Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(27): 18626-18638, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38918178

RESUMEN

Metals are important cofactors in the metabolic processes of cyanobacteria, including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as to reduce potential toxicity from excessive metal concentrations. Leptochelins A-C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus Leptothoe. Determination of the complex structures of these metabolites presented numerous challenges, but they were ultimately solved using integrated data from NMR, mass spectrometry and deductions from the biosynthetic gene cluster. The leptochelins are comprised of halogenated linear NRPS-PKS hybrid products with multiple heterocycles that have potential for hexadentate and tetradentate coordination with metal ions. The genomes of the three leptochelin producers were sequenced, and retrobiosynthetic analysis revealed one candidate biosynthetic gene cluster (BGC) consistent with the structure of leptochelin. The putative BGC is highly homologous in all three Leptothoe strains, and all possess genetic signatures associated with metallophores. Postcolumn infusion of metals using an LC-MS metabolomics workflow performed with leptochelins A and B revealed promiscuous binding of iron, copper, cobalt, and zinc, with greatest preference for copper. Iron depletion and copper toxicity experiments support the hypothesis that leptochelin metallophores may play key ecological roles in iron acquisition and in copper detoxification. In addition, the leptochelins possess significant cytotoxicity against several cancer cell lines.


Asunto(s)
Cianobacterias , Cianobacterias/metabolismo , Cianobacterias/química , Cianobacterias/genética , Humanos , Familia de Multigenes , Línea Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/metabolismo
2.
Nat Methods ; 17(9): 901-904, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32807955

RESUMEN

We present ReDU ( https://redu.ucsd.edu/ ), a system for metadata capture of public mass spectrometry-based metabolomics data, with validated controlled vocabularies. Systematic capture of knowledge enables the reanalysis of public data and/or co-analysis of one's own data. ReDU enables multiple types of analyses, including finding chemicals and associated metadata, comparing the shared and different chemicals between groups of samples, and metadata-filtered, repository-scale molecular networking.


Asunto(s)
Bases de Datos de Compuestos Químicos , Espectrometría de Masas , Metabolómica/métodos , Programas Informáticos , Metadatos , Modelos Químicos
3.
J Nat Prod ; 86(3): 638-652, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36853972

RESUMEN

Algoa Bay, the largest crenulate bay on the southeastern coast of South Africa, is currently one of the most well-studied marine ecosystems in southern Africa. A plethora of endemic marine invertebrates inhabits the benthic reefs on the western edge of the Bay in close proximity to South Africa's sixth largest city. Over the past 25 years, South African marine natural products chemists, together with international collaborators from the US National Cancer Institute and other US institutions, have focused their attention on Algoa Bay's benthic marine invertebrates as a potential source of new anticancer compounds. This review commemorates a quarter of a century of marine biodiscovery in Algoa Bay and presents the structures and bioactivities of 49 new and 36 known specialized metabolites isolated from two molluscs, eight ascidians, and six sponges. Thirty-nine of these compounds were cytotoxic to cancer cells in vitro with 20 exhibiting moderate to potent cytotoxicity. Six other compounds exhibited antimicrobial activity. Foremost among the potential anticancer compounds is mandelalide A (38) from the Algoa Bay ascidian Lissoclinum species.


Asunto(s)
Ecosistema , Urocordados , Animales , Sudáfrica , Bahías , Organismos Acuáticos
4.
Arch Microbiol ; 204(12): 717, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36401660

RESUMEN

Strain 5675061T was isolated from a deep-sea microbial mat near hydrothermal vents within the Axial Seamount caldera on the Juan de Fuca Ridge (NE Pacific Ocean) and was taxonomically evaluated using a polyphasic approach. Morphological and chemotaxonomic properties are consistent with characteristics of the genus Streptomyces: aerobic Gram-stain-positive filaments that form spores, L,L-diaminopimelic acid in whole-cell hydrolysates, and iso-C16:0 as the major fatty acid. Phylogenetic analysis, genomic, and biochemical comparisons show close evolutionary relatedness to Streptomyces lonarensis NCL716T, S. bohaiensis 11A07T, and S. otsuchiensis OTB305T but genomic relatedness indices identify strain 5675061T as a distinct species. Based on a polyphasic characterization, identifying differences in genomic and taxonomic data, strain 5675061T represents a novel species, for which the name Streptomyces spiramenti sp. nov. is proposed. The type strain is 5675061T (=LMG 31896T = DSM 111793T).


Asunto(s)
Streptomyces , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base
5.
J Nat Prod ; 85(5): 1363-1373, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35500108

RESUMEN

The genome of entomopathogenic fungus Tolypocladium inflatum Gams encodes 43 putative biosynthetic gene clusters for specialized metabolites, although genotype-phenotype linkages have been reported only for the cyclosporins and fumonisins. T. inflatum was cultured in defined minimal media, supplemented with or without one of nine different amino acids. Acquisition of LC-MS/MS data for molecular networking and manual analysis facilitated annotation of putative known and unknown metabolites. These data led us to target a family of peptaibols and guided the isolation and purification of tolypocladamide H (1), which showed modest antibacterial activity and toxicity to mammalian cells at micromolar concentrations. HRMS/MS, NMR, and advanced Marfey's analysis were used to assign the structure of 1 as a peptaibol containing 4-[(E)-2-butenyl]-4-methyl-l-threonine (Bmt), a hallmark structural motif of the cyclosporins. LC-MS detection of homologous tolypocladamide metabolites and phylogenomic analyses of peptaibol biosynthetic genes in other cultured Tolypocladium species allowed assignment of a putative tolypocladamide nonribosomal peptide synthetase gene.


Asunto(s)
Ciclosporinas , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida , Mamíferos , Estructura Molecular , Familia de Multigenes , Peptaiboles
6.
Mar Drugs ; 20(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35877711

RESUMEN

The mandelalides are complex macrolactone natural products with distinct macrocycle motifs and a bioactivity profile that is heavily influenced by compound glycosylation. Mandelalides A and B are direct inhibitors of mitochondrial ATP synthase (complex V) and therefore more toxic to mammalian cells with an oxidative metabolic phenotype. To provide further insight into the pharmacology of the mandelalides, we studied the AMP-activated protein kinase (AMPK) energy stress pathway and report that mandelalide A is an indirect activator of AMPK. Wild-type mouse embryonic fibroblasts (MEFs) and representative human non-small cell lung cancer (NSCLC) cells showed statistically significant increases in phospho-AMPK (Thr172) and phospho-ACC (Ser79) in response to mandelalide A. Mandelalide L, which also harbors an A-type macrocycle, induced similar increases in phospho-AMPK (Thr172) and phospho-ACC (Ser79) in U87-MG glioblastoma cells. In contrast, MEFs co-treated with an AMPK inhibitor (dorsomorphin), AMPKα-null MEFs, or NSCLC cells lacking liver kinase B1 (LKB1) lacked this activity. Mandelalide A was significantly more cytotoxic to AMPKα-null MEFs than wild-type cells, suggesting that AMPK activation serves as a protective response to mandelalide-induced depletion of cellular ATP. However, LKB1 status alone was not predictive of the antiproliferative effects of mandelalide A against NSCLC cells. When EGFR status was considered, erlotinib and mandelalide A showed strong cytotoxic synergy in combination against erlotinib-resistant 11-18 NSCLC cells but not against erlotinib-sensitive PC-9 cells. Finally, prolonged exposures rendered mandelalide A, a potent and efficacious cytotoxin, against a panel of human glioblastoma cell types regardless of the underlying metabolic phenotype of the cell. These results add biological relevance to the mandelalide series and provide the basis for their further pre-clinical evaluation as ATP synthase inhibitors and secondary activators of AMPK.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Glioblastoma , Neoplasias Pulmonares , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Clorhidrato de Erlotinib , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Macrólidos , Mamíferos/metabolismo , Ratones , Fosforilación
7.
Nat Prod Rep ; 36(1): 35-107, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30003207

RESUMEN

Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.


Asunto(s)
Productos Biológicos/química , Espectroscopía de Resonancia Magnética/métodos , Conformación Molecular , Reproducibilidad de los Resultados
9.
Mar Drugs ; 17(1)2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30654589

RESUMEN

The temperate marine sponge, Tsitsikamma favus, produces pyrroloiminoquinone alkaloids with potential as anticancer drug leads. We profiled the secondary metabolite reservoir of T. favus sponges using HR-ESI-LC-MS/MS-based molecular networking analysis followed by preparative purification efforts to map the diversity of new and known pyrroloiminoquinones and related compounds in extracts of seven specimens. Molecular taxonomic identification confirmed all sponges as T. favus and five specimens (chemotype I) were found to produce mainly discorhabdins and tsitsikammamines. Remarkably, however, two specimens (chemotype II) exhibited distinct morphological and chemical characteristics: the absence of discorhabdins, only trace levels of tsitsikammamines and, instead, an abundance of unbranched and halogenated makaluvamines. Targeted chromatographic isolation provided the new makaluvamine Q, the known makaluvamines A and I, tsitsikammamine B, 14-bromo-7,8-dehydro-3-dihydro-discorhabdin C, and the related pyrrolo-ortho-quinones makaluvamine O and makaluvone. Purified compounds displayed different activity profiles in assays for topoisomerase I inhibition, DNA intercalation and antimetabolic activity against human cell lines. This is the first report of makaluvamines from a Tsitsikamma sponge species, and the first description of distinct chemotypes within a species of the Latrunculiidae family. This study sheds new light on the putative pyrroloiminoquinone biosynthetic pathway of latrunculid sponges.


Asunto(s)
Poríferos/metabolismo , Pirroliminoquinonas/química , Animales , Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/aislamiento & purificación , Antimetabolitos Antineoplásicos/farmacología , Vías Biosintéticas , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión/métodos , ADN/química , ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/metabolismo , Pruebas de Enzimas , Células HEK293 , Células HeLa , Humanos , Sustancias Intercalantes/química , Sustancias Intercalantes/aislamiento & purificación , Sustancias Intercalantes/farmacología , Estructura Molecular , Pirroliminoquinonas/aislamiento & purificación , Pirroliminoquinonas/metabolismo , Pirroliminoquinonas/farmacología , Espectrometría de Masas en Tándem/métodos , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/aislamiento & purificación , Inhibidores de Topoisomerasa I/metabolismo , Inhibidores de Topoisomerasa I/farmacología
10.
J Org Chem ; 83(8): 4287-4306, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29480727

RESUMEN

The mandelalides comprise a family of structurally complex marine macrolides that display significant cytotoxicity against several human cancer cell lines. Presented here is a full account on the development of an Anion Relay Chemistry (ARC) strategy for the total synthesis of (-)-mandelalides A and L, the two most potent members of the mandelalide family. The design and implementation of a three-component type II ARC/cross-coupling protocol and a four-component type I ARC union permits rapid access respectively to the key tetrahydrofuran and tetrahydropyran structural motifs of these natural products. Other highlights of the synthesis include an osmium-catalyzed oxidative cyclization of an allylic 1,3-diol, a mild Yamaguchi esterification to unite the northern and southern hemispheres, and a late-stage Heck macrocyclization. Synthetic mandelalides A and L displayed potent cytotoxicity against human HeLa cervical cancer cells (EC50, 1.3 and 3.1 nM, respectively). This synthetic approach also provides access to several highly potent non-natural mandelalide analogs, including a biotin-tagged mandelalide probe for future biological investigation.


Asunto(s)
Antineoplásicos/farmacología , Macrólidos/farmacología , Aniones/química , Aniones/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Macrólidos/síntesis química , Macrólidos/química , Estructura Molecular , Relación Estructura-Actividad
11.
J Nat Prod ; 81(6): 1417-1425, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29808677

RESUMEN

Jizanpeptins A-E (1-5) are micropeptin depsipeptides isolated from a Red Sea specimen of a Symploca sp. cyanobacterium. The planar structures of the jizanpeptins were established using NMR spectroscopy and mass spectrometry and contain 3-amino-6-hydroxy-2-piperidone (Ahp) as one of eight residues in a typical micropeptin motif, as well as a side chain terminal glyceric acid sulfate moiety. The absolute configurations of the jizanpeptins were assigned using a combination of Marfey's methodology and chiral-phase HPLC analysis of hydrolysis products compared to commercial and synthesized standards. Jizanpeptins A-E showed specific inhibition of the serine protease trypsin (IC50 = 72 nM to 1 µM) compared to chymotrypsin (IC50 = 1.4 to >10 µM) in vitro and were not overtly cytotoxic to HeLa cervical or NCI-H460 lung cancer cell lines at micromolar concentrations.


Asunto(s)
Cianobacterias/química , Depsipéptidos/química , Depsipéptidos/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Quimotripsina/química , Quimotripsina/farmacología , Humanos , Océano Índico , Espectroscopía de Resonancia Magnética/métodos , Piperidonas/química , Piperidonas/farmacología
12.
Mar Drugs ; 16(3)2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494533

RESUMEN

Our understanding of autophagy and lysosomal function has been greatly enhanced by the discovery of natural product structures that can serve as chemical probes to reveal new patterns of signal transduction in cells. Coibamide A is a cytotoxic marine natural product that induces mTOR-independent autophagy as an adaptive stress response that precedes cell death. Autophagy-related (ATG) protein 5 (ATG5) is required for coibamide-induced autophagy but not required for coibamide-induced apoptosis. Using wild-type and autophagy-deficient mouse embryonic fibroblasts (MEFs) we demonstrate that coibamide-induced toxicity is delayed in ATG5-/- cells relative to ATG5+/+ cells. Time-dependent changes in annexin V staining, membrane integrity, metabolic capacity and caspase activation indicated that MEFs with a functional autophagy pathway are more sensitive to coibamide A. This pattern could be distinguished from autophagy modulators that induce acute ER stress (thapsigargin, tunicamycin), ATP depletion (oligomycin A) or mTORC1 inhibition (rapamycin), but was shared with the Sec61 inhibitor apratoxin A. Coibamide- or apratoxin-induced cell stress was further distinguished from the action of thapsigargin by a pattern of early LC3-II accumulation in the absence of CHOP or BiP expression. Time-dependent changes in ATG5-ATG12, PARP1 and caspase-3 expression patterns were consistent with the conversion of ATG5 to a pro-death signal in response to both compounds.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/metabolismo , Autofagia/efectos de los fármacos , Depsipéptidos/toxicidad , Animales , Proteína 5 Relacionada con la Autofagia/genética , Línea Celular , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fibroblastos , Técnicas de Inactivación de Genes , Toxinas Marinas/toxicidad , Ratones , Transducción de Señal/efectos de los fármacos , Tapsigargina/toxicidad
13.
J Am Chem Soc ; 138(3): 770-3, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26759923

RESUMEN

The total synthesis of mandelalide A and its ring-expanded macrolide isomer isomandelalide A has been achieved. Unexpected high levels of cytotoxicity were observed with the ring-expanded isomandelalide A with a rank order of potency: mandelalide A > isomandelalide A > mandelalide B. Key aspects of the synthesis include Ag-catalyzed cyclizations (AgCC's) to construct both the THF and THP rings present in the macrocycle, diastereoselective Sharpless dihydroylation of a cis-enyne, and lithium acetylide coupling with a chiral epoxide.


Asunto(s)
Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/farmacología , Descubrimiento de Drogas , Macrólidos/síntesis química , Antineoplásicos Fitogénicos/química , Catálisis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclización , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Macrólidos/química , Macrólidos/farmacología , Conformación Molecular , Plata/química , Estereoisomerismo
14.
Environ Microbiol ; 18(10): 3296-3308, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26337778

RESUMEN

Bacteria can be both highly communicative and highly competitive in natural habitats and antibiotics are thought to play a role in both of these processes. The soil bacterium Pseudomonas protegens Pf-5 produces a spectrum of antibiotics, two of which, pyoluteorin and 2,4-diacetylphloroglucinol (DAPG), function in intracellular and intercellular communication, both as autoinducers of their own production. Here, we demonstrate that phloroglucinol, an intermediate in DAPG biosynthesis, can serve as an intercellular signal influencing the expression of pyoluteorin biosynthesis genes, the production of pyoluteorin, and inhibition of Pythium ultimum, a phytopathogenic oomycete sensitive to pyoluteorin. Through analysis of RNAseq data sets, we show that phloroglucinol had broad effects on the transcriptome of Pf-5, significantly altering the transcription of more than two hundred genes. The effects of nanomolar versus micromolar concentrations of phloroglucinol differed both quantitatively and qualitatively, influencing the expression of distinct sets of genes or having opposite effects on transcript abundance of certain genes. Therefore, our results support the concept of hormesis, a phenomenon associated with signalling molecules that elicit distinct responses at different concentrations. Phloroglucinol is the first example of an intermediate of antibiotic biosynthesis that functions as a chemical messenger influencing gene expression in P. protegens.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Fenoles/metabolismo , Floroglucinol/análogos & derivados , Pseudomonas/genética , Pseudomonas/metabolismo , Pirroles/metabolismo , Antibacterianos/biosíntesis , Antibacterianos/farmacología , Expresión Génica , Floroglucinol/metabolismo , Transducción de Señal/fisiología
15.
Invest New Drugs ; 34(1): 24-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26563191

RESUMEN

Coibamide A is a cytotoxic lariat depsipeptide isolated from a rare cyanobacterium found within the marine reserve of Coiba National Park, Panama. Earlier testing of coibamide A in the National Cancer Institute in vitro 60 human tumor cell line panel (NCI-60) revealed potent anti-proliferative activity and a unique selectivity profile, potentially reflecting a new target or mechanism of action. In the present study we evaluated the antitumor activity of coibamide A in several functional cell-based assays and in vivo. U87-MG and SF-295 glioblastoma cells showed reduced migratory and invasive capacity and underwent G1 cell cycle arrest as, likely indirect, consequences of treatment. Coibamide A inhibited extracellular VEGFA secreted from U87-MG glioblastoma and MDA-MB-231 breast cancer cells with low nM potency, attenuated proliferation and migration of normal human umbilical vein endothelial cells (HUVECs) and selectively decreased expression of vascular endothelial growth factor receptor 2 (VEGFR2). We report that coibamide A retains potent antitumor properties in a nude mouse xenograft model of glioblastoma; established subcutaneous U87-MG tumors failed to grow for up to 28 days in response to 0.3 mg/Kg doses of coibamide A. However, the natural product was also associated with varied patterns of weight loss and thus targeted delivery and/or medicinal chemistry approaches will almost certainly be required to improve the toxicity profile of this unusual macrocycle. Finally, similarities between coibamide A- and apratoxin A-induced changes in cell morphology, decreases in VEGFR2 expression and macroautophagy signaling in HUVECs raise the possibility that both cyanobacterial natural products share a common mechanism of action.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Depsipéptidos/farmacología , Glioblastoma/tratamiento farmacológico , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Glioblastoma/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Desnudos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Org Biomol Chem ; 14(24): 5826-31, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27152741

RESUMEN

The effectiveness of computational tools in determining relative configurations of complex molecules is investigated, using natural products mandelalides A-D and coibamide A, towards a generalized recipe for the scientific community at large. Ultimately, continuing efforts in this vein will accelerate and strengthen relative structure elucidation of complex molecules, such as natural products. Molecular mechanics conformational search, quantum mechanical NMR chemical shift predictions, and DP4 analyses led to confirmation of the revised structures of mandelalides A-D and coibamide A. All chiral centers in the northern hemisphere of mandelalides A-D are inverted with respect to the originally proposed structures, in agreement with recent total syntheses of mandelalide A by Ye, Fürstner & Carter. In the case of coibamide A, it was found that Fang & Su's revision, in which both the macrocycle [MeAla(11)] and the side chain [HIV(2)] residues are inverted from l to d, was consistent with the authentic natural product and computations.


Asunto(s)
Productos Biológicos/química , Depsipéptidos/química , Macrólidos/química , Simulación de Dinámica Molecular , Conformación Molecular
17.
PLoS Genet ; 9(6): e1003496, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23818858

RESUMEN

The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role of secondary metabolite gene clusters and their metabolites in fungal biology.


Asunto(s)
Escarabajos/microbiología , Ciclosporina/metabolismo , Hypocreales/genética , Complejos Multienzimáticos/genética , Péptido Sintasas/genética , Animales , Evolución Molecular , Transferencia de Gen Horizontal , Genoma , Hypocreales/enzimología , Complejos Multienzimáticos/metabolismo , Familia de Multigenes , Péptido Sintasas/metabolismo , Filogenia , Análisis de Secuencia de ARN
18.
Bioorg Med Chem Lett ; 25(2): 302-6, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25488840

RESUMEN

Coibamide A is a highly potent antiproliferative cyclic depsipeptide, which was originally isolated from a Panamanian marine cyanobacterium. In this study, the synthesis of coibamide A has been investigated using Fmoc-based solid-phase peptide synthesis followed by the cleavage of the resulting linear peptide from the resin and its subsequent macrolactonization. The peptide sequence of the linear coibamide A precursor was constructed on a solid-support following the optimization of the coupling conditions, where numerous coupling agents were evaluated. The macrocyclization of the resulting linear peptide provided the [d-MeAla(11)]-epimer of coibamide A, which exhibited nanomolar cytotoxic activity towards a number of human cancer cell lines.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Depsipéptidos/síntesis química , Depsipéptidos/farmacología , Neoplasias/tratamiento farmacológico , Humanos , Estructura Molecular , Neoplasias/patología , Técnicas de Síntesis en Fase Sólida , Estereoisomerismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
19.
J Nat Prod ; 78(3): 413-20, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25562664

RESUMEN

Two new cyclic depsipeptides, companeramides A (1) and B (2), have been isolated from the phylogenetically characterized cyanobacterial collection that yielded the previously reported cancer cell toxin coibamide A (collected from Coiba Island, Panama). The planar structures of the companeramides, which contain 3-amino-2-methyl-7-octynoic acid (Amoya), hydroxy isovaleric acid (Hiva), and eight α-amino acid units, were established by NMR spectroscopy and mass spectrometry. The absolute configuration of each companeramide was assigned using a combination of Marfey's methodology and chiral-phase HPLC analysis of complete and partial hydrolysis products compared to commercial and synthesized standards. Companeramides A (1) and B (2) showed high nanomolar in vitro antiplasmodial activity but were not overtly cytotoxic to four human cancer cell lines at the doses tested.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Cianobacterias/química , Depsipéptidos/aislamiento & purificación , Antineoplásicos/química , Antineoplásicos/farmacología , Cromatografía Líquida de Alta Presión , Depsipéptidos/química , Depsipéptidos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Panamá
20.
ACS Pharmacol Transl Sci ; 7(6): 1823-1838, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38898945

RESUMEN

Coibamide A (CbA) is a cyanobacterial lariat depsipeptide that selectively inhibits multiple secreted and integral membrane proteins from entering the endoplasmic reticulum secretory pathway through binding the alpha subunit of the Sec61 translocon. As a complex peptide-based macrocycle with 13 stereogenic centers, CbA is presumed to adopt a conformationally restricted orientation in the ligand-bound state, resulting in potent antitumor and antiangiogenic bioactivity. A stereochemical structure-activity relationship for CbA was previously defined based on cytotoxicity against established cancer cell lines. However, the ability of synthetic isomers to inhibit the biosynthesis of specific Sec61 substrates was unknown. Here, we report that two less toxic diastereomers of CbA, [L-Hiv2]-CbA and [L-Hiv2, L-MeAla11]-CbA, are pharmacologically active Sec61 inhibitors. Both compounds inhibited the expression of a secreted reporter (Gaussia luciferase), VEGF-A, and a Type 1 membrane protein (VCAM1), while [L-Hiv2]-CbA also decreased the expression of ICAM1 and BiP/GRP78. Analysis of 43 different chemokines in the secretome of SF-268 glioblastoma cells revealed different inhibitory profiles for the two diastereomers. When the cytotoxic potential of CbA compounds was compared against a panel of patient-derived glioblastoma stem-like cells (GSCs), Sec61 inhibitors were remarkably toxic to five of the six GSCs tested. Each ligand showed a distinct cytotoxic potency and selectivity pattern for CbA-sensitive GSCs, with IC50 values ranging from subnanomolar to low micromolar concentrations. Together, these findings highlight the extreme sensitivity of GSCs to Sec61 modulation and the importance of ligand stereochemistry in determining the spectrum of inhibited Sec61 client proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA