Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(1): 30, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265482

RESUMEN

KEY MESSAGE: Sr67 is a new stem rust resistance gene that represents a new resource for breeding stem rust resistant wheat cultivars Re-appearance of stem rust disease, caused by the fungal pathogen Puccinia graminis f. sp. tritici (Pgt), in different parts of Europe emphasized the need to develop wheat varieties with effective resistance to local Pgt populations and exotic threats. A Kyoto University wheat (Triticum aestivum L.) accession KU168-2 was reported to carry good resistance to leaf and stem rust. To identify the genomic region associated with the KU168-2 stem rust resistance, a genetic study was conducted using a doubled haploid (DH) population from the cross RL6071 × KU168-2. The DH population was phenotyped with three Pgt races (TTKSK, TPMKC, and QTHSF) and genotyped using the Illumina 90 K wheat SNP array. Linkage mapping showed the resistance to all three Pgt races was conferred by a single stem rust resistance (Sr) gene on chromosome arm 6AL, associated with Sr13. Presently, four Sr13 resistance alleles have been reported. Sr13 allele-specific KASP and STARP markers, and sequencing markers all showed null alleles in KU168-2. KU168-2 showed a unique combination of seedling infection types for five Pgt races (TTKSK, QTHSF, RCRSF, TMRTF, and TPMKC) compared to Sr13 alleles. The phenotypic uniqueness of the stem rust resistance gene in KU168-2 and null alleles for Sr13 allele-specific markers showed the resistance was conferred by a new gene, designated Sr67. Since Sr13 is less effective in hexaploid background, Sr67 will be a good source of stem rust resistance in bread wheat breeding programs.


Asunto(s)
Basidiomycota , Puccinia , Triticum , Humanos , Fitomejoramiento , Alelos
2.
Phytopathology ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013390

RESUMEN

Durum wheat (T. turgidum L.) is threatened by the appearance of new virulent races of leaf rust, caused by Puccinia triticina, in recent years. This study was conducted to determine the leaf rust resistance in a modern Canadian durum cultivar Strongfield. Six populations derived from crosses of Strongfield with six tetraploid wheat lines, respectively, were tested at seedling plant stage with different P. triticina races. Two of the populations were evaluated for adult plant leaf rust infection in Canada and Mexico. A stepwise regression joint linkage QTL mapping and analysis by MapQTL were performed. Strongfield contributed the majority of QTL detected, contributing seven QTL detected in field tests, and eight QTL conditioning seedling resistance. A 1B QTL, QLr-Spa-1B.1, from Strongfield had a significant effect in both Canadian and Mexican field tests, and corresponded with Lr46/Yr29. The remaining field QTL were found in only the Canadian or the Mexican environment, not both. The QTL from Strongfield on 3A, QLr-Spa-3A, conferred seedling resistance to all races tested and had a significant effect in the field in Canada. This is the first report of the QLr-Spa-3A and Lr46/Yr29 as key components of the genetic resistance in Canadian durum wheat. KASP markers were developed to detect the QLr-Spa-3A for use in marker assisted leaf rust resistance breeding. The susceptible parental lines contributed QTL on 1A, 2B and 5B that were effective in Mexican field tests that may be good targets to integrate into modern durum varieties to improve resistance to new durum virulent races.

3.
BMC Biol ; 21(1): 233, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880702

RESUMEN

BACKGROUND: The population structure of crop pathogens such as Puccinia striiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is of interest to researchers looking to understand these pathogens on a molecular level as well as those with an applied focus such as disease epidemiology. Cereal rusts can reproduce sexually or asexually, and the emergence of novel lineages has the potential to cause serious epidemics such as the one caused by the 'Warrior' lineage in Europe. In a global context, Pst lineages in Canada were not well-characterized and the origin of foreign incursions was not known. Additionally, while some Pst mating type genes have been identified in published genomes, there has been no rigorous assessment of mating type diversity and distribution across the species. RESULTS: We used a whole-genome/transcriptome sequencing approach for the Canadian Pst population to identify lineages in their global context and evidence tracing foreign incursions. More importantly: for the first time ever, we identified nine alleles of the homeodomain mating type locus in the worldwide Pst population and show that previously identified lineages exhibit a single pair of these alleles. Consistently with the literature, we find only two pheromone receptor mating type alleles. We show that the recent population shift from the 'PstS1' lineage to the 'PstS1-related' lineage is also associated with the introduction of a novel mating type allele (Pst-b3-HD) to the Canadian population. We also show evidence for high levels of mating type diversity in samples associated with the Himalayan center of diversity for Pst, including a single Canadian race previously identified as 'PstPr' (probable recombinant) which we identify as a foreign incursion, most closely related to isolates sampled from China circa 2015. CONCLUSIONS: These data describe a recent shift in the population of Canadian Pst field isolates and characterize homeodomain-locus mating type alleles in the global Pst population which can now be utilized in testing several research questions and hypotheses around sexuality and hybridization in rust fungi.


Asunto(s)
Basidiomycota , Alelos , Canadá , Basidiomycota/genética , Recombinación Genética , Europa (Continente) , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
4.
Theor Appl Genet ; 136(9): 198, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37615732

RESUMEN

KEY MESSAGE: Leaf rust resistance gene Lr2a was located to chromosome arm 2DS in three mapping populations, which will facilitate map-based cloning and marker-assisted selection of Lr2a in wheat breeding programs. Incorporating effective leaf rust resistance (Lr) genes into high-yielding wheat cultivars has been an efficient method of disease control. One of the most widely used genes in Canada is the multi-allelic resistance gene Lr2, with alleles Lr2a, Lr2b, Lr2c, and Lr2d. The Lr2a allele confers complete resistance to a large portion of the Puccinia triticina (Pt) population in Canada. In this study, Lr2a was genetically mapped in two doubled haploid populations developed from the crosses Superb/BW278 and Superb/86ISMN 2137, and an F2 population developed from the cross Chinese Spring/RL6016. Seedlings were tested with the Lr2a avirulent Pt races 74-2 MGBJ (Superb/BW278) and 12-3 MBDS (Superb/86ISMN 2137 and Chinese Spring/RL6016) in greenhouse assays and were genotyped with 90K wheat Infinium SNP and kompetitive allele-specific PCR (KASP) markers. Lr2a was mapped to a collinear position on chromosome arm 2DS in all three populations, within a 1.00 cM genetic interval between KASP markers kwm1620 and kwm1623. This corresponded to a 305 kb genomic region of chromosome 2D in Chinese Spring RefSeq v2.1. The KASP marker kwh740 was predictive of Lr2a in all mapping populations. A panel of 260 wheats were tested with three Pt isolates, which revealed that Lr2a is common in Canadian wheats. The KASP markers kwh740 and kwm1584 were highly associated with resistance at the Lr2 locus, while kwm1622 was slightly less correlated. Genetic mapping of the leaf rust resistance gene Lr2a and DNA markers developed here will facilitate its use in wheat breeding programs.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Canadá , Mapeo Cromosómico
5.
Phytopathology ; 113(5): 847-857, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36656304

RESUMEN

Pyramiding multiple resistant genes has been proposed as the most effective way to control wheat rust diseases globally. Identifying the most effective pyramids is challenged by the large pool of rust resistance genes and limited information about their mechanisms of resistance and interactions. Here, using a high-density genetic map, a double haploid population, and multi-rust field testing, we aimed to systematically characterize the most effective gene pyramids for rust resistance from the durable multi-rust resistant CIMMYT cultivar Parula. We revealed that the Parula resistance gene pyramid contains Lr34/Yr18/Sr57 (Lr34), Lr46/Yr29/Sr58 (Lr46), Lr27/Yr30/Sr2 (Sr2), and Lr68. The efficacy, magnitude of effect, and interactions varied for the three rust diseases. A subpopulation mapping approach was applied to characterize the complex interactions of the resistance genes by controlling for the effect of Lr34. Using this approach, we found that Lr34 and Lr68 have a strong additive effect for leaf rust, whereas no additive effects were observed for any rusts between Lr34 and Lr46. Lr34 combined synergistically with Sr12 from Thatcher for stem rust, whereas the additive effect of Lr34 and Sr2 was dependent on the type of rust and environment. Two novel leaf rust quantitative trait loci (QTLs) from Parula were identified in this study, a stable QTL QLr-7BS and QLr-5AS, which showed Lr34 dependent expression. With these findings, we propose combining two to three high-value genes from Canadian wheat (e.g., Sr12 from Thatcher) with a foundational multi-adult plant resistance cassette for desirable and durable resistance to all three rusts in Canadian wheat.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Mapeo Cromosómico , Enfermedades de las Plantas/genética , Canadá , Sitios de Carácter Cuantitativo/genética , Basidiomycota/genética , Resistencia a la Enfermedad/genética
6.
Theor Appl Genet ; 135(8): 2747-2767, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35737008

RESUMEN

KEY MESSAGE: This study performed comprehensive analyses on the predictive abilities of single-trait and two multi-trait models in three populations. Our results demonstrated the superiority of multi-traits over single-trait models across seven agronomic and four to seven disease resistance traits of different genetic architecture. The predictive ability of multi-trait and single-trait prediction models has not been investigated on diverse traits evaluated under organic and conventional management systems. Here, we compared the predictive abilities of 25% of a testing set that has not been evaluated for a single trait (ST), not evaluated for multi-traits (MT1), and evaluated for some traits but not others (MT2) in three spring wheat populations genotyped either with the wheat 90K single nucleotide polymorphisms array or DArTseq. Analyses were performed on seven agronomic traits evaluated under conventional and organic management systems, four to seven disease resistance traits, and all agronomic and disease resistance traits simultaneously. The average prediction accuracies of the ST, MT1, and MT2 models varied from 0.03 to 0.78 (mean 0.41), from 0.05 to 0.82 (mean 0.47), and from 0.05 to 0.92 (mean 0.67), respectively. The predictive ability of the MT2 model was significantly greater than the ST model in all traits and populations except common bunt with the MT1 model being intermediate between them. The MT2 model increased prediction accuracies over the ST and MT1 models in all traits by 9.0-82.4% (mean 37.3%) and 2.9-82.5% (mean 25.7%), respectively, except common bunt that showed up to 7.7% smaller accuracies in two populations. A joint analysis of all agronomic and disease resistance traits further improved accuracies within the MT1 and MT2 models on average by 21.4% and 17.4%, respectively, as compared to either the agronomic or disease resistance traits, demonstrating the high potential of the multi-traits models in improving prediction accuracies.


Asunto(s)
Resistencia a la Enfermedad , Triticum , Resistencia a la Enfermedad/genética , Genoma , Genómica/métodos , Genotipo , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Triticum/genética
7.
Environ Microbiol ; 22(7): 2956-2967, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32390310

RESUMEN

Reactive oxygen species (ROS) play an important role during host-pathogen interactions and are often an indication of induced host defence responses. In this study, we demonstrate for the first time that Puccinia triticina (Pt) generates ROS, including superoxide, H2 O2 and hydroxyl radicals, during wheat infection. Through pharmacological inhibition, we found that ROS are critical for both Pt urediniospore germination and pathogenic development on wheat. A comparative RNA-Seq analysis of different stages of Pt infection process revealed 291 putative Pt genes associated with the oxidation-reduction process. Thirty-seven of these genes encode known proteins. The expressions of five Pt genes, including PtNoxA, PtNoxB, PtNoxR, PtCat and PtSod, were subsequently verified using RT-qPCR analysis. The results show that the expressions of PtNoxA, PtNoxB, PtNoxR, PtCat and PtSod are up-regulated during urediniospore germination. In comparison, the expressions of PtNoxA, PtNoxB, PtNoxR and PtCat are down-regulated during wheat infection from 12 to 120 h after inoculation (HAI), whereas the expression of PtSod is up-regulated with a peak of expression at 120 HAI. We conclude that ROS are critical for the full virulence of Pt and a coordinate down-regulation of PtNox genes may be important for successful infection in wheat.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Puccinia/genética , Puccinia/patogenicidad , Especies Reactivas de Oxígeno/metabolismo , Triticum/microbiología , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Enfermedades de las Plantas/microbiología , Virulencia/genética
8.
Theor Appl Genet ; 133(10): 2775-2796, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32556394

RESUMEN

KEY MESSAGE: QTL analyses of two bi-parental mapping populations with AC Barrie as a parent revealed numerous FHB-resistance QTL unique to each population and uncovered novel variation near Fhb1. Fusarium head blight (FHB) is a destructive disease of wheat worldwide, leading to severe yield and quality losses. The genetic basis of native FHB resistance was examined in two populations: a recombinant inbred line population from the cross Cutler/AC Barrie and a doubled haploid (DH) population from the cross AC Barrie/Reeder. Numerous QTL were detected among the two mapping populations with many being cross-specific. Photoperiod insensitivity at Ppd-D1 and dwarfing at Rht-B1 and Rht-D1 was associated with increased FHB susceptibility. Anthesis date QTL at or near the Vrn-A1 and Vrn-B1 loci co-located with major FHB-resistance QTL in the AC Barrie/Reeder population. The loci were epistatic for both traits, such that DH lines with both late alleles were considerably later to anthesis and had reduced FHB symptoms (i.e., responsible for the epistatic interaction). Interestingly, AC Barrie contributed FHB resistance near the Fhb1 locus in the Cutler population and susceptibility in the Reeder population. Analyses of the Fhb1 candidate genes PFT and TaHRC confirmed that AC Barrie, Cutler, and Reeder do not carry the Sumai-3 Fhb1 gene. Resistance QTL were also detected at the expected locations of Fhb2 and Fhb5. The native FHB-resistance QTL detected near Fhb1, Fhb2, and Fhb5 do not appear to be as effective as Fhb1, Fhb2, and Fhb5 from Sumai-3. The presence of awns segregated at the B1 awn inhibitor locus in both populations, but was only associated with FHB resistance in the Cutler/AC Barrie population suggesting linkage caused the association rather than pleiotropy.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Alelos , Mapeo Cromosómico , Fusarium/patogenicidad , Genes de Plantas , Genotipo , Fenotipo , Enfermedades de las Plantas/microbiología , Triticum/microbiología
9.
Phytopathology ; 109(10): 1760-1768, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31282829

RESUMEN

Leaf and stripe rust are major threats to wheat production worldwide. The effective, multiple rust resistances present in the Brazilian cultivar Toropi makes it an excellent choice for a genetic study of rust resistance. Testing of DNA from different seed lots of Toropi with 2,194 polymorphic 90K iSelect single nucleotide polymorphism markers identified significant genetic divergence, with as much as 35% dissimilarity between seed lots. As a result, further work was conducted with a single plant line derived from Toropi variant Toropi-6.4. A double haploid population with 168 lines derived from the cross Toropi-6.4 × Thatcher was phenotyped over multiple years and locations in Canada, New Zealand, and Kenya, with a total of seven field trials undertaken for leaf rust and nine for stripe rust. Genotyping with the 90K iSelect array, simple sequence repeat and Kompetitive allele-specific polymerase chain reaction markers resulted in a genetic map of 3,043 cM, containing 1,208 nonredundant markers. Significant quantitative trait loci (QTL) derived from Toropi-6.4 were identified in multiple environments on chromosomes 1B (QLr.crc-1BL/QYr.crc-1BL), 3B (QLr.crc-3BS), 4B (QYr.crc-4BL), 5A (QLr.crc-5AL and QYr.crc-5AL), and 5D (QLr.crc-5DS). The QTL QLr.crc-1BL/QYr.crc-1BL colocated with the multi-rust resistance locus Lr46/Yr29, while the QTL QLr.crc-5DS located to the Lr78 locus previously found in a wheat backcross population derived from Toropi. Comparisons of QTL combinations showed QLr.crc-1BL to contribute a significantly enhanced leaf rust resistance when combined with QLr.crc-5AL or QLr.crc-5DS, more so than when QLr.crc-5AL and QLr.crc-5DS were combined. A strong additive effect was also seen when the stripe rust resistance QTL QYr.crc-1BL and QYr.crc-5AL were combined.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad , Triticum , Brasil , Canadá , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genotipo , Kenia , Nueva Zelanda , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Triticum/microbiología
10.
Plant Dis ; 103(12): 2981-2995, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31634033

RESUMEN

Wheat (Triticum spp.) is a major field crop in Canada in terms of acreage, annual production, and export market value. There are nine classes of Canadian wheat based on growth habit (winter or spring), kernel hardness (hard or soft), seed coat color (red or white), and quality factors (grain protein content and gluten strength). Wheat was described by Newman in 1928 as "the economic fairy to the industrial and commercial life of Canada, having built practically the whole economic structure of the Prairie Provinces." Wheat production in Canada is affected by several biotic and abiotic stresses. The major abiotic stresses are frost damage, drought, and heat stress. Among biotic stresses, diseases caused by fungal pathogens are the most important although wheat streak mosaic virus (WSMV) has caused some localized outbreaks in some years. In context of cultivar registration in Canada, there are certain diseases that breeders have to take into account while developing resistant cultivars. The Prairie Recommending Committee for Wheat, Rye, and Triticale (PRCWRT) classify wheat diseases into priority one, priority two, and priority three depending on prevalence and potential damage they can cause. However, priority one diseases are more of a concern and a minimum level of resistance in commercial cultivars is recommended for those.


Asunto(s)
Cruzamiento , Resistencia a la Enfermedad , Hongos , Enfermedades de las Plantas , Triticum , Canadá , Resistencia a la Enfermedad/genética , Hongos/patogenicidad , Hongos/fisiología , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología , Virulencia
11.
Plant Biotechnol J ; 16(5): 1013-1023, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28941315

RESUMEN

Leaf rust, caused by the pathogenic fungus Puccinia triticina (Pt), is one of the most serious biotic threats to sustainable wheat production worldwide. This obligate biotrophic pathogen is prevalent worldwide and is known for rapid adaptive evolution to overcome resistant wheat varieties. Novel disease control approaches are therefore required to minimize the yield losses caused by Pt. Having shown previously the potential of host-delivered RNA interference (HD-RNAi) in functional screening of Pt genes involved in pathogenesis, we here evaluated the use of this technology in transgenic wheat plants as a method to achieve protection against wheat leaf rust (WLR) infection. Stable expression of hairpin RNAi constructs with sequence homology to Pt MAP-kinase (PtMAPK1) or a cyclophilin (PtCYC1) encoding gene in susceptible wheat plants showed efficient silencing of the corresponding genes in the interacting fungus resulting in disease resistance throughout the T2 generation. Inhibition of Pt proliferation in transgenic lines by in planta-induced RNAi was associated with significant reduction in target fungal transcript abundance and reduced fungal biomass accumulation in highly resistant plants. Disease protection was correlated with the presence of siRNA molecules specific to targeted fungal genes in the transgenic lines harbouring the complementary HD-RNAi construct. This work demonstrates that generating transgenic wheat plants expressing RNAi-inducing transgenes to silence essential genes in rust fungi can provide effective disease resistance, thus opening an alternative way for developing rust-resistant crops.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Genes Esenciales/genética , Enfermedades de las Plantas/inmunología , ARN Interferente Pequeño/genética , Triticum/genética , Basidiomycota/genética , Expresión Génica , Genes Fúngicos/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Interferencia de ARN , Triticum/inmunología , Triticum/microbiología
12.
Phytopathology ; 108(12): 1344-1354, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30211634

RESUMEN

Leaf rust, caused by the fungal pathogen Puccinia triticina, is a major threat to wheat production in many wheat-growing regions of the world. The introduction of leaf rust resistance genes into elite wheat germplasm is the preferred method of disease control, being environmentally friendly and crucial to sustained wheat production. Consequently, there is considerable value in identifying and characterizing new sources of leaf rust resistance. While many major, qualitative leaf rust resistance genes have been identified in wheat, a growing number of valuable sources of quantitative resistance have been reported. Here we review the progress made in the genetic identification of quantitative trait loci (QTL) for leaf rust resistance detected primarily in field analyses, i.e., adult plant resistance. Over the past 50 years, leaf rust resistance loci have been assigned to genomic locations through chromosome analyses and genetic mapping in biparental mapping populations, studies that represent 79 different wheat leaf rust resistance donor lines. In addition, seven association mapping studies have identified adult plant and seedling leaf rust resistance marker trait associations in over 4,000 wheat genotypes. Adult plant leaf rust resistance QTL have been found on all 21 chromosomes of hexaploid wheat, with the B genome carrying the greatest number of QTL. The group 2 chromosomes are also particularly rich in leaf rust resistance QTL. The A genome has the lowest number of QTL for leaf rust resistance. Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Asunto(s)
Basidiomycota/fisiología , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Mapeo Cromosómico , Genotipo , Fenotipo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Poliploidía , Plantones/inmunología , Plantones/microbiología , Triticum/inmunología , Triticum/microbiología
13.
BMC Plant Biol ; 17(1): 45, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202046

RESUMEN

BACKGROUND: Lr16 is a widely deployed leaf rust resistance gene in wheat (Triticum aestivum L.) that is highly effective against the North American Puccinia triticina population when pyramided with the gene Lr34. Lr16 is a seedling leaf rust resistance gene conditioning an incompatible interaction with a distinct necrotic ring surrounding the uredinium. Lr16 was previously mapped to the telomeric region of the short arm of wheat chromosome 2B. The goals of this study were to develop numerous single nucleotide polymorphism (SNP) markers for the Lr16 region and identify diagnostic gene-specific SNP marker assays for marker-assisted selection (MAS). RESULTS: Forty-three SNP markers were developed and mapped on chromosome 2BS tightly linked with the resistance gene Lr16 across four mapping populations representing a total of 1528 gametes. Kompetitive Allele Specific PCR (KASP) assays were designed for all identified SNPs. Resistance gene analogs (RGAs) linked with the Lr16 locus were identified and RGA-based SNP markers were developed. The diagnostic potential of the SNPs co-segregating with Lr16 was evaluated in a diverse set of 133 cultivars and breeding lines. Six SNP markers were consistent with the Lr16 phenotype and are accurately predictive of Lr16 for all wheat lines/cultivars in the panel. CONCLUSIONS: Lr16 was mapped relative to SNP markers in four populations. Six SNP markers exhibited high quality clustering in the KASP assay and are suitable for MAS of Lr16 in wheat breeding programs.


Asunto(s)
Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Triticum/genética , Triticum/microbiología , Basidiomycota/patogenicidad , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Marcadores Genéticos , Haplotipos , Fenotipo , Enfermedades de las Plantas/microbiología , Plantones/genética , Plantones/microbiología
14.
Theor Appl Genet ; 129(3): 485-93, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26660463

RESUMEN

KEY MESSAGE: Genetic and mutational analyses of wheat leaf rust resistance gene Lr13 and hybrid necrosis gene Ne2 m indicated that they are the same gene. Hybrid necrosis in wheat characterized by chlorosis and eventual necrosis of plant tissues in certain wheat hybrids is controlled by the interaction of complementary dominant genes Ne1 and Ne2 located on chromosome arms 5BL and 2BS, respectively. Multiple alleles at each locus can be identified by differences in necrotic phenotypes when varieties are crossed with a fixed accession of the other genotype. Some of at least five Ne2 alleles were described as s (strong), m (medium) and w (weak); alleles of Ne1 were similarly described. Ne2m causes moderate necrosis in hybrids with genotypes having Ne1s. Ne2 is located on chromosome arm 2BS in close proximity to Lr13. Most wheat lines with Ne2m carry Lr13, and all wheat lines with Lr13 appear to carry Ne2m. To further dissect the relationship between Lr13 and Ne2m, more than 350 crosses were made between cv. Spica (Triticum aestivum) or Kubanka (T. durum) carrying Ne1s and recombinant inbred lines or doubled haploid lines from three crosses segregating for Lr13. F1 plants from lines carrying Lr13 crossed with Spica (Ne1s) always showed progressive necrosis; those lacking Lr13 did not. Four wheat cultivars/lines carrying Lr13 were treated with the mutagen EMS. Thirty-five susceptible mutants were identified; eight were distinctly less glaucous and late maturing indicative of chromosome 2B or sub-chromosome loss. Hybrids of phenotypically normal Lr13 mutant plants crossed with Spica did not produce symptoms of hybrid necrosis. Thus, Lr13 and one particular Ne2m allele may be the same gene.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Triticum/genética , Alelos , Mapeo Cromosómico , Cruzamientos Genéticos , Genes Dominantes , Genes de Plantas , Marcadores Genéticos , Genotipo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Triticum/microbiología
15.
Plant Dis ; 100(6): 1132-1137, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30682274

RESUMEN

Leaf rust (Puccinia triticina) and stripe rust (P. striiformis f. tritici) affect wheat production worldwide. Brazilian 'Toropi' wheat has demonstrated durable leaf rust resistance in South America since its release in 1965. It was previously found to have up to two adult plant leaf rust resistance genes. The leaf and stripe rust resistance of Toropi were studied by analyzing a doubled-haploid population made by crossing with susceptible 'Thatcher'. Toropi expressed good resistance to leaf rust in Canada, Brazil, and New Zealand. Based on field and greenhouse testing, the leaf rust resistance of Toropi is conferred by two race-nonspecific complementary adult plant genes and a race-specific adult plant gene. The stripe rust resistance of Toropi analyzed in New Zealand and in Canada is based on up to two resistance genes. Toropi should provide an important contribution to rust resistance because it expressed good leaf rust and stripe rust resistance in different parts of the world.

16.
Theor Appl Genet ; 128(12): 2403-14, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26239411

RESUMEN

KEY MESSAGE: A compensating, recombined Lr59 translocation with greatly reduced alien chromatin was identified. Microsatellite locus Xdupw217 occurs within the remaining segment and can be used as a co-dominant marker for Lr59. In earlier studies, leaf rust (caused by Puccinia triticina Eriks.) resistance gene Lr59 was transferred from Aegilops peregrina (Hackel) Maire et Weiler to chromosome arm 1AL of common wheat (Triticum aestivum L.). The resistance gene was then genetically mapped on the translocated chromosome segment following homoeologous pairing induction. Eight recombinants that retained the least alien chromatin apparently resulted from crossover within a terminal region of the translocation that was structurally different from 1AL. These recombinants could not be differentiated by size, and it was not clear whether they were compensating in nature. The present study determined that the distal part of the original translocation has group 6 chromosome homoeology and a 6BS telomere (with the constitution of the full translocation chromosome being 1AS·1L(P)·6S(P) ·6BS). During the allosyndetic pairing induction experiment to map and shorten the full size translocation, a low frequency of quadrivalents involving 1A, the 1A translocation, and two 6B chromosomes was likely formed. Crossover within such quadrivalents apparently produced comparatively small compensating alien chromatin inserts within the 6BS satellite region on chromosome 6B of seven of the eight recombinants. It appears that the Gli-B2 storage protein locus on 6BS has not been affected by the recombination events, and the translocations are therefore not expected to affect baking quality. Simple sequence repeat marker results showed that Lr59-151 is the shortest recombinant, and it will therefore be used in breeding. Marker DUPW217 detects a homoeo-allele within the remaining alien chromatin that can be used for marker-assisted selection of Lr59.


Asunto(s)
Genes de Plantas , Poaceae/genética , Translocación Genética , Triticum/genética , Cromatina/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Ligamiento Genético , Marcadores Genéticos , Hibridación in Situ , Repeticiones de Microsatélite , Fitomejoramiento , Polimorfismo de Nucleótido Simple
17.
Plant J ; 73(3): 521-32, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23110316

RESUMEN

Rust fungi are destructive plant pathogens. The draft genomes of several wheat-infecting species have been released and potential pathogenicity genes identified through comparative analyses to fungal pathogens that are amenable to genetic manipulation. Functional gene analysis tools are needed to understand the infection process of these obligate parasites and to confirm whether predicted pathogenicity genes could become targets for disease control. We have modified an Agrobacterium tumefaciens-mediated in planta-induced transient gene silencing (PITGS) assay for use in Triticum spp. (wheat), and used this assay to target predicted wheat leaf rust fungus, Puccinia triticina (Pt) pathogenicity genes, a MAP kinase (PtMAPK1), a cyclophilin (PtCYC1) and calcineurin B (PtCNB), to analyze their roles in disease. Agroinfiltration effectively delivered hairpin silencing constructs in wheat, leading to the generation of fungal gene-specific siRNA molecules in infiltrated leaves, and resulting in up to 70% reduction in transcription of the endogenous target genes in superinfected Pt. In vivo silencing caused severe disease suppression, compromising fungal growth and sporulation, as viewed by confocal microscopy and measured by reductions in fungal biomass and emergence of uredinia. Interestingly, using the same gene constructs, suppression of infection by Puccinia graminis and Puccinia striiformis was also achieved. Our results show that A. tumefaciens-mediated PITGS can be used as a reverse-genetics tool to discover gene function in rust fungi. This proof-of-concept study indicates that the targeted fungal transcripts might be important in pathogenesis, and could potentially be used as promising targets for developing RNA interference-based resistance against rust fungi.


Asunto(s)
Basidiomycota/patogenicidad , Silenciador del Gen , Genes Fúngicos , Enfermedades de las Plantas/genética , Triticum/microbiología , Agrobacterium/genética , Basidiomycota/genética , Enfermedades de las Plantas/microbiología , Interferencia de ARN
18.
Theor Appl Genet ; 127(9): 2005-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25112203

RESUMEN

KEY MESSAGE: KU3198 is a common wheat accession that carries one novel leaf rust resistance (Lr) gene, Lr70 , and another Lr gene which is either novel, Lr52 or an allele of Lr52. Leaf rust, caused by Puccinia triticina Eriks. (Pt), is a broadly distributed and economically important disease of wheat. Deploying cultivars carrying effective leaf rust resistance (Lr) genes is a desirable method of disease control. KU3198 is a common wheat (Triticum aestivum L.) accession from the Kyoto collection that was highly resistant to Pt in Canada. An F2 population from the cross HY644/KU3198 showed segregation for two dominant Lr genes when tested with Pt race MBDS which was virulent on HY644. Multiple bulk segregant analysis (MBSA) was employed to find putative chromosome locations of these Lr genes using SSR markers that provided coverage of the genome. MBSA predicted that the Lr genes were located on chromosomes 5B and 5D. A doubled haploid population was generated from the cross of JBT05-714 (HY644*3/KU3198), a line carrying one of the Lr genes from KU3198, to Thatcher. This population segregated for a single Lr gene conferring resistance to Pt race MBDS, which was mapped to the terminal region of the short arm of chromosome 5B with SSR markers and given the temporary designation LrK1. One F3 family derived from the HY644/KU3198 F2 population that segregated only for the second Lr gene from KU3198 was identified. This family was treated as an F2-equivalent population and used for mapping the Lr gene, which was located to the terminal region of chromosome 5DS. As no other Lr gene has been mapped to 5DS, this gene is novel and has been designated as Lr70.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Triticum/genética , Mapeo Cromosómico , Cruzamientos Genéticos , ADN de Plantas/genética , Marcadores Genéticos , Repeticiones de Microsatélite , Análisis de Secuencia de ADN
19.
J Genet Eng Biotechnol ; 22(1): 100357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494271

RESUMEN

BACKGROUND: Screening and developing novel antifungal agents with minimal environmental impact are needed to maintain and increase crop production, which is constantly threatened by various pathogens. Small peptides with antimicrobial and antifungal activities have been known to play an important role in plant defense both at the pathogen level by suppressing its growth and proliferation as well as at the host level through activation or priming of the plant's immune system for a faster, more robust response against fungi. Rust fungi (Pucciniales) are plant pathogens that can infect key crops and overcome resistance genes introduced in elite wheat cultivars. RESULTS: We performed an in vitro screening of 18 peptides predominantly of plant origin with antifungal or antimicrobial activity for their ability to inhibit leaf rust (Puccinia triticina, CCDS-96-14-1 isolate) urediniospore germination. Nine peptides demonstrated significant fungicidal properties compared to the control. Foliar application of the top three candidates, ß-purothionin, Purothionin-α2 and Defensin-2, decreased the severity of leaf rust infection in wheat (Triticum aestivum L.) seedlings. Additionally, increased pathogen resistance was paralleled by elevated expression of defense-related genes. CONCLUSIONS: Identified antifungal peptides could potentially be engineered in the wheat genome to provide an alternative source of genetic resistance to leaf rust.

20.
Plant Mol Biol ; 81(6): 595-608, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23417582

RESUMEN

Rust fungi are devastating plant pathogens and several Puccinia species have a large economic impact on wheat production worldwide. Disease protection, mostly offered by introgressed host-resistance genes, is often race-specific and rapidly overcome by newly-emerging virulent strains. Extensive new genomic resources have identified vital pathogenicity genes but their study is hampered because of the biotrophic life styles of rust fungi. In cereals, Barley stripe mosaic virus (BSMV)-induced RNAi has emerged as a useful tool to study loss-of-function phenotypes of candidate genes. Expression of pathogen-derived gene fragments in this system can be used to obtain in planta-generated silencing of corresponding genes inside biotrophic pathogens, a technique termed host-induced gene silencing (HIGS). Here we test the effectiveness of BSMV-mediated HIGS in the wheat leaf rust fungus Puccinia triticina (Pt) by targeting three predicted pathogenicity genes, a MAPK, a cyclophilin, and a calcineurin regulatory subunit. Inoculation of BSMV RNAi constructs generated fungal gene-specific siRNA molecules in systemic leaves of wheat plant. Subsequent Pt inoculation resulted in a suppressed disease phenotype and a reduction in endogenous transcript levels of the targeted fungal genes indicating translocation of siRNA molecules from host to fungal cells. Efficiency of this host-generated trans-specific RNAi was enhanced by using BSMV silencing vectors defective in coat protein coupled with introducing fungal gene sequences simultaneously in sense and antisense orientation. The disease suppression indicated the likely involvement of these fungal genes in pathogenicity. This study demonstrates that BSMV-mediated in planta-generated RNAi is an effective strategy for functional genomics in rust fungi.


Asunto(s)
Basidiomycota/genética , Genes Fúngicos , Virus del Mosaico/metabolismo , Enfermedades de las Plantas/microbiología , Interferencia de ARN , Triticum/microbiología , Basidiomycota/metabolismo , Basidiomycota/patogenicidad , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Clonación Molecular , Recuento de Colonia Microbiana , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Genoma Viral , Interacciones Huésped-Patógeno , Microscopía Confocal , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Virus del Mosaico/genética , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/virología , Plásmidos/genética , Plásmidos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Transcripción Genética , Triticum/genética , Triticum/metabolismo , Triticum/virología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA