Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 230(4): 1435-1448, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33544877

RESUMEN

Decades of atmospheric nitrogen (N) deposition in the northeastern USA have enhanced this globally important forest carbon (C) sink by relieving N limitation. While many N fertilization experiments found increased forest C storage, the mechanisms driving this response at the ecosystem scale remain uncertain. Following the optimal allocation theory, augmented N availability may reduce belowground C investment by trees to roots and soil symbionts. To test this prediction and its implications on soil biogeochemistry, we constructed C and N budgets for a long-term, whole-watershed N fertilization study at the Fernow Experimental Forest, WV, USA. Nitrogen fertilization increased C storage by shifting C partitioning away from belowground components and towards aboveground woody biomass production. Fertilization also reduced the C cost of N acquisition, allowing for greater C sequestration in vegetation. Despite equal fine litter inputs, the C and N stocks and C : N ratio of the upper mineral soil were greater in the fertilized watershed, likely due to reduced decomposition of plant litter. By combining aboveground and belowground data at the watershed scale, this study demonstrates how plant C allocation responses to N additions may result in greater C storage in both vegetation and soil.


Asunto(s)
Carbono , Nitrógeno , Biomasa , Ecosistema , Bosques , Suelo , Árboles
2.
Ecol Appl ; 24(7): 1651-69, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29210229

RESUMEN

The morphological and biochemical properties of plant canopies are strong predictors of photosynthetic capacity and nutrient cycling. Remote sensing research at the leaf and canopy scales has demonstrated the ability to characterize the biochemical status of vegetation canopies using reflectance spectroscopy, including at the leaf level and canopy level from air- and spaceborne imaging spectrometers. We developed a set of accurate and precise spectroscopic calibrations for the determination of leaf chemistry (contents of nitrogen, carbon, and fiber constituents), morphology (leaf mass per area, Marea), and isotopic composition (δ15N) of temperate and boreal tree species using spectra of dried and ground leaf material. The data set consisted of leaves from both broadleaf and needle-leaf conifer species and displayed a wide range in values, determined with standard analytical approaches: 0.7­4.4% for nitrogen (Nmass), 42­54% for carbon (Cmass), 17­58% for fiber (acid-digestible fiber, ADF), 7­44% for lignin (acid-digestible lignin, ADL), 3­31% for cellulose, 17­265 g/m2 for Marea, and −9.4‰ to 0.8‰ for δ15N. The calibrations were developed using a partial least-squares regression (PLSR) modeling approach combined with a novel uncertainty analysis. Our PLSR models yielded model calibration (independent validation shown in parentheses) R2 and the root mean square error (RMSE) values, respectively, of 0.98 (0.97) and 0.10% (0.13%) for Nmass, R2 = 0.77 (0.73) and RMSE = 0.88% (0.95%) for Cmass, R2 = 0.89 (0.84) and RMSE = 2.8% (3.4%) for ADF, R2 = 0.77 (0.69) and RMSE = 2.4% (3.9%) for ADL, R2 = 0.77 (0.72) and RMSE = 1.4% (1.9%) for leaf cellulose, R2 = 0.62 (0.60) and RMSE = 0.91‰ (1.5‰) for δ15N, and R2 = 0.88 (0.87) with RMSE = 17.2 g/m2 (22.8 g/m2) for Marea. This study demonstrates the potential for rapid and accurate estimation of key foliar traits of forest canopies that are important for ecological research and modeling activities, with a single calibration equation valid over a wide range of northern temperate and boreal species and leaf physiognomies. The results provide the basis to characterize important variability between and within species, and across ecological gradients using a rapid, cost-effective, easily replicated method.


Asunto(s)
Fotosíntesis , Hojas de la Planta , Análisis Espectral , Bosques , Nitrógeno , Árboles
3.
Ecol Appl ; 25(8): 2180-97, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26910948

RESUMEN

A major goal of remote sensing is the development of generalizable algorithms to repeatedly and accurately map ecosystem properties across space and time. Imaging spectroscopy has great potential to map vegetation traits that cannot be retrieved from broadband spectral data, but rarely have such methods been tested across broad regions. Here we illustrate a general approach for estimating key foliar chemical and morphological traits through space and time using NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-Classic). We apply partial least squares regression (PLSR) to data from 237 field plots within 51 images acquired between 2008 and 2011. Using a series of 500 randomized 50/50 subsets of the original data, we generated spatially explicit maps of seven traits (leaf mass per area (M(area)), percentage nitrogen, carbon, fiber, lignin, and cellulose, and isotopic nitrogen concentration, δ15N) as well as pixel-wise uncertainties in their estimates based on error propagation in the analytical methods. Both M(area) and %N PLSR models had a R2 > 0.85. Root mean square errors (RMSEs) for both variables were less than 9% of the range of data. Fiber and lignin were predicted with R2 > 0.65 and carbon and cellulose with R2 > 0.45. Although R2 of %C and cellulose were lower than M(area) and %N, the measured variability of these constituents (especially %C) was also lower, and their RMSE values were beneath 12% of the range in overall variability. Model performance for δ15N was the lowest (R2 = 0.48, RMSE = 0.95 per thousand), but within 15% of the observed range. The resulting maps of chemical and morphological traits, together with their overall uncertainties, represent a first-of-its-kind approach for examining the spatiotemporal patterns of forest functioning and nutrient cycling across a broad range of temperate and sub-boreal ecosystems. These results offer an alternative to categorical maps of functional or physiognomic types by providing non-discrete maps (i.e., on a continuum) of traits that define those functional types. A key contribution of this work is the ability to assign retrieval uncertainties by pixel, a requirement to enable assimilation of these data products into ecosystem modeling frameworks to constrain carbon and nutrient cycling projections.


Asunto(s)
Algoritmos , Bosques , Hojas de la Planta/química , Análisis Espectral/métodos , Monitoreo del Ambiente , Fenómenos Ópticos , Tecnología de Sensores Remotos , Árboles/fisiología , Estados Unidos
4.
Ecology ; 90(7): 1736-42, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19694123

RESUMEN

The extent to which atmospheric N deposition is enhancing primary production and CO2 sequestration along the ambient N deposition gradients found within many regional temperate forest ecosystems remains unknown. We used tree diameter measurements from 1984 and 2004, allometric equations, and estimates of wet N deposition from 32 permanent plots located along an ambient N deposition gradient in the Adirondack Park, New York, U.S.A., to determine the effects of N deposition on the basal area and woody biomass increments (BAI and WBI, respectively) of individual stems from all the major tree species. Nitrogen deposition had either a neutral or positive effect on BAI and WBI, with the positive effects especially apparent within the smaller size classes of several species. The nature of these growth responses suggests that other co-varying factors (e.g., temperature, tropospheric ozone, soil acidification) may be partially counteracting the species-dependent fertilization effect of N deposition that was suggested by recent foliar N data across this gradient. Nevertheless, in documenting a fertilization effect from chronic, low-level, ambient rates of N deposition, this study underscores the need for more research on how N deposition is affecting rates of primary production, CO2 sequestration, and even vegetation dynamics in many forests worldwide.


Asunto(s)
Nitrógeno/química , Nitrógeno/metabolismo , Árboles/crecimiento & desarrollo , Ecosistema , Suelo/análisis , Especificidad de la Especie
5.
Ecol Appl ; 18(2): 438-52, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18488607

RESUMEN

Maps of canopy nitrogen obtained through analysis of high-resolution, hyperspectral, remotely sensed images now offer a powerful means to make landscape-scale to regional-scale estimates of forest N cycling and net primary production (NPP). Moreover, recent research has suggested that the spatial variability within maps of canopy N may be driven by environmental gradients in such features as historic forest disturbance, temperature, species composition, moisture, geology, and atmospheric N deposition. Using the wide variation in these six features found within the diverse forest ecosystems of the 2.5 million ha Adirondack Park, New York, USA, we examined linkages among environmental gradients and three measures of N cycling collected during the 2003 growing season: (1) field survey of canopy N, (2) field survey of soil C:N, and (3) canopy N measured through analysis of two 185 x 7.5 km Hyperion hyperspectral images. These three measures of N cycling strongly related to forest type but related poorly to all other environmental gradients. Further analysis revealed that the spatial pattern in N cycling appears to have distinct inter- and intraspecific components of variability. The interspecific component, or the proportional contribution of species functional traits to canopy biomass, explained 93% of spatial variability within the field canopy N survey and 37% of variability within the soil C:N survey. Residual analysis revealed that N deposition accounted for an additional 2% of variability in soil C:N, and N deposition and historical forest disturbance accounted for an additional 2.8% of variability in canopy N. Given our finding that 95.8% of the variability in the field canopy N survey could be attributed to variation in the physical environment, our research suggests that remotely sensed maps of canopy N may be useful not only to assess the spatial variability in N cycling and NPP, but also to unravel the relative importance of their multiple controlling factors.


Asunto(s)
Ecosistema , Nitrógeno/fisiología , Árboles/fisiología , New York , Nitrógeno/química , Plantas/metabolismo , Especificidad de la Especie
6.
Nat Ecol Evol ; 2(11): 1735-1744, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30349095

RESUMEN

Human societies depend on an Earth system that operates within a constrained range of nutrient availability, yet the recent trajectory of terrestrial nitrogen (N) availability is uncertain. Examining patterns of foliar N concentrations and isotope ratios (δ15N) from more than 43,000 samples acquired over 37 years, here we show that foliar N concentration declined by 9% and foliar δ15N declined by 0.6-1.6‰. Examining patterns across different climate spaces, foliar δ15N declined across the entire range of mean annual temperature and mean annual precipitation tested. These results suggest declines in N supply relative to plant demand at the global scale. In all, there are now multiple lines of evidence of declining N availability in many unfertilized terrestrial ecosystems, including declines in δ15N of tree rings and leaves from herbarium samples over the past 75-150 years. These patterns are consistent with the proposed consequences of elevated atmospheric carbon dioxide and longer growing seasons. These declines will limit future terrestrial carbon uptake and increase nutritional stress for herbivores.


Asunto(s)
Ecosistema , Eutrofización , Nitrógeno/metabolismo , Plantas/metabolismo , Isótopos de Nitrógeno/análisis
7.
Environ Sci Technol ; 41(15): 5191-7, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17822078

RESUMEN

Despite its ecological importance, broad-scale use of foliar nitrogen as an indicator of ecosystem response to atmospheric N deposition has heretofore been obscured by its poorly understood intrinsic variability through time, space, and across species. We used a regional survey of foliar N conducted within a single growing season to observe that eight of nine major canopy tree species had increased foliar N in response to a gradient of N deposition in the Adirondack Park, New York. These results (1) add important foliar N evidence to support N saturation theory, (2) strongly reinforce the conclusion that N deposition is affecting the N status of forest ecosystems in the northeastern U.S., and (3) extend N saturation theory by identifying that temperate forest canopy species differ in their foliar N response to N deposition. Interestingly, species-specific differences were strongly related to two functional traits that arise from within-leaf allocations of N resources--leaf mass per area (LMA) and shade tolerance. Thus, combining species-specific knowledge of these functional traits with existing foliar N-centered remote sensing and ecosystem modeling approaches may provide a much-needed avenue to make broad-scale assessments of how persistently elevated rates of N deposition will continue to affect temperate forest ecosystems.


Asunto(s)
Atmósfera/química , Clima , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Árboles/metabolismo , Adaptación Fisiológica , Ecosistema , New York , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA