock protein 27 signaling signature was unveiled after AnxA1 application, leading to generation of IL-10, as measured in vitro (in primary monocytes) and in vivo (after i.p. injection in the mouse). The latter response was absent in mice lacking the ALX ortholog. Using a similar approach, ALX/FPR1 heterodimerization evoked using the panagonist peptide Ac2-26, identified a JNK-mediated proapoptotic path that was confirmed in primary neutrophils. These findings provide a molecular mechanism that accounts for the dual nature of ALX and indicate that agonist binding and dimerization state contribute to the conformational landscape of FPRs.


Asunto(s)
Anexina A1/metabolismo , Conformación Proteica , Receptores de Formil Péptido/química , Receptores de Formil Péptido/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Transferencia de Energía por Resonancia de Bioluminiscencia , Dimerización , Células HEK293 , Humanos , Inmunoprecipitación , Interleucina-10/metabolismo , Ratones , Datos de Secuencia Molecular , Proteína Amiloide A Sérica/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(3): 832-41, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23277546

RESUMEN

The blood-brain barrier (BBB), a critical guardian of communication between the periphery and the brain, is frequently compromised in neurological diseases such as multiple sclerosis (MS), resulting in the inappropriate passage of molecules and leukocytes into the brain. Here we show that the glucocorticoid anti-inflammatory messenger annexin A1 (ANXA1) is expressed in brain microvascular endothelial cells, where it regulates BBB integrity. In particular, ANXA1(-/-) mice exhibit significantly increased BBB permeability as a result of disrupted interendothelial cell tight junctions, essentially related to changes in the actin cytoskeleton, which stabilizes tight and adherens junctions. This situation is reminiscent of early MS pathology, a relationship confirmed by our detection of a selective loss of ANXA1 in the plasma and cerebrovascular endothelium of patients with MS. Importantly, this loss is swiftly restored by i.v. administration of human recombinant ANXA1. Analysis in vitro confirms that treatment of cerebrovascular endothelial cells with recombinant ANXA1 restores cell polarity, cytoskeleton integrity, and paracellular permeability through inhibition of the small G protein RhoA. We thus propose ANXA1 as a critical physiological regulator of BBB integrity and suggest it may have utility in the treatment of MS, correcting BBB function and hence ameliorating disease.


Asunto(s)
Anexina A1/fisiología , Barrera Hematoencefálica/fisiología , Citoesqueleto de Actina/fisiología , Uniones Adherentes/patología , Uniones Adherentes/fisiología , Adulto , Anciano , Animales , Anexina A1/antagonistas & inhibidores , Anexina A1/deficiencia , Anexina A1/genética , Anexina A1/farmacología , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/fisiopatología , Permeabilidad Capilar/fisiología , Línea Celular , Células Endoteliales/patología , Células Endoteliales/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/patología , Microvasos/fisiopatología , Persona de Mediana Edad , Modelos Neurológicos , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Proteínas de Uniones Estrechas/fisiología , Proteína de Unión al GTP rhoA/metabolismo
7.
J Biol Chem ; 289(52): 36166-78, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25326384

RESUMEN

Formyl-peptide receptor type 2 (FPR2; also called ALX because it is the receptor for lipoxin A4) sustains a variety of biological responses relevant to the development and control of inflammation, yet the cellular regulation of this G-protein-coupled receptor remains unexplored. Here we report that, in response to peptide agonist activation, FPR2/ALX undergoes ß-arrestin-mediated endocytosis followed by rapid recycling to the plasma membrane. We identify a transplantable recycling sequence that is both necessary and sufficient for efficient receptor recycling. Furthermore, removal of this C-terminal recycling sequence alters the endocytic fate of FPR2/ALX and evokes pro-apoptotic effects in response to agonist activation. This study demonstrates the importance of endocytic recycling in the anti-apoptotic properties of FPR2/ALX and identifies the molecular determinant required for modulation of this process fundamental for the control of inflammation.


Asunto(s)
Apoptosis , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Secuencia de Aminoácidos , Arrestinas/metabolismo , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptores de Formil Péptido/química , Receptores de Lipoxina/química , beta-Arrestinas
8.
Hepatology ; 60(2): 531-44, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24668763

RESUMEN

UNLABELLED: Annexin A1 (AnxA1) is an effector of the resolution of inflammation and is highly effective in terminating acute inflammatory responses. However, its role in chronic settings is less investigated. Because changes in AnxA1 expression within adipose tissue characterize obesity in mice and humans, we queried a possible role for AnxA1 in the pathogenesis of nonalcoholic steatohepatitis (NASH), a disease commonly associated with obesity. NASH was induced in wild-type (WT) and AnxA1 knockout (AnxA1 KO) C57BL/6 mice by feeding a methionine-choline deficient (MCD) diet up to 8 weeks. In MCD-fed WT mice, hepatic AnxA1 increased in parallel with progression of liver injury. This mediator was also detected in liver biopsies from patients with NASH and its degree of expression inversely correlated with the extent of fibrosis. In both humans and rodents, AnxA1 production was selectively localized in liver macrophages. NASH in AnxA1 KO mice was characterized by enhanced lobular inflammation resulting from increased macrophage recruitment and exacerbation of the M1 phenotype. Consistently, in vitro addition of recombinant AnxA1 to macrophages isolated from NASH livers down-modulated M1 polarization through stimulation of interleukin-10 production. Furthermore, the degree of hepatic fibrosis was enhanced in MCD-fed AnxA1 KO mice, an effect associated with augmented liver production of the profibrotic lectin, galectin-3. Accordingly, AnxA1 addition to isolated hepatic macrophages reduced galectin-3 expression. CONCLUSIONS: Macrophage-derived AnxA1 plays a functional role in modulating hepatic inflammation and fibrogenesis during NASH progression, suggesting the possible use of AnxA1 analogs for therapeutic control of this disease.


Asunto(s)
Anexina A1/inmunología , Hígado Graso/inmunología , Hepatitis/inmunología , Macrófagos/inmunología , Animales , Anexina A1/genética , Deficiencia de Colina/genética , Deficiencia de Colina/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hígado Graso/genética , Hepatitis/genética , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/inmunología , Masculino , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico , Obesidad/genética , Obesidad/inmunología
9.
EMBO Rep ; 14(11): 999-1007, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23999103

RESUMEN

Neutrophil activation and adhesion must be tightly controlled to prevent complications associated with excessive inflammatory responses. The role of the anti-inflammatory peptide chemerin15 (C15) and the receptor ChemR23 in neutrophil physiology is unknown. Here, we report that ChemR23 is expressed in neutrophil granules and rapidly upregulated upon neutrophil activation. C15 inhibits integrin activation and clustering, reducing neutrophil adhesion and chemotaxis in vitro. In the inflamed microvasculature, C15 rapidly modulates neutrophil physiology inducing adherent cell detachment from the inflamed endothelium, while reducing neutrophil recruitment and heart damage in a murine myocardial infarction model. These effects are mediated through ChemR23. We identify the C15/ChemR23 pathway as a new regulator and thus therapeutic target in neutrophil-driven pathologies.


Asunto(s)
Vasos Sanguíneos/patología , Factores Quimiotácticos/farmacología , Inflamación/patología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Daño por Reperfusión Miocárdica/patología , Neutrófilos/patología , Fragmentos de Péptidos/farmacología , Péptidos/farmacología , Receptores de Quimiocina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Comunicación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Microvasos/patología , Daño por Reperfusión Miocárdica/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Regulación hacia Arriba/efectos de los fármacos
10.
Neural Plast ; 2015: 694347, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26345609

RESUMEN

The long-term effects of antenatal dexamethasone treatment on brain remodelling in 3-month-old male Sprague Dawley rats whose mothers had been treated with dexamethasone were investigated in the present study. Dorsal hippocampus, basolateral amygdala and nucleus accumbens volume, cell numbers, and GFAP-immunoreactive astroglial cell morphology were analysed using stereology. Total brain volume as assessed by micro-CT was not affected by the treatment. The relative volume of the dorsal hippocampus (% of total brain volume) showed a moderate, by 8%, but significant reduction in dexamethasone-treated versus control animals. Dexamethasone had no effect on the total and GFAP-positive cell numbers in the hippocampal subregions, basolateral amygdala, and nucleus accumbens. Morphological analysis indicated that numbers of astroglial primary processes were not affected in any of the hippocampal subregions analysed but significant reductions in the total primary process length were observed in CA1 by 32%, CA3 by 50%, and DG by 25%. Mean primary process length values were also significantly decreased in CA1 by 25%, CA3 by 45%, and DG by 25%. No significant astroglial morphological changes were found in basolateral amygdala and nucleus accumbens. We propose that the dexamethasone-dependent impoverishment of hippocampal astroglial morphology is the case of maladaptive glial plasticity induced prenatally.


Asunto(s)
Astrocitos/efectos de los fármacos , Dexametasona/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Neuroglía/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Animales , Astrocitos/ultraestructura , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/patología , Recuento de Células , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Masculino , Neuroglía/ultraestructura , Tamaño de los Órganos/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Ratas , Ratas Sprague-Dawley
11.
Nutrients ; 16(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38794738

RESUMEN

As the population ages, the incidence of age-related neurodegenerative diseases is rapidly increasing, and novel approaches to mitigate this soaring prevalence are sorely needed. Recent studies have highlighted the importance of gut microbial homeostasis and its impact on brain functions, commonly referred to as the gut-brain axis, in maintaining overall health and wellbeing. Nonetheless, the mechanisms by which this system acts remains poorly defined. In this review, we will explore how (poly)phenols, a class of natural compounds found in many plant-based foods and beverages, can modulate the gut-brain axis, and thereby promote neural health. While evidence indicates a beneficial role of (poly)phenol consumption as part of a balanced diet, human studies are scarce and mechanistic insight is still lacking. In this regard, we make the case that dietary (poly)phenols should be further explored to establish their therapeutic efficacy on brain health through modulation of the gut-brain axis, with much greater emphasis on carefully designed human interventions.


Asunto(s)
Envejecimiento , Eje Cerebro-Intestino , Dieta , Microbioma Gastrointestinal , Polifenoles , Humanos , Envejecimiento/fisiología , Polifenoles/farmacología , Microbioma Gastrointestinal/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Eje Cerebro-Intestino/fisiología , Encéfalo/fisiología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Enfermedades Neurodegenerativas , Animales
12.
Pharmacol Rev ; 62(2): 155-98, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20392807

RESUMEN

The classic view of estrogen actions in the brain was confined to regulation of ovulation and reproductive behavior in the female of all mammalian species studied, including humans. Burgeoning evidence now documents profound effects of estrogens on learning, memory, and mood as well as neurodevelopmental and neurodegenerative processes. Most data derive from studies in females, but there is mounting recognition that estrogens play important roles in the male brain, where they can be generated from circulating testosterone by local aromatase enzymes or synthesized de novo by neurons and glia. Estrogen-based therapy therefore holds considerable promise for brain disorders that affect both men and women. However, as investigations are beginning to consider the role of estrogens in the male brain more carefully, it emerges that they have different, even opposite, effects as well as similar effects in male and female brains. This review focuses on these differences, including sex dimorphisms in the ability of estradiol to influence synaptic plasticity, neurotransmission, neurodegeneration, and cognition, which, we argue, are due in a large part to sex differences in the organization of the underlying circuitry. There are notable sex differences in the incidence and manifestations of virtually all central nervous system disorders, including neurodegenerative disease (Parkinson's and Alzheimer's), drug abuse, anxiety, and depression. Understanding the cellular and molecular basis of sex differences in brain physiology and responses to estrogen and estrogen mimics is, therefore, vitally important for understanding the nature and origins of sex-specific pathological conditions and for designing novel hormone-based therapeutic agents that will have optimal effectiveness in men or women.


Asunto(s)
Encéfalo/efectos de los fármacos , Estrógenos/farmacología , Enfermedad de Alzheimer/metabolismo , Animales , Encefalopatías/etiología , Encefalopatías/metabolismo , Estrógenos/metabolismo , Femenino , Humanos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Aprendizaje/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Ratas , Factores Sexuales
13.
Life (Basel) ; 13(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36836753

RESUMEN

A fundamental characteristic of living organisms is their ability to separate the internal and external environments, a function achieved in large part through the different physiological barrier systems and their component junctional molecules. Barrier integrity is subject to multiple influences, but one that has received comparatively little attention to date is the role of the commensal microbiota. These microbes, which represent approximately 50% of the cells in the human body, are increasingly recognized as powerful physiological modulators in other systems, but their role in regulating barrier function is only beginning to be addressed. Through comparison of the impact commensal microbes have on cell-cell junctions in three exemplar physiological barriers-the gut epithelium, the epidermis and the blood-brain barrier-this review will emphasize the important contribution microbes and microbe-derived mediators play in governing barrier function. By extension, this will highlight the critical homeostatic role of commensal microbes, as well as identifying the puzzles and opportunities arising from our steadily increasing knowledge of this aspect of physiology.

14.
Tissue Barriers ; 11(1): 2073175, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35596559

RESUMEN

The sequential activity of gut microbial and host processes can exert a powerful modulatory influence on dietary components, as exemplified by the metabolism of the amino acids tyrosine and phenylalanine to p-cresol by gut microbes, and then to p-cresol glucuronide (pCG) by host enzymes. Although such glucuronide conjugates are classically thought to be biologically inert, there is accumulating evidence that this may not always be the case. We investigated the activity of pCG, studying its interactions with the cerebral vasculature and the brain in vitro and in vivo. Male C57Bl/6 J mice were used to assess blood-brain barrier (BBB) permeability and whole-brain transcriptomic changes in response to pCG treatment. Effects were then further explored using the human cerebromicrovascular endothelial cell line hCMEC/D3, assessing paracellular permeability, transendothelial electrical resistance and barrier protein expression. Mice exposed to pCG showed reduced BBB permeability and significant changes in whole-brain transcriptome expression. Surprisingly, treatment of hCMEC/D3 cells with pCG had no notable effects until co-administered with bacterial lipopolysaccharide, at which point it was able to prevent the permeabilizing effects of endotoxin. Further analysis suggested that pCG acts as an antagonist at the principal lipopolysaccharide receptor TLR4. The amino acid phase II metabolic product pCG is biologically active at the BBB, antagonizing the effects of constitutively circulating lipopolysaccharide. These data add to the growing literature showing glucuronide conjugates to be more than merely metabolic waste products and highlight the complexity of gut microbe to host communication pathways underlying the gut-brain axis.


Asunto(s)
Barrera Hematoencefálica , Microbioma Gastrointestinal , Masculino , Ratones , Humanos , Animales , Barrera Hematoencefálica/metabolismo , Glucurónidos/metabolismo , Glucurónidos/farmacología , Aminoácidos/metabolismo , Aminoácidos/farmacología , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología
15.
J Immunol ; 185(10): 6317-28, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20962261

RESUMEN

The brain microenvironment is continuously monitored by microglia with the detection of apoptotic cells or pathogens being rapidly followed by their phagocytosis to prevent inflammatory responses. The protein annexin A1 (ANXA1) is key to the phagocytosis of apoptotic leukocytes during peripheral inflammatory resolution, but the pathophysiological significance of its expression in the CNS that is restricted almost exclusively to microglia is unclear. In this study, we test the hypothesis that ANXA1 is important in the microglial clearance of apoptotic neurons in both noninflammatory and inflammatory conditions. We have identified ANXA1 to be sparingly expressed in microglia of normally aged human brains and to be more strongly expressed in Alzheimer's disease. Using an in vitro model comprising microglial and neuronal cell lines, as well as primary microglia from wild-type and ANXA1 null mice, we have identified two distinct roles for microglial ANXA1: 1) controlling the noninflammatory phagocytosis of apoptotic neurons and 2) promoting resolution of inflammatory microglial activation. In particular, we showed that microglial-derived ANXA1 targets apoptotic neurons, serving as both an "eat me" signal and a bridge between phosphatidylserine on the dying cell and formyl peptide receptor 2 on the phagocytosing microglia. Moreover, inflammatory activation of microglia impairs their ability to discriminate between apoptotic and nonapoptotic cells, an ability restored by exogenous ANXA1. We thus show that ANXA1 is fundamental for brain homeostasis, and we suggest that ANXA1 and its peptidomimetics can be novel therapeutic targets in neuroinflammation.


Asunto(s)
Anexina A1/metabolismo , Antiinflamatorios/metabolismo , Encéfalo/metabolismo , Inflamación/metabolismo , Microglía/metabolismo , Anciano de 80 o más Años , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Anexina A1/inmunología , Antiinflamatorios/inmunología , Apoptosis/fisiología , Western Blotting , Línea Celular , Separación Celular , Citocinas/biosíntesis , Citocinas/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Inflamación/inmunología , Masculino , Ratones , Ratones Noqueados , Microglía/inmunología , Microscopía Confocal , Microscopía Electrónica de Transmisión , Fagocitosis/inmunología
16.
Life (Basel) ; 12(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36556373

RESUMEN

Formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled receptors (GPCRs) mainly found in mammalian leukocytes. However, they are also expressed in cell types crucial for homeostatic brain regulation, including microglia and blood-brain barrier endothelial cells. Thus, the roles of these immune-associated receptors are extensive, from governing cellular adhesion and directed migration through chemotaxis, to granule release and superoxide formation, to phagocytosis and efferocytosis. In this review, we will describe the similarities and differences between the two principal pro-inflammatory and anti-inflammatory FPRs, FPR1 and FPR2, and the evidence for their importance in the development of neuroinflammatory disease, alongside their potential as therapeutic targets.

17.
FEBS J ; 289(7): 1801-1822, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33811735

RESUMEN

Alzheimer's disease and dementia are among the most significant current healthcare challenges given the rapidly growing elderly population, and the almost total lack of effective therapeutic interventions. Alzheimer's disease pathology has long been considered in terms of accumulation of amyloid beta and hyperphosphorylated tau, but the importance of neuroinflammation in driving disease has taken greater precedence over the last 15-20 years. Inflammatory activation of the primary brain immune cells, the microglia, has been implicated in Alzheimer's pathogenesis through genetic, preclinical, imaging and postmortem human studies, and strategies to regulate microglial activity may hold great promise for disease modification. Neuroinflammation is necessary for defence of the brain against pathogen invasion or damage but is normally self-limiting due to the engagement of endogenous pro-resolving circuitry that terminates inflammatory activity, a process that appears to fail in Alzheimer's disease. Here, we discuss the potential for a major regulator and promoter of resolution, the receptor FPR2, to restrain pro-inflammatory microglial activity, and propose that it may serve as a valuable target for therapeutic investigation in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Microglía/metabolismo , Receptores de Formil Péptido/genética
18.
Brain Commun ; 3(3): fcab148, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34396108

RESUMEN

Plasma proteome composition reflects the inflammatory and metabolic state of the organism and can be predictive of system-level and organ-specific pathologies. Circulating protein aggregates are enriched with neurofilament heavy chain-axonal proteins involved in brain aggregate formation and recently identified as biomarkers of the fatal neuromuscular disorder amyotrophic lateral sclerosis. Using unbiased proteomic methods, we have fully characterized the content in neuronal proteins of circulating protein aggregates from amyotrophic lateral sclerosis patients and healthy controls, with reference to brain protein aggregate composition. We also investigated circulating protein aggregate protein aggregation propensity, stability to proteolytic digestion and toxicity for neuronal and endothelial cell lines. Circulating protein aggregates separated by ultracentrifugation are visible as electron-dense macromolecular particles appearing as either large globular or as small filamentous formations. Analysis by mass spectrometry revealed that circulating protein aggregates obtained from patients are enriched with proteins involved in the proteasome system, possibly reflecting the underlying basis of dysregulated proteostasis seen in the disease, while those from healthy controls show enrichment of proteins involved in metabolism. Compared to the whole human proteome, proteins within circulating protein aggregates and brain aggregates show distinct chemical features of aggregation propensity, which appear dependent on the tissue or fluid of origin and not on the health status. Neurofilaments' two high-mass isoforms (460 and 268 kDa) showed a strong differential expression in amyotrophic lateral sclerosis compared to healthy control circulating protein aggregates, while aggregated neurofilament heavy chain was also partially resistant to enterokinase proteolysis in patients, demonstrated by immunoreactive bands at 171 and 31 kDa fragments not seen in digested healthy controls samples. Unbiased proteomics revealed that a total of 4973 proteins were commonly detected in circulating protein aggregates and brain, including 24 expressed from genes associated with amyotrophic lateral sclerosis. Interestingly, 285 circulating protein aggregate proteins (5.7%) were regulated (P < 0.05) and are present in biochemical pathways linked to disease pathogenesis and protein aggregation. Biologically, circulating protein aggregates from both patients and healthy controls had a more pronounced effect on the viability of hCMEC/D3 endothelial and PC12 neuronal cells compared to immunoglobulins extracted from the same plasma samples. Furthermore, circulating protein aggregates from patients exerted a more toxic effect than healthy control circulating protein aggregates on both cell lines at lower concentrations (P: 0.03, in both cases). This study demonstrates that circulating protein aggregates are significantly enriched with brain proteins which are representative of amyotrophic lateral sclerosis pathology and a potential source of biomarkers and therapeutic targets for this incurable disorder.

19.
Microbiome ; 9(1): 235, 2021 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-34836554

RESUMEN

BACKGROUND: Communication between the gut microbiota and the brain is primarily mediated via soluble microbe-derived metabolites, but the details of this pathway remain poorly defined. Methylamines produced by microbial metabolism of dietary choline and L-carnitine have received attention due to their proposed association with vascular disease, but their effects upon the cerebrovascular circulation have hitherto not been studied. RESULTS: Here, we use an integrated in vitro/in vivo approach to show that physiologically relevant concentrations of the dietary methylamine trimethylamine N-oxide (TMAO) enhanced blood-brain barrier (BBB) integrity and protected it from inflammatory insult, acting through the tight junction regulator annexin A1. In contrast, the TMAO precursor trimethylamine (TMA) impaired BBB function and disrupted tight junction integrity. Moreover, we show that long-term exposure to TMAO protects murine cognitive function from inflammatory challenge, acting to limit astrocyte and microglial reactivity in a brain region-specific manner. CONCLUSION: Our findings demonstrate the mechanisms through which microbiome-associated methylamines directly interact with the mammalian BBB, with consequences for cerebrovascular and cognitive function. Video abstract.


Asunto(s)
Barrera Hematoencefálica , Microbiota , Animales , Cognición , Mamíferos/metabolismo , Metilaminas/metabolismo , Ratones
20.
FASEB J ; 23(11): 4000-10, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19625660

RESUMEN

The glucocorticoid-regulated protein annexin A1 is a potent inhibitor of hormone exocytosis in the neuroendocrine system, acting in a paracrine/juxtacrine manner. The signaling mechanism employed by annexin A1 in this process is uncertain, although we have recently presented evidence for a role of the formyl peptide receptor in vivo. We sought to characterize the mechanism of action of annexin A1 on exocytosis using the release of adrenocorticotrophin from the corticotroph-like cell line AtT20 as an in vitro model system. Through the comparison of adrenocorticotrophin release from cells expressing either wild-type annexin A1 or mutant forms, we show a critical involvement of phosphorylation on serine 27 and 45 in the translocation of the protein to the membrane and its inhibitory action on exocytosis. Moreover, we show, for the first time, that annexin A1-dependent inhibition of adrenocorticotrophin release involves the enhancement of actin polymerization to prevent exocytosis via formyl peptide receptor and Rho kinase signaling pathways. This finding has significant implications for the inhibitory actions of annexin A1 on exocytosis in other endocrine and immune contexts.


Asunto(s)
Hormona Adrenocorticotrópica/metabolismo , Anexina A1/fisiología , Exocitosis/efectos de los fármacos , Actinas/efectos de los fármacos , Actinas/metabolismo , Actinas/ultraestructura , Animales , Anexina A1/genética , Anexina A1/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular , Corticotrofos/metabolismo , Hormona Liberadora de Corticotropina/farmacología , Exocitosis/fisiología , Ratones , Microscopía Electrónica , Microscopía Fluorescente , Fosforilación , Multimerización de Proteína/efectos de los fármacos , Receptores de Formil Péptido/fisiología , Transducción de Señal/fisiología , Tiazolidinas/farmacología , Quinasas Asociadas a rho/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA