Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 14(8): e0220125, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31408457

RESUMEN

BIN1 is the most important risk locus for Late Onset Alzheimer's Disease (LOAD), after ApoE. BIN1 AD-associated SNPs correlate with Tau deposition as well as with brain atrophy. Furthermore, the level of neuronal-specific BIN1 isoform 1 protein is decreased in sporadic AD cases in parallel with neuronal loss, despite an overall increase in BIN1 total mRNA. To address the relationship between reduction of BIN1 and neuronal cell loss in the context of Tau pathology, we knocked-down endogenous murine Bin1 via stereotaxic injection of AAV-Bin1 shRNA in the hippocampus of mice expressing Tau P301S (PS19). We observed a statistically significant reduction in the number of neurons in the hippocampus of mice injected with AAV-Bin1 shRNA in comparison with mice injected with AAV control. To investigate whether neuronal loss is due to deletion of Bin1 selectively in neurons in presence Tau P301S, we bred Bin1flox/flox with Thy1-Cre and subsequently with PS19 mice. Mice lacking neuronal Bin1 and expressing Tau P301S showed increased mortality, without increased neuropathology, when compared to neuronal Bin1 and Tau P301S-expressing mice. The loss of Bin1 isoform 1 resulted in reduced excitability in primary neurons in vitro, reduced neuronal c-fos expression as well as in altered microglia transcriptome in vivo. Taken together, our data suggest that the contribution of genetic variation in BIN1 locus to AD risk could result from a cell-autonomous reduction of neuronal excitability due to Bin1 decrease, exacerbated by the presence of aggregated Tau, coupled with a non-cell autonomous microglia activation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Enfermedad de Alzheimer/patología , Biomarcadores/metabolismo , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Proteínas del Tejido Nervioso/fisiología , Neuronas/patología , Proteínas Supresoras de Tumor/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Conducta Animal , Encéfalo/metabolismo , Femenino , Perfilación de la Expresión Génica , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Ratas , Proteínas tau/metabolismo
2.
Sci Rep ; 9(1): 9477, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31263146

RESUMEN

Despite Bridging INtegrator 1 (BIN1) being the second most statistically-significant locus associated to Late Onset Alzheimer's Disease, its role in disease pathogenesis remains to be clarified. As reports suggest a link between BIN1, Tau and extracellular vesicles, we investigated whether BIN1 could affect Tau spreading via exosomes secretion. We observed that BIN1-associated Tau-containing extracellular vesicles purified from cerebrospinal fluid of AD-affected individuals are seeding-competent. We showed that BIN1 over-expression promotes the release of Tau via extracellular vesicles in vitro as well as exacerbation of Tau pathology in vivo in PS19 mice. Genetic deletion of Bin1 from microglia resulted in reduction of Tau secretion via extracellular vesicles in vitro, and in decrease of Tau spreading in vivo in male, but not female, mice, in the context of PS19 background. Interestingly, ablation of Bin1 in microglia of male mice resulted in significant reduction in the expression of heat-shock proteins, previously implicated in Tau proteostasis. These observations suggest that BIN1 could contribute to the progression of AD-related Tau pathology by altering Tau clearance and promoting release of Tau-enriched extracellular vesicles by microglia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Enfermedad de Alzheimer/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Proteínas Nucleares/biosíntesis , Proteínas Supresoras de Tumor/biosíntesis , Proteínas tau/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteostasis , Caracteres Sexuales , Proteínas Supresoras de Tumor/genética , Proteínas tau/genética
3.
Nat Commun ; 9(1): 552, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396556

RESUMEN

The original version of this Article contained an error in the spelling of the author Alexa H. Veenema, which was incorrectly given as Alexa Veenema. This has now been corrected in both the PDF and HTML versions of the Article.

4.
Neurotherapeutics ; 14(3): 630-645, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28536851

RESUMEN

Millions of individuals suffer from age-related cognitive decline, defined by impaired memory precision. Increased understanding of hippocampal circuit mechanisms underlying memory formation suggests a role for computational processes such as pattern separation and pattern completion in memory precision. We describe evidence implicating the dentate gyrus-CA3 circuit in pattern separation and completion, and examine alterations in dentate gyrus-CA3 circuit structure and function with aging. We discuss the role of adult hippocampal neurogenesis in memory precision in adulthood and aging, as well as the circuit mechanisms underlying the integration and encoding functions of adult-born dentate granule cells. We posit that understanding these circuit mechanisms will permit generation of circuit-based endophenotypes that will edify new therapeutic strategies to optimize hippocampal encoding during aging.


Asunto(s)
Envejecimiento , Hipocampo/fisiopatología , Memoria/fisiología , Vías Nerviosas/fisiopatología , Neurogénesis/fisiología , Animales , Giro Dentado/fisiopatología , Humanos
5.
Nat Commun ; 8(1): 2001, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222469

RESUMEN

Oxytocin receptor (Oxtr) signaling in neural circuits mediating discrimination of social stimuli and affiliation or avoidance behavior is thought to guide social recognition. Remarkably, the physiological functions of Oxtrs in the hippocampus are not known. Here we demonstrate using genetic and pharmacological approaches that Oxtrs in the anterior dentate gyrus (aDG) and anterior CA2/CA3 (aCA2/CA3) of mice are necessary for discrimination of social, but not non-social, stimuli. Further, Oxtrs in aCA2/CA3 neurons recruit a population-based coding mechanism to mediate social stimuli discrimination. Optogenetic terminal-specific attenuation revealed a critical role for aCA2/CA3 outputs to posterior CA1 for discrimination of social stimuli. In contrast, aCA2/CA3 projections to aCA1 mediate discrimination of non-social stimuli. These studies identify a role for an aDG-CA2/CA3 axis of Oxtr expressing cells in discrimination of social stimuli and delineate a pathway relaying social memory computations in the anterior hippocampus to the posterior hippocampus to guide social recognition.


Asunto(s)
Conducta Animal/fisiología , Discriminación en Psicología/fisiología , Hipocampo/fisiología , Receptores de Oxitocina/fisiología , Conducta Social , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Vías Nerviosas/fisiología , Neuronas/fisiología , Optogenética
6.
Neuron ; 91(6): 1356-1373, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27593178

RESUMEN

The neural circuit mechanisms underlying the integration and functions of adult-born dentate granule cell (DGCs) are poorly understood. Adult-born DGCs are thought to compete with mature DGCs for inputs to integrate. Transient genetic overexpression of a negative regulator of dendritic spines, Kruppel-like factor 9 (Klf9), in mature DGCs enhanced integration of adult-born DGCs and increased NSC activation. Reversal of Klf9 overexpression in mature DGCs restored spines and activity and reset neuronal competition dynamics and NSC activation, leaving the DG modified by a functionally integrated, expanded cohort of age-matched adult-born DGCs. Spine elimination by inducible deletion of Rac1 in mature DGCs increased survival of adult-born DGCs without affecting proliferation or DGC activity. Enhanced integration of adult-born DGCs transiently reorganized adult-born DGC local afferent connectivity and promoted global remapping in the DG. Rejuvenation of the DG by enhancing integration of adult-born DGCs in adulthood, middle age, and aging enhanced memory precision.


Asunto(s)
Envejecimiento/fisiología , Giro Dentado/fisiología , Memoria/fisiología , Células Madre Adultas/citología , Animales , Proliferación Celular/genética , Supervivencia Celular/genética , Espinas Dendríticas/fisiología , Giro Dentado/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/fisiología , Ratones , Mutación , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Neuropéptidos/genética , Regulación hacia Arriba , Proteína de Unión al GTP rac1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA