Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(7): e109470, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35212000

RESUMEN

Skin wound repair is essential for organismal survival and failure of which leads to non-healing wounds, a leading health issue worldwide. However, mechanistic understanding of chronic wounds remains a major challenge due to lack of appropriate genetic mouse models. αSMA+ myofibroblasts, a unique class of dermal fibroblasts, are associated with cutaneous wound healing but their precise function remains unknown. We demonstrate that genetic depletion of αSMA+ myofibroblasts leads to pleiotropic wound healing defects, including lack of reepithelialization and granulation, dampened angiogenesis, and heightened hypoxia, hallmarks of chronic non-healing wounds. Other wound-associated FAP+ and FSP1+ fibroblasts do not exhibit such dominant functions. While type I collagen (COL1) expressing cells play a role in the repair process, COL1 produced by αSMA+ myofibroblasts is surprisingly dispensable for wound repair. In contrast, we show that ß1 integrin from αSMA+ myofibroblasts, but not TGFßRII, is essential for wound healing, facilitating contractility, reepithelization, and vascularization. Collectively, our study provides evidence for the functions of myofibroblasts in ß1 integrin-mediated wound repair with potential implications for treating chronic non-healing wounds.


Asunto(s)
Colágeno Tipo I , Miofibroblastos , Cicatrización de Heridas , Animales , Colágeno Tipo I/genética , Fibroblastos , Integrina beta1/genética , Ratones , Piel
2.
Mod Pathol ; 37(1): 100371, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38015043

RESUMEN

B7-H4 (VTCN1), a member of the B7 family, is overexpressed in several types of cancer. Here we investigated the pattern of expression of B7-H4 in salivary gland carcinomas (SGC) and assessed its potential as a prognostic marker and therapeutic target. Immunohistochemistry (IHC) analyses were performed in a cohort of 340 patient tumors, composed of 124 adenoid cystic carcinomas (ACC), 107 salivary duct carcinomas (SDC), 64 acinic cell carcinomas, 36 mucoepidermoid carcinomas (MEC), 9 secretory carcinomas (SC), as well as 20 normal salivary glands (controls). B7-H4 expression was scored and categorized into negative (<5% expression of any intensity), low (5%-70% expression of any intensity or >70% with weak intensity), or high (>70% moderate or strong diffuse intensity). The associations between B7-H4 expression and clinicopathologic characteristics, as well as overall survival, were assessed. Among all tumors, B7-H4 expression was more prevalent in ACC (94%) compared with those of SC (67%), MEC (44%), SDC (32%), and acinic cell carcinomas (0%). Normal salivary gland tissue did not express B7-H4. High expression of B7-H4 was found exclusively in ACC (27%), SDC (11%), and MEC (8%). In SDC, B7-H4 expression was associated with female gender (P = .002) and lack of androgen receptor expression (P = .012). In ACC, B7-H4 expression was significantly associated with solid histology (P < .0001) and minor salivary gland primary (P = .02). High B7-H4 expression was associated with a poorer prognosis in ACC, regardless of clinical stage and histologic subtype. B7-H4 expression was not prognostic in the non-ACC SGC evaluated. Our comparative study revealed distinct patterns of B7-H4 expression according to SGC histology, which has potential therapeutic implications. B7-H4 expression was particularly high in solid ACC and was an independent prognostic marker in this disease but not in the other SGC assessed.


Asunto(s)
Neoplasias de la Mama , Carcinoma de Células Acinares , Carcinoma Adenoide Quístico , Carcinoma Mucoepidermoide , Carcinoma , Neoplasias de las Glándulas Salivales , Humanos , Femenino , Carcinoma Adenoide Quístico/patología , Pronóstico , Carcinoma de Células Acinares/patología , Neoplasias de las Glándulas Salivales/patología , Carcinoma Mucoepidermoide/patología , Carcinoma/patología , Glándulas Salivales/química , Glándulas Salivales/metabolismo , Glándulas Salivales/patología , Biomarcadores de Tumor/análisis
3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34799452

RESUMEN

Programmed death ligand 1 (PD-L1), an immune-checkpoint protein expressed on cancer cells, also functions independently of the immune system. We found that PD-L1 inhibits the killing of cancer cells in response to DNA damage in an immune-independent manner by suppressing their acute response to type I interferon (IFN; IFN-I). In addition, PD-L1 plays a critical role in sustaining high levels of constitutive expression in cancer cells of a subset of IFN-induced genes, the IFN-related DNA damage resistance signature (IRDS) which, paradoxically, protects cancer cells. The cyclic GMP-AMP synthase-stimulator of the IFN genes (cGAS-STING) pathway is constitutively activated in a subset of cancer cells in the presence of high levels of PD-L1, thus leading to a constitutive, low level of IFN-ß expression, which in turn increases IRDS expression. The constitutive low level of IFN-ß expression is critical for the survival of cancer cells addicted to self-produced IFN-ß. Our study reveals immune-independent functions of PD-L1 that inhibit cytotoxic acute responses to IFN-I and promote protective IRDS expression by supporting protective chronic IFN-I responses, both of which enhance the resistance of cancer cells to DNA damage.


Asunto(s)
Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Daño del ADN/fisiología , Interferón Tipo I/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Interferón Tipo I/genética , Interferón beta , Interferón gamma/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Nucleotidiltransferasas , Transducción de Señal , Microambiente Tumoral
4.
Nucleic Acids Res ; 49(1): e2, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33211847

RESUMEN

Understanding the functional impact of cancer somatic mutations represents a critical knowledge gap for implementing precision oncology. It has been increasingly appreciated that the interaction profile mediated by a genomic mutation provides a fundamental link between genotype and phenotype. However, specific effects on biological signaling networks for the majority of mutations are largely unknown by experimental approaches. To resolve this challenge, we developed e-MutPath (edgetic Mutation-mediated Pathway perturbations), a network-based computational method to identify candidate 'edgetic' mutations that perturb functional pathways. e-MutPath identifies informative paths that could be used to distinguish disease risk factors from neutral elements and to stratify disease subtypes with clinical relevance. The predicted targets are enriched in cancer vulnerability genes, known drug targets but depleted for proteins associated with side effects, demonstrating the power of network-based strategies to investigate the functional impact and perturbation profiles of genomic mutations. Together, e-MutPath represents a robust computational tool to systematically assign functions to genetic mutations, especially in the context of their specific pathway perturbation effect.


Asunto(s)
Biología Computacional/métodos , Predisposición Genética a la Enfermedad/genética , Genómica/métodos , Mutación , Neoplasias/genética , Algoritmos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Genotipo , Humanos , Fenotipo , Transducción de Señal/genética
5.
Trends Biochem Sci ; 43(8): 576-592, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29941230

RESUMEN

Gene regulatory networks underlie biological function and cellular physiology. Alternative splicing (AS) is a fundamental step in gene regulatory networks and plays a key role in development and disease. In addition to the identification of aberrant AS events, an increasing number of studies are focusing on molecular determinants of AS, including genetic and epigenetic regulators. We review here recent efforts to identify various deregulated AS events as well as their molecular determinants that alter biological functions, and discuss clinical features of AS and their druggable potential.


Asunto(s)
Epigénesis Genética , Redes Reguladoras de Genes , Variación Genética , Empalme Alternativo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos
6.
Semin Cell Dev Biol ; 99: 3-11, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-29738884

RESUMEN

Genes and gene products interact with each other to form signal transduction networks in the cell. The interactome networks are under intricate regulation in physiological conditions, but could go awry upon genome instability caused by genetic mutations. In the past decade with next-generation sequencing technologies, an increasing number of genomic mutations have been identified in a variety of disease patients and healthy individuals. As functional and systematic studies on these mutations leap forward, they begin to reveal insights into cellular homeostasis and disease mechanisms. In this review, we discuss recent advances in the field of network biology and signaling pathway perturbations upon genomic changes, and highlight the success of various omics datasets in unraveling genotype-to-phenotype relationships.


Asunto(s)
Genotipo , Fenotipo , Transducción de Señal/genética , Animales , Redes Reguladoras de Genes , Humanos
7.
Int J Mol Sci ; 22(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066883

RESUMEN

Nucleotide excision repair (NER) resolves DNA adducts, such as those caused by ultraviolet light. Deficient NER (dNER) results in a higher mutation rate that can predispose to cancer development and premature ageing phenotypes. Here, we used isogenic dNER model cell lines to establish a gene expression signature that can accurately predict functional NER capacity in both cell lines and patient samples. Critically, none of the identified NER deficient cell lines harbored mutations in any NER genes, suggesting that the prevalence of NER defects may currently be underestimated. Identification of compounds that induce the dNER gene expression signature led to the discovery that NER can be functionally impaired by GSK3 inhibition, leading to synergy when combined with cisplatin treatment. Furthermore, we predicted and validated multiple novel drugs that are synthetically lethal with NER defects using the dNER gene signature as a drug discovery platform. Taken together, our work provides a dynamic predictor of NER function that may be applied for therapeutic stratification as well as development of novel biological insights in human tumors.


Asunto(s)
Reparación del ADN/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Línea Celular Tumoral , Humanos , Reproducibilidad de los Resultados
8.
Hepatology ; 70(2): 532-546, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30153342

RESUMEN

The interaction between RNA-binding proteins (RBPs) and RNA plays an important role in regulating cellular function. However, decoding genome-wide protein-RNA regulatory networks as well as how cancer-related mutations impair RNA regulatory activities in hepatocellular carcinoma (HCC) remains mostly undetermined. We explored the genetic alteration patterns of RBPs and found that deleterious mutations are likely to occur on the surface of RBPs. We then constructed protein-RNA interactome networks by integration of target binding screens and expression profiles. Network analysis highlights regulatory principles among interacting RBPs. In addition, somatic mutations selectively target functionally important genes (cancer genes, core fitness genes, or conserved genes) and perturb the RBP-gene regulatory networks in cancer. These regulatory patterns were further validated using independent data. A computational method (Mutational Effect on RNA Interactome Topology) and a web-based, user-friendly resource were further proposed to analyze the RBP-gene regulatory networks across cancer types. Pan-cancer analysis also suggests that cancer cells selectively target "vulnerability" genes to perturb protein-RNA interactome that is involved in cancer hallmark-related functions. Specifically, we experimentally validated four pairs of RBP-gene interactions perturbed by mutations in HCC, which play critical roles in cell proliferation. Based on the expression of perturbed RBP and target genes, we identified three subtypes of HCC with different survival rates. Conclusion: Our results provide a valuable resource for characterizing somatic mutation-perturbed protein-RNA regulatory networks in HCC, yielding valuable insights into the genotype-phenotype relationships underlying human cancer, and potential biomarkers for precision medicine.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mutación , Proteínas de Unión al ARN/genética , ARN/genética , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Proliferación Celular , Redes Reguladoras de Genes , Humanos , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Mapas de Interacción de Proteínas , Tasa de Supervivencia
9.
Int J Cancer ; 144(5): 1092-1103, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30152517

RESUMEN

Poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated great promise in the treatment of patients with deficiencies in homologous recombination (HR) DNA repair, such as those with loss of BRCA1 or BRCA2 function. However, emerging studies suggest that PARP inhibition can also target HR-competent cancers, such as non-small-cell lung cancer (NSCLC), and that the therapeutic effect of PARP inhibition may be improved by combination with chemotherapy agents. In our study, it was found that PARP inhibitors talazoparib (BMN-673) and olaparib (AZD-2281) both had synergistic activity with the common first-line chemotherapeutic gemcitabine in a panel of lung cancer cell lines. Furthermore, the combination demonstrated significant in vivo antitumor activity in an H23 xenograft model of NSCLC compared to either agent as monotherapy. This synergism occurred without loss of HR repair efficiency. Instead, the combination induced synergistic single-strand DNA breaks, leading to accumulation of toxic double-strand DNA lesions in vitro and in vivo. Our study elucidates the underlying mechanisms of synergistic activity of PARP inhibitors and gemcitabine, providing a strong motivation to pursue this combination as an improved therapeutic regimen.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Daño del ADN/efectos de los fármacos , Desoxicitidina/análogos & derivados , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Desoxicitidina/farmacología , Sinergismo Farmacológico , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Desnudos , Ftalazinas/farmacología , Piperazinas/farmacología , Reparación del ADN por Recombinación/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Gemcitabina
10.
J Cell Sci ; 127(Pt 12): 2621-6, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24741068

RESUMEN

Although current treatments for localized ovarian cancer are highly effective, this cancer still remains the most lethal gynecological malignancy, largely owing to the fact that it is often detected only after tumor cells leave the primary tumor. Clinicians have long noted a clear predilection for ovarian cancer to metastasize to the soft omentum. Here, we show that this tropism is due not only to chemical signals but also mechanical cues. Metastatic ovarian cancer cells (OCCs) preferentially adhere to soft microenvironments and display an enhanced malignant phenotype, including increased migration, proliferation and chemoresistance. To understand the cell-matrix interactions that are used to sense the substrate rigidity, we utilized traction force microscopy (TFM) and found that, on soft substrates, human OCCs increased both the magnitude of traction forces as well as their degree of polarization. After culture on soft substrates, cells underwent morphological elongation characteristic of epithelial-to-mesenchymal transition (EMT), which was confirmed by molecular analysis. Consistent with the idea that mechanical cues are a key determinant in the spread of ovarian cancer, the observed mechanosensitivity was greatly decreased in less-metastatic OCCs. Finally, we demonstrate that this mechanical tropism is governed through a Rho-ROCK signaling pathway.


Asunto(s)
Neoplasias Ováricas/patología , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Medios de Cultivo , Transición Epitelial-Mesenquimal , Femenino , Dureza , Humanos , Mecanotransducción Celular , Metástasis de la Neoplasia , Fenotipo
11.
FASEB J ; 29(4): 1280-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25491311

RESUMEN

A growing body of evidence suggests that the developmental process of epithelial-to-mesenchymal transition (EMT) is co-opted by cancer cells to metastasize to distant sites. This transition is associated with morphologic elongation and loss of cell-cell adhesions, though little is known about how it alters cell biophysical properties critical for migration. Here, we use multiple-particle tracking (MPT) microrheology and traction force cytometry to probe how genetic induction of EMT in epithelial MCF7 breast cancer cells changes their intracellular stiffness and extracellular force exertion, respectively, relative to an empty vector control. This analysis demonstrated that EMT alone was sufficient to produce dramatic cytoskeletal softening coupled with increases in cell-exerted traction forces. Microarray analysis revealed that these changes corresponded with down-regulation of genes associated with actin cross-linking and up-regulation of genes associated with actomyosin contraction. Finally, we show that this loss of structural integrity to expedite migration could inhibit mesenchymal cell proliferation in a secondary tumor as it accumulates solid stress. This work demonstrates that not only does EMT enable escape from the primary tumor through loss of cell adhesions but it also induces a concerted series of biophysical changes enabling enhanced migration of cancer cells after detachment from the primary tumor.


Asunto(s)
Citoesqueleto/genética , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Actinas/metabolismo , Fenómenos Biofísicos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Núcleo Celular/metabolismo , Núcleo Celular/patología , Citoesqueleto/patología , Femenino , Expresión Génica , Humanos , Células MCF-7 , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción de la Familia Snail , Transformación Genética
12.
Biophys J ; 109(7): 1334-7, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26445434

RESUMEN

For a solid tumor to grow, it must be able to support the compressive stress that is generated as it presses against the surrounding tissue. Although the literature suggests a role for the cytoskeleton in counteracting these stresses, there has been no systematic evaluation of which filaments are responsible or to what degree. Here, using a three-dimensional spheroid model, we show that cytoskeletal filaments do not actively support compressive loads in breast, ovarian, and prostate cancer. However, modulation of tonicity can induce alterations in spheroid size. We find that under compression, tumor cells actively efflux sodium to decrease their intracellular tonicity, and that this is reversible by blockade of sodium channel NHE1. Moreover, although polymerized actin does not actively support the compressive load, it is required for sodium efflux. Compression-induced cell death is increased by both sodium blockade and actin depolymerization, whereas increased actin polymerization offers protective effects and increases sodium efflux. Taken together, these results demonstrate that cancer cells modulate their tonicity to survive under compressive solid stress.


Asunto(s)
Adenocarcinoma/fisiopatología , Neoplasias de la Mama/fisiopatología , Citoesqueleto/metabolismo , Sodio/metabolismo , Actinas/metabolismo , Azidas , Fenómenos Biomecánicos , Proteínas de Transporte de Catión/antagonistas & inhibidores , Proteínas de Transporte de Catión/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular/fisiología , Femenino , Guanosina Trifosfato/análogos & derivados , Humanos , Modelos Biológicos , Ósmosis/fisiología , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/metabolismo , Andamios del Tejido
13.
Phys Biol ; 12(2): 026001, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25706686

RESUMEN

Despite major advances in the characterization of molecular regulators of cancer growth and metastasis, patient survival rates have largely stagnated. Recent studies have shown that mechanical cues from the extracellular matrix can drive the transition to a malignant phenotype. Moreover, it is also known that the metastatic process, which results in over 90% of cancer-related deaths, is governed by intracellular mechanical forces. To better understand these processes, we identified metastatic tumor cells originating from different locations which undergo inverse responses to altered matrix elasticity: MDA-MB-231 breast cancer cells that prefer rigid matrices and SKOV-3 ovarian cancer cells that prefer compliant matrices as characterized by parameters such as tumor cell proliferation, chemoresistance, and migration. Transcriptomic analysis revealed higher expression of genes associated with cytoskeletal tension and contractility in cells that prefer stiff environments, both when comparing MDA-MB-231 to SKOV-3 cells as well as when comparing bone-metastatic to lung-metastatic MDA-MB-231 subclones. Using small molecule inhibitors, we found that blocking the activity of these pathways mitigated rigidity-dependent behavior in both cell lines. Probing the physical forces exerted by cells on the underlying substrates revealed that though force magnitude may not directly correlate with functional outcomes, other parameters such as force polarization do correlate directly with cell motility. Finally, this biophysical analysis demonstrates that intrinsic levels of cell contractility determine the matrix rigidity for maximal cell function, possibly influencing tissue sites for metastatic cancer cell engraftment during dissemination. By increasing our understanding of the physical interactions of cancer cells with their microenvironment, these studies may help develop novel therapeutic strategies.


Asunto(s)
Actomiosina/metabolismo , Neoplasias de la Mama/patología , Metástasis de la Neoplasia , Neoplasias Ováricas/patología , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Matriz Extracelular/metabolismo , Femenino , Humanos , Mecanotransducción Celular , Fenotipo , Tropismo
14.
Am J Physiol Heart Circ Physiol ; 307(7): H945-57, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25063792

RESUMEN

Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner.


Asunto(s)
Proteínas Portadoras/metabolismo , Movimiento Celular , Adhesiones Focales/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Proteínas Portadoras/genética , Adhesión Celular , Polaridad Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Peróxido de Hidrógeno/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Ratas , Proteína de Unión al GTP rhoA/metabolismo
15.
Phys Biol ; 11(5): 056004, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25156989

RESUMEN

The mechanical properties within the cell are regulated by the organization of the actin cytoskeleton, which is linked to the extracellular environment through focal adhesion proteins that transmit force. Chemical and mechanical stimuli alter the organization of cytoskeletal actin, which results in changes in cell shape, adhesion, and differentiation. By combining particle-tracking microrheology and traction force cytometry, we can monitor the mechanical properties of the actin meshwork and determine how changes in the intracellular network contribute to force generation. In this study, we investigated the effects of chemical (differentiation factors) and mechanical (substrate rigidity) stimuli important in mesenchymal stem cell (MSC) differentiation on the intracellular mechanics and traction stress generation. We found the presence of adipogenic factors resulted in stiffening of the actin meshwork regardless of substrate rigidity. In contrast, these factors increased traction stresses on hard substrates, which was associated with increased expression of contractility genes. Furthermore, MSCs cultured on hard substrates expressed both adipogenic and osteogenic markers indicative of mixed differentiation. On hard substrates, heterogeneity in the local elastic modulus-traction stress correlation was also increased in response to adipogenic factors, indicating that these mechanical properties may be reflective of differences in the level of MSC differentiation. These results suggest intracellular rheology and traction stress generation are spatially regulated and contribute insight into how single cell mechanical forces contribute to MSC differentiation.


Asunto(s)
Citoesqueleto de Actina/fisiología , Diferenciación Celular , Células Madre Mesenquimatosas/fisiología , Fenómenos Biomecánicos , Adhesión Celular , Citoplasma , Regulación de la Expresión Génica , Humanos , Masculino , Microscopía de Fuerza Atómica , Reacción en Cadena de la Polimerasa , Reología , Adulto Joven
16.
Exp Cell Res ; 319(5): 684-96, 2013 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-23228958

RESUMEN

Multipotent human mesenchymal stem cells (hMSCs) are uniquely suited for the growing field of regenerative medicine due to their ease of isolation, expansion, and transplantation. However, during ex vivo expansion necessary to obtain clinically relevant cell quantities, hMSCs undergo fundamental changes culminating in cellular senescence. The molecular changes as hMSCs transition into senescence have been well characterized, but few studies have focused on the mechanical properties that govern many processes necessary for therapeutic efficacy. We show that before detectable differences in classical senescence markers emerge, single-cell mechanical and cytoskeletal properties reveal a subpopulation of 'non-functioning' hMSCs that appears after even limited expansion. This subpopulation, characterized by a loss of dynamic cytoskeletal stiffening and morphological flexibility in response to chemotactic signals grows with extended culture resulting in overall decreased hMSC motility and ability to contract collagen gels. These changes were mitigated with cytoskeletal inhibition. Finally, a xenographic wound healing model was used to demonstrate that these in vitro differences correlate with decreased ability of hMSCs to aid in wound closure in vivo. These data illustrate the importance of analyzing not only the molecular markers, but also mechanical markers of hMSCs as they are investigated for potential therapeutics.


Asunto(s)
Fenómenos Biomecánicos , Diferenciación Celular , Proliferación Celular , Citoesqueleto/fisiología , Células Madre Mesenquimatosas/fisiología , Adulto , Animales , Antineoplásicos/farmacología , Biomarcadores/metabolismo , Adhesión Celular , Movimiento Celular , Senescencia Celular , Medios de Cultivo Condicionados/farmacología , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nocodazol/farmacología , Cicatrización de Heridas , Adulto Joven
17.
Nat Rev Clin Oncol ; 21(4): 278-293, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378898

RESUMEN

Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.


Asunto(s)
Neoplasias , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Reparación del ADN , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Daño del ADN
18.
Nat Commun ; 15(1): 109, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168026

RESUMEN

Host anti-viral factors are essential for controlling SARS-CoV-2 infection but remain largely unknown due to the biases of previous large-scale studies toward pro-viral host factors. To fill in this knowledge gap, we perform a genome-wide CRISPR dropout screen and integrate analyses of the multi-omics data of the CRISPR screen, genome-wide association studies, single-cell RNA-Seq, and host-virus proteins or protein/RNA interactome. This study uncovers many host factors that are currently underappreciated, including the components of V-ATPases, ESCRT, and N-glycosylation pathways that modulate viral entry and/or replication. The cohesin complex is also identified as an anti-viral pathway, suggesting an important role of three-dimensional chromatin organization in mediating host-viral interaction. Furthermore, we discover another anti-viral regulator KLF5, a transcriptional factor involved in sphingolipid metabolism, which is up-regulated, and harbors genetic variations linked to COVID-19 patients with severe symptoms. Anti-viral effects of three identified candidates (DAZAP2/VTA1/KLF5) are confirmed individually. Molecular characterization of DAZAP2/VTA1/KLF5-knockout cells highlights the involvement of genes related to the coagulation system in determining the severity of COVID-19. Together, our results provide further resources for understanding the host anti-viral network during SARS-CoV-2 infection and may help develop new countermeasure strategies.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Estudio de Asociación del Genoma Completo , Multiómica , Antivirales/farmacología
19.
Nat Commun ; 15(1): 180, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167338

RESUMEN

Inactivating TP53 mutations leads to a loss of function of p53, but can also often result in oncogenic gain-of-function (GOF) of mutant p53 (mutp53) proteins which promotes tumor development and progression. The GOF activities of TP53 mutations are well documented, but the mechanisms involved remain poorly understood. Here, we study the mutp53 interactome and find that by targeting minichromosome maintenance complex components (MCMs), GOF mutp53 predisposes cells to replication stress and chromosomal instability (CIN), leading to a tumor cell-autonomous and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent cytosolic DNA response that activates downstream non-canonical nuclear factor kappa light chain enhancer of activated B cell (NC-NF-κB) signaling. Consequently, GOF mutp53-MCMs-CIN-cytosolic DNA-cGAS-STING-NC-NF-κB signaling promotes tumor cell metastasis and an immunosuppressive tumor microenvironment through antagonizing interferon signaling and regulating genes associated with pro-tumorigenic inflammation. Our findings have important implications for understanding not only the GOF activities of TP53 mutations but also the genome-guardian role of p53 and its inactivation during tumor development and progression.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias/genética , ADN , Inestabilidad Cromosómica/genética , Nucleotidiltransferasas/metabolismo , Interferones/metabolismo , Microambiente Tumoral
20.
Clin Cancer Res ; 30(10): 2121-2139, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38416404

RESUMEN

PURPOSE: Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed. EXPERIMENTAL DESIGN: We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models. To refine ATM LOF as a predictive biomarker, we performed a comprehensive pan-cancer analysis of ATM variants in patient tumors and then assessed the ATM variant-to-protein relationship. Finally, we assessed a novel ATM LOF biomarker approach in retrospective clinical data sets of patients treated with platinum-based chemotherapy or ATR inhibition. RESULTS: ART0380 had potent, selective antitumor activity in a range of preclinical cancer models with differing degrees of ATM LOF. Pan-cancer analysis identified 10,609 ATM variants in 8,587 patient tumors. Cancer lineage-specific differences were seen in the prevalence of deleterious (Tier 1) versus unknown/benign (Tier 2) variants, selective pressure for loss of heterozygosity, and concordance between a deleterious variant and ATM loss of protein (LOP). A novel ATM LOF biomarker approach that accounts for variant classification, relationship to ATM LOP, and tissue-specific penetrance significantly enriched for patients who benefited from platinum-based chemotherapy or ATR inhibition. CONCLUSIONS: These data help to better define ATM LOF across tumor types in order to optimize patient selection and improve molecularly targeted therapeutic approaches for patients with ATM LOF cancers.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Neoplasias , Animales , Humanos , Ratones , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Mutación con Pérdida de Función , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA