Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 158(6): 1293-1308, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25215488

RESUMEN

Fat (Ft) cadherins are enormous cell adhesion molecules that function at the cell surface to regulate the tumor-suppressive Hippo signaling pathway and planar cell polarity (PCP) tissue organization. Mutations in Ft cadherins are found in a variety of tumors, and it is presumed that this is due to defects in either Hippo signaling or PCP. Here, we show Drosophila Ft functions in mitochondria to directly regulate mitochondrial electron transport chain integrity and promote oxidative phosphorylation. Proteolytic cleavage releases a soluble 68 kDa fragment (Ft(mito)) that is imported into mitochondria. Ft(mito) binds directly to NADH dehydrogenase ubiquinone flavoprotein 2 (Ndufv2), a core component of complex I, stabilizing the holoenzyme. Loss of Ft leads to loss of complex I activity, increases in reactive oxygen species, and a switch to aerobic glycolysis. Defects in mitochondrial activity in ft mutants are independent of Hippo and PCP signaling and are reminiscent of the Warburg effect.


Asunto(s)
Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitocondrias/metabolismo , Secuencia de Aminoácidos , Animales , Moléculas de Adhesión Celular/química , Polaridad Celular , Proteínas de Drosophila/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Ojo/crecimiento & desarrollo , Genes Supresores de Tumor , Humanos , MAP Quinasa Quinasa 4/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Alas de Animales/crecimiento & desarrollo
2.
PLoS Biol ; 21(3): e3001977, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862640

RESUMEN

Failures in mitophagy, a process by which damaged mitochondria are cleared, results in neurodegeneration, while enhancing mitophagy promotes the survival of dopaminergic neurons. Using an artificial intelligence platform, we employed a natural language processing approach to evaluate the semantic similarity of candidate molecules to a set of well-established mitophagy enhancers. Top candidates were screened in a cell-based mitochondrial clearance assay. Probucol, a lipid-lowering drug, was validated across several orthogonal mitophagy assays. In vivo, probucol improved survival, locomotor function, and dopaminergic neuron loss in zebrafish and fly models of mitochondrial damage. Probucol functioned independently of PINK1/Parkin, but its effects on mitophagy and in vivo depended on ABCA1, which negatively regulated mitophagy following mitochondrial damage. Autophagosome and lysosomal markers were elevated by probucol treatment in addition to increased contact between lipid droplets (LDs) and mitochondria. Conversely, LD expansion, which occurs following mitochondrial damage, was suppressed by probucol and probucol-mediated mitophagy enhancement required LDs. Probucol-mediated LD dynamics changes may prime the cell for a more efficient mitophagic response to mitochondrial damage.


Asunto(s)
Gotas Lipídicas , Probucol , Animales , Probucol/farmacología , Inteligencia Artificial , Mitofagia , Pez Cebra
3.
Proc Natl Acad Sci U S A ; 116(33): 16454-16462, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31266891

RESUMEN

The programmed release of apoptogenic proteins from mitochondria is a core event of apoptosis, although ancestral roles of this phenomenon are not known. In mammals, one such apoptogenic protein is Endonuclease G (EndoG), a conserved mitochondrial nuclease that fragments the DNA of dying cells. In this work, we show that budding yeast executes meiotically programmed mitochondrial release of an EndoG homolog, Nuc1, during sporulation. In contrast to EndoG's ostensible pro-death function during apoptosis, Nuc1 mitochondrial release is pro-survival, attenuating the cytosolic L-A and Killer double-stranded RNA mycoviruses and protecting meiotic progeny from the catastrophic consequences of their derepression. The protective viral attenuation role of this pathway illuminates a primordial role for mitochondrial release of EndoG, and perhaps of apoptosis itself.


Asunto(s)
Apoptosis/genética , Endonucleasas/genética , Exonucleasas/genética , Meiosis/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Animales , Endodesoxirribonucleasas/genética , Mamíferos , Mitocondrias/enzimología , Mitocondrias/genética , Saccharomycetales/crecimiento & desarrollo , Saccharomycetales/virología , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(4): 447-457, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29343430

RESUMEN

The mitochondrial glycerophospholipid cardiolipin plays important roles in mitochondrial biology. Most notably, cardiolipin directly binds to mitochondrial proteins and helps assemble and stabilize mitochondrial multi-protein complexes. Despite their importance for mitochondrial health, how the proteins involved in cardiolipin biosynthesis are organized and embedded in mitochondrial membranes has not been investigated in detail. Here we show that human PGS1 and CLS1 are constituents of large protein complexes. We show that PGS1 forms oligomers and associates with CLS1 and PTPMT1. Using super-resolution microscopy, we observed well-organized nanoscale structures formed by PGS1. Together with the observation that cardiolipin and CLS1 are not required for PGS1 to assemble in the complex we predict the presence of a PGS1-centered cardiolipin-synthesizing scaffold within the mitochondrial inner membrane. Using an unbiased proteomic approach we found that PGS1 and CLS1 interact with multiple cardiolipin-binding mitochondrial membrane proteins, including prohibitins, stomatin-like protein 2 and the MICOS components MIC60 and MIC19. We further mapped the protein-protein interaction sites between PGS1 and itself, CLS1, MIC60 and PHB. Overall, this study provides evidence for the presence of a cardiolipin synthesis structure that transiently interacts with cardiolipin-dependent protein complexes.


Asunto(s)
Cardiolipinas/biosíntesis , Cardiolipinas/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multienzimáticos/metabolismo , Detergentes/farmacología , Células HEK293 , Humanos , Inmunoprecipitación , Microscopía , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Prohibitinas , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos
5.
Biochim Biophys Acta ; 1828(12): 2916-25, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24099009

RESUMEN

The Rhomboid proteases belong to a highly conserved family of proteins that are present in all branches of life. In Drosophila, the secretory pathway-localized rhomboid proteases are crucial for epidermal growth factor (EGF) signaling. The identification of a mitochondrial-localized rhomboid protease shed light on other functions of rhomboid proteases including the maintenance of mitochondrial morphology and the regulation of apoptosis. More recent work has revealed other functions of the mitochondrial rhomboid protease in mitochondrial and cellular biology, failure of which have been implicated in human diseases. In this review, we will summarize the current knowledge and disease relevance of the mitochondrial-localized rhomboid protease. This article is part of a Special Issue entitled: Intramembrane Proteases.


Asunto(s)
Diabetes Mellitus Tipo 2/enzimología , Metaloproteasas/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson/enzimología , Transducción de Señal , Animales , Apoptosis , Secuencia Conservada , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Humanos , Metaloproteasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteolisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico
6.
J Biol Chem ; 287(48): 40131-9, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045528

RESUMEN

BACKGROUND: Phosphatidylethanolamine is proposed to regulate mitochondrial fusion, but its mechanism of action is unknown. RESULTS: Decreasing phosphatidylethanolamine reduces the rate of lipid mixing and the biogenesis of Mgm1, a mitochondrial fusion protein. CONCLUSION: Psd1 regulates the lipid and protein machineries of mitochondrial fusion. SIGNIFICANCE: Understanding how lipid metabolism regulates mitochondrial dynamics will reveal its role in cellular functions such as apoptosis and autophagy. Non-bilayer-forming lipids such as cardiolipin, phosphatidic acid, and phosphatidylethanolamine (PE) are proposed to generate negative membrane curvature, promoting membrane fusion. However, the mechanism by which lipids regulate mitochondrial fusion remains poorly understood. Here, we show that mitochondrial-localized Psd1, the key yeast enzyme that synthesizes PE, is required for proper mitochondrial morphology and fusion. Yeast cells lacking Psd1 exhibit fragmented and aggregated mitochondria with impaired mitochondrial fusion during mating. More importantly, we demonstrate that a reduction in PE reduces the rate of lipid mixing during fusion of liposomes with lipid compositions reflecting the mitochondrial membrane. This suggests that the mitochondrial fusion defect in the Δpsd1 strain could be due to the altered biophysical properties of the mitochondrial membrane, resulting in reduced fusion kinetics. The Δpsd1 strain also has impaired mitochondrial activity such as oxidative phosphorylation and reduced mitochondrial ATP levels which are due to a reduction in mitochondrial PE. The loss of Psd1 also impairs the biogenesis of s-Mgm1, a protein essential for mitochondrial fusion, further exacerbating the mitochondrial fusion defect of the Δpsd1 strain. Increasing s-Mgm1 levels in Δpsd1 cells markedly reduced mitochondrial aggregation. Our results demonstrate that mitochondrial PE regulates mitochondrial fusion by regulating the biophysical properties of the mitochondrial membrane and by enhancing the biogenesis of s-Mgm1. While several proteins are required to orchestrate the intricate process of membrane fusion, we propose that specific phospholipids of the mitochondrial membrane promote fusion by enhancing lipid mixing kinetics and by regulating the action of profusion proteins.


Asunto(s)
Carboxiliasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Mitocondrias/enzimología , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Carboxiliasas/genética , Proteínas de Unión al GTP/genética , Mitocondrias/química , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
J Biol Chem ; 287(44): 36634-8, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22977249

RESUMEN

Cellular membrane remodeling events such as mitochondrial dynamics, vesicle budding, and cell division rely on the large GTPases of the dynamin superfamily. Dynamins have long been characterized as fission molecules; however, how they mediate membrane fusion is largely unknown. Here we have characterized by cryo-electron microscopy and in vitro liposome fusion assays how the mitochondrial dynamin Mgm1 may mediate membrane fusion. Using cryo-EM, we first demonstrate that the Mgm1 complex is able to tether opposing membranes to a gap of ∼15 nm, the size of mitochondrial cristae folds. We further show that the Mgm1 oligomer undergoes a dramatic GTP-dependent conformational change suggesting that s-Mgm1 interactions could overcome repelling forces at fusion sites and that ultrastructural changes could promote the fusion of opposing membranes. Together our findings provide mechanistic details of the two known in vivo functions of Mgm1, membrane fusion and cristae maintenance, and more generally shed light onto how dynamins may function as fusion proteins.


Asunto(s)
Proteínas de Unión al GTP/fisiología , Guanosina Trifosfato/metabolismo , Fusión de Membrana , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Cristalografía , Análisis de Fourier , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Humanos , Liposomas/química , Liposomas/metabolismo , Liposomas/ultraestructura , Membranas Mitocondriales/química , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Hum Mol Genet ; 20(10): 1966-74, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21355049

RESUMEN

Molecular genetics has linked mitochondrial dysfunction to the pathogenesis of Parkinson's disease by the discovery of rare, inherited mutations in gene products that associate with the mitochondria. Mutations in PTEN-induced kinase-1 (PINK1), which encodes a mitochondrial kinase, and PARKIN, encoding an E3 ubiquitin ligase, are the most frequent causes of recessive Parkinson's disease. Recent functional studies have revealed that PINK1 recruits PARKIN to mitochondria to initiate mitophagy, an important autophagic quality control mechanism that rids the cell of damaged mitochondria. PINK1 is post-translationally processed into a cleaved form whose levels are tightly regulated, although the significance of this processing is unknown. Here we demonstrate that the mitochondrial protease presenilin-associated rhomboid-like (PARL) can affect the proteolytic processing of PINK1 and that normal PINK1 localization and stability requires PARL's catalytic activity. PARL deficiency impairs PARKIN recruitment to mitochondria, suggesting PINK1's processing and localization are important in determining its interaction with PARKIN. We sequenced the PARL gene in Parkinson's disease patients and discovered a novel missense mutation in a functional domain of PARL's N-terminus. This PARL mutant is not sufficient to rescue PARKIN recruitment, suggesting that impaired mitophagy may be an underlying mechanism of disease pathogenesis in patients with PARL mutations.


Asunto(s)
Metaloproteasas/genética , Metaloproteasas/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Estabilidad de Enzimas/genética , Femenino , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Datos de Secuencia Molecular , Mutación/genética , Proteínas Quinasas/metabolismo , Transporte de Proteínas/genética , Alineación de Secuencia , Ubiquitina-Proteína Ligasas/metabolismo
9.
Autophagy ; : 1-3, 2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37179524

RESUMEN

We have employed artificial intelligence to streamline the small molecule drug screening pipeline and identified the cholesterol-reducing compound probucol in the process. Probucol augmented mitophagy and prevented loss of dopaminergic neurons in flies and zebrafish challenged with mitochondrial toxins. Further dissection of the mechanism of action led to the identification of ABCA1, the target of probucol, as a mitophagy modulator. Probucol treatment regulates lipid droplet dynamics during mitophagy and ABCA1 is required for these effects. Here we will summarize the combination of in silico and cell-based screening that led us to identify and characterize probucol as a compound that enhances mitophagy and include thoughts about future directions for the topics explored in our study.Abbreviations: ABCA1: ATP binding cassette transporter protein 1; ATP: Adenosine tri-phosphate; CCCP: carbonyl cyanide m-chlorophenylhydrazone; DsRed: Discosoma red; FDA: Food and drug administration; GFP: Green fluorescent protein; LAMP: lysosome-associated membrane glycoproteins; LD: Lipid droplet; PD: Parkinson's disease; PINK: PTEN-induced kinase.

10.
STAR Protoc ; 4(4): 102745, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039137

RESUMEN

Mitochondrial morphology is an indicator of cellular health and function; however, its quantification and categorization into different subclasses is a complicated process. Here, we present a protocol for mitochondrial morphology quantification in the presence and absence of carbonyl cyanide m-chlorophenyl hydrazone stress. We describe steps for the preparation of cells for immunofluorescence microscopy, staining, and morphology quantification. The quantification protocol generates an aspect ratio that helps to categorize mitochondria into two clear subclasses. For complete details on the use and execution of this protocol, please refer to Nag et al.1.


Asunto(s)
Mitocondrias , Programas Informáticos , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Mitocondrias/fisiología
11.
Cell Rep ; 42(8): 112895, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37498743

RESUMEN

Mitochondrial morphology is regulated by the post-translational modifications of the dynamin family GTPase proteins including mitofusin 1 (MFN1), MFN2, and dynamin-related protein 1 (DRP1). Mitochondrial phosphatase phosphoglycerate mutase 5 (PGAM5) is emerging as a regulator of these post-translational modifications; however, its precise role in the regulation of mitochondrial morphology is unknown. We show that PGAM5 interacts with MFN2 and DRP1 in a stress-sensitive manner. PGAM5 regulates MFN2 phosphorylation and consequently protects it from ubiquitination and degradation. Further, phosphorylation and dephosphorylation modification of MFN2 regulates its fusion ability. Phosphorylation enhances fission and degradation, whereas dephosphorylation enhances fusion. PGAM5 dephosphorylates MFN2 to promote mitochondrial network formation. Further, using a Drosophila genetic model, we demonstrate that the MFN2 homolog Marf and dPGAM5 are in the same biological pathway. Our results identify MFN2 dephosphorylation as a regulator of mitochondrial fusion and PGAM5 as an MFN2 phosphatase.


Asunto(s)
GTP Fosfohidrolasas , Monoéster Fosfórico Hidrolasas , GTP Fosfohidrolasas/metabolismo , Fosfoglicerato Mutasa , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Dinaminas/metabolismo
12.
Autophagy ; 19(7): 2094-2110, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36708254

RESUMEN

Mitochondrial impairment is a hallmark feature of neurodegenerative disorders, such as Parkinson disease, and PRKN/parkin-mediated mitophagy serves to remove unhealthy mitochondria from cells. Notably, probiotics are used to alleviate several symptoms of Parkinson disease including impaired locomotion and neurodegeneration in preclinical studies and constipation in clinical trials. There is some evidence to suggest that probiotics can modulate mitochondrial quality control pathways. In this study, we screened 49 probiotic strains and tested distinct stages of mitophagy to determine whether probiotic treatment could upregulate mitophagy in cells undergoing mitochondrial stress. We found two probiotics, Saccharomyces boulardii and Lactococcus lactis, that upregulated mitochondrial PRKN recruitment, phospho-ubiquitination, and MFN degradation in our cellular assays. Administration of these strains to Drosophila that were exposed to paraquat, a mitochondrial toxin, resulted in improved longevity and motor function. Further, we directly observed increased lysosomal degradation of dysfunctional mitochondria in the treated Drosophila brains. These effects were replicated in vitro and in vivo with supra-physiological concentrations of exogenous soluble factors that are released by probiotics in cultures grown under laboratory conditions. We identified methyl-isoquinoline-6-carboxylate as one candidate molecule, which upregulates mitochondrial PRKN recruitment, phospho-ubiquitination, MFN degradation, and lysosomal degradation of damaged mitochondria. Addition of methyl-isoquinoline-6-carboxylate to the fly food restored motor function to paraquat-treated Drosophila. These data suggest a novel mechanism that is facilitated by probiotics to stimulate mitophagy through a PRKN-dependent pathway, which could explain the potential therapeutic benefit of probiotic administration to patients with Parkinson disease.


Asunto(s)
Lactococcus lactis , Enfermedad de Parkinson , Saccharomyces boulardii , Animales , Mitofagia , Lactococcus lactis/metabolismo , Saccharomyces boulardii/metabolismo , Proteínas Quinasas/metabolismo , Autofagia , Paraquat , Ubiquitina-Proteína Ligasas/metabolismo , Drosophila/metabolismo
13.
Autophagy ; 19(6): 1781-1802, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36541703

RESUMEN

Peroxisomes are rapidly degraded during amino acid and oxygen deprivation by a type of selective autophagy called pexophagy. However, how damaged peroxisomes are detected and removed from the cell is poorly understood. Recent studies suggest that the peroxisomal matrix protein import machinery may serve double duty as a quality control machinery, where they are directly involved in activating pexophagy. Here, we explored whether any matrix import factors are required to prevent pexophagy, such that their loss designates peroxisomes for degradation. Using gene editing and quantitative fluorescence microscopy on culture cells and a zebrafish model system, we found that PEX13, a component of the peroxisomal matrix import system, is required to prevent the degradation of otherwise healthy peroxisomes. The loss of PEX13 caused an accumulation of ubiquitinated PEX5 on peroxisomes and an increase in peroxisome-dependent reactive oxygen species that coalesce to induce pexophagy. We also found that PEX13 protein level is downregulated to aid in the induction of pexophagy during amino acid starvation. Together, our study points to PEX13 as a novel pexophagy regulator that is modulated to maintain peroxisome homeostasis.Abbreviations: AAA ATPases: ATPases associated with diverse cellular activities; ABCD3: ATP binding cassette subfamily D member; 3ACOX1: acyl-CoA oxidase; 1ACTA1: actin alpha 1, skeletal muscle; ACTB: actin beta; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; CAT: catalase; CQ: chloroquine; Dpf: days post fertilization: FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; H2O2: hydrogen peroxide; HA - human influenza hemagglutinin; HBSS: Hanks' Balanced Salt Solution; HCQ; hydroxychloroquine; KANL: lysine alanine asparagine leucine; KO: knockout; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; MYC: MYC proto-oncogene, bHLH transcription factor; MZ: maternal and zygotic; NAC: N-acetyl cysteine; NBR1 - NBR1 autophagy cargo receptor; PBD: peroxisome biogenesis disorder; PBS: phosphate-buffered saline; PEX: peroxisomal biogenesis factor; PTS1: peroxisome targeting sequence 1; RFP: red fluorescent protein; ROS: reactive oxygen speciess; iRNA: short interfering RNA; SKL: serine lysine leucine; SLC25A17/PMP34: solute carrier family 25 member 17; Ub: ubiquitin; USP30: ubiquitin specific peptidase 30.


Asunto(s)
Autofagia , Macroautofagia , Animales , Humanos , Ratones , Autofagia/fisiología , Especies Reactivas de Oxígeno/metabolismo , Leucina/metabolismo , Lisina/metabolismo , Actinas/metabolismo , Pez Cebra/metabolismo , Fibroblastos/metabolismo , Ubiquitina/metabolismo , Peroxisomas/metabolismo , Aminoácidos/metabolismo , Oxígeno/metabolismo , Sirolimus , Proteínas de la Membrana/metabolismo
14.
J Biol Chem ; 284(42): 28682-6, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19703904

RESUMEN

Mgm1, the yeast ortholog of mammalian OPA1, is a key component in mitochondrial membrane fusion and is required for maintaining mitochondrial dynamics and morphology. We showed recently that the purified short isoform of Mgm1 (s-Mgm1) possesses GTPase activity, self-assembles into low order oligomers, and interacts specifically with negatively charged phospholipids (Meglei, G., and McQuibban, G. A. (2009) Biochemistry 48, 1774-1784). Here, we demonstrate that s-Mgm1 binds to a mixture of phospholipids characteristic of the mitochondrial inner membrane. Binding to physiologically representative lipids results in approximately 50-fold stimulation of s-Mgm1 GTPase activity. s-Mgm1 point mutants that are defective in oligomerization and lipid binding do not exhibit such stimulation and do not function in vivo. Electron microscopy and lipid turbidity assays demonstrate that s-Mgm1 promotes liposome interaction. Furthermore, s-Mgm1 assembles onto liposomes as oligomeric rings with 3-fold symmetry. The projection map of negatively stained s-Mgm1 shows six monomers, consistent with two stacked trimers. Taken together, our data identify a lipid-binding domain in Mgm1, and the structural analysis suggests a model of how Mgm1 promotes the fusion of opposing mitochondrial inner membranes.


Asunto(s)
Dinaminas/química , Proteínas de Unión al GTP/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Fosfolípidos/química , Proteínas de Saccharomyces cerevisiae/química , Cromatografía en Gel , Dicroismo Circular , Ensayo de Inmunoadsorción Enzimática , Proteínas Fúngicas/química , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Lípidos/química , Liposomas/química , Fusión de Membrana , Modelos Biológicos , Mutación , Estructura Terciaria de Proteína
16.
Biochemistry ; 48(8): 1774-84, 2009 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-19236101

RESUMEN

Mitochondrial dynamics resulting from competing membrane fusion and fission reactions are required for normal cellular function in eukaryotes. Mgm1p, a dynamin-related protein, is a key component in yeast mitochondrial fusion and is evolutionarily conserved. Previous studies suggest that Mgm1p mediates mitochondrial inner membrane fusion in a manner similar to that of other dynamin proteins that use GTP hydrolysis and oligomerization to induce structural changes in lipid bilayers; however, a direct demonstration of these activities has yet to be presented. Here we show that purified Mgm1p forms low-order oligomers that are dependent on protein concentration, suggesting a dynamic and reversible interaction. We further demonstrate that Mgm1p has GTPase activity and kinetic properties consistent with a mechanoenzyme and with a role in inner membrane mitochondrial fusion. Mutations of key residues in conserved motifs of the GTPase domain show markedly reduced or diminished GTPase activity. A mutation in the GTPase effector domain, involved in assembly and assembly-stimulated GTP hydrolysis, has basal GTPase activity similar to that of wild-type Mgm1p but has a weaker propensity to form oligomers. Finally, our data indicate that Mgm1p interacts specifically with negatively charged phospholipids found in mitochondrial membranes, and point mutations in the predicted lipid-binding domain abrogate these interactions. These findings suggest the presence of a putative lipid-binding domain, providing insight into how this protein mediates inner membrane fusion. Together, these data indicate that Mgm1p mediates fusion through oligomerization, GTP hydrolysis, and lipid binding in a manner similar to those of other dynamin mechanoenzymes.


Asunto(s)
Dinaminas/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/metabolismo , Fusión de Membrana , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Cromatografía en Gel , Ditiotreitol/farmacología , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/aislamiento & purificación , Hidrólisis/efectos de los fármacos , Cinética , Metabolismo de los Lípidos/efectos de los fármacos , Fusión de Membrana/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/aislamiento & purificación , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Cloruro de Sodio/farmacología
17.
Curr Biol ; 16(10): 982-9, 2006 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-16713954

RESUMEN

In addition to being energy generators, mitochondria control many cellular processes including apoptosis. They are dynamic organelles, and the machinery of membrane fusion and fission is emerging as a key regulator of mitochondrial biology. We have recently identified a novel and conserved mitochondrial rhomboid intramembrane protease that controls membrane fusion in Saccharomyces cerevisiae by processing the dynamin-like GTPase, Mgm1, thereby releasing it from the membrane. The genetics of mitochondrial membrane dynamics has until now focused primarily on yeast. Here we show that in Drosophila, the mitochondrial rhomboid (Rhomboid-7) is required for mitochondrial fusion during fly spermatogenesis and muscle maturation, both tissues with unusual mitochondrial dynamics. We also find that mutations in Drosophila optic atrophy 1-like (Opa1-like), the ortholog of yeast mgm1, display similar phenotypes, suggesting a shared role for Rhomboid-7 and Opa1-like, as with their yeast orthologs. Loss of human OPA1 leads to dominant optic atrophy, a mitochondrial disease leading to childhood onset blindness. rhomboid-7 mutant flies have severe neurological defects, evidenced by compromised signaling across the first visual synapse, as well as light-induced neurodegeneration of photoreceptors that resembles the human disease. rhomboid-7 mutant flies also have a greatly reduced lifespan.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/fisiología , Mitocondrias/fisiología , Proteínas Mitocondriales/fisiología , Enfermedades del Sistema Nervioso/genética , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Humanos , Longevidad/genética , Longevidad/fisiología , Fusión de Membrana/fisiología , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Desarrollo de Músculos/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Eliminación de Secuencia , Espermatogénesis/fisiología
18.
Mol Cell Oncol ; 6(3): 1600350, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31131315

RESUMEN

In our recent publication, we describe a mechanism by which peroxisomes are protected from degradation by autophagy under basal conditions. Taking a page from mitophagy, peroxisomes also recruit the mitochondria deubiquitinating enzyme USP30 to counter the action of PEX2, the peroxisomal E3 ubiquitin ligase to regulate pexophagy.

19.
J Cell Biol ; 218(3): 798-807, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30700497

RESUMEN

The regulation of organelle abundance is critical for cell function and survival; however, the mechanisms responsible are not fully understood. In this study, we characterize a role of the deubiquitinating enzyme USP30 in peroxisome maintenance. Peroxisomes are highly dynamic, changing in abundance in response to metabolic stress. In our recent study identifying the role of USP30 in mitophagy, we observed USP30 to be localized to punctate structures resembling peroxisomes. We report here that USP30, best known as a mitophagy regulator, is also necessary for regulating pexophagy, the selective autophagic degradation of peroxisomes. We find that overexpressing USP30 prevents pexophagy during amino acid starvation, and its depletion results in pexophagy induction under basal conditions. We demonstrate that USP30 prevents pexophagy by counteracting the action of the peroxisomal E3 ubiquitin ligase PEX2. Finally, we show that USP30 can rescue the peroxisome loss observed in some disease-causing peroxisome mutations, pointing to a potential therapeutic target.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Mitofagia , Peroxisomas/metabolismo , Estrés Fisiológico , Tioléster Hidrolasas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Ratones , Proteínas Mitocondriales/genética , Mutación , Factor 2 de la Biogénesis del Peroxisoma/genética , Factor 2 de la Biogénesis del Peroxisoma/metabolismo , Peroxisomas/genética , Tioléster Hidrolasas/genética
20.
Nat Neurosci ; 6(10): 1064-71, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14502291

RESUMEN

The mechanisms of neurodegeneration that result in human immunodeficiency virus (HIV) type 1 dementia have not yet been identified. Here, we report that HIV-infected macrophages secrete the zymogen matrix metalloproteinase-2 (MMP-2), which is activated by exposure to MT1-MMP on neurons. Stromal cell-derived factor 1 alpha (SDF-1), a chemokine overexpressed by astrocytes during HIV infection, was converted to a highly neurotoxic protein after precise proteolytic processing by active MMP-2, which removed the N-terminal tetrapeptide. Implantation of cleaved SDF-1(5-67) into the basal ganglia of mice resulted in neuronal death and inflammation with ensuing neurobehavioral deficits that were abrogated by neutralizing antibodies to SDF-1 and an MMP inhibitor drug. Hence, this study identifies a new in vivo neurotoxic pathway in which cleavage of a chemokine by an induced metalloproteinase results in neuronal apoptosis that leads to neurodegeneration.


Asunto(s)
Complejo SIDA Demencia/enzimología , Quimiocinas CXC/toxicidad , Metaloproteinasa 2 de la Matriz/metabolismo , Degeneración Nerviosa/enzimología , Neurotoxinas/toxicidad , Complejo SIDA Demencia/etiología , Complejo SIDA Demencia/fisiopatología , Animales , Anticuerpos/farmacología , Astrocitos/metabolismo , Línea Celular , Quimiocina CXCL12 , Quimiocinas CXC/antagonistas & inhibidores , Quimiocinas CXC/metabolismo , Modelos Animales de Enfermedad , Encefalitis/inducido químicamente , Encefalitis/enzimología , Encefalitis/fisiopatología , Inhibidores Enzimáticos/farmacología , VIH-1/metabolismo , VIH-1/patogenicidad , Humanos , Macrófagos/enzimología , Macrófagos/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz , Ratones , Neostriado/efectos de los fármacos , Neostriado/patología , Neostriado/fisiopatología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/virología , Neurotoxinas/metabolismo , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA