Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
2.
Cell ; 184(26): 6217-6221, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34942095

RESUMEN

Virtual interviewing has become ubiquitous with the academic job market. Here, we highlight the best practices for candidates and departments to consider when using virtual interviewing. We propose how virtual interviews can be leveraged and adapted for hybrid academic job searches combining virtual and in-person activities in a post-pandemic world.


Asunto(s)
Empleo , Entrevistas como Asunto , Universidades , COVID-19/epidemiología , Selección de Profesión , Docentes , Humanos
3.
Cell ; 183(3): 568-575, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33125882

RESUMEN

We identify problematic areas throughout the Science, Technology, Engineering and Mathematics (STEM) pipeline that perpetuate racial disparities in academia. Distinct ways to curtail these disparities include early exposure and access to resources, supportive mentoring networks and comprehensive training programs specifically for racially minoritized students and trainees at each career stage. These actions will revitalize the STEM pipeline.


Asunto(s)
Ingeniería/educación , Matemática/educación , Ciencia/educación , Tecnología/educación , Educación de Postgrado , Humanos , Universidades
4.
Trends Biochem Sci ; 49(4): 346-360, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402097

RESUMEN

Mitochondrial structure often determines the function of these highly dynamic, multifunctional, eukaryotic organelles, which are essential for maintaining cellular health. The dynamic nature of mitochondria is apparent in descriptions of different mitochondrial shapes [e.g., donuts, megamitochondria (MGs), and nanotunnels] and crista dynamics. This review explores the significance of dynamic alterations in mitochondrial morphology and regulators of mitochondrial and cristae shape. We focus on studies across tissue types and also describe new microscopy techniques for detecting mitochondrial morphologies both in vivo and in vitro that can improve understanding of mitochondrial structure. We highlight the potential therapeutic benefits of regulating mitochondrial morphology and discuss prospective avenues to restore mitochondrial bioenergetics to manage diseases related to mitochondrial dysfunction.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Estudios Prospectivos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Metabolismo Energético
5.
Nature ; 590(7844): 122-128, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33473210

RESUMEN

Ageing is characterized by the development of persistent pro-inflammatory responses that contribute to atherosclerosis, metabolic syndrome, cancer and frailty1-3. The ageing brain is also vulnerable to inflammation, as demonstrated by the high prevalence of age-associated cognitive decline and Alzheimer's disease4-6. Systemically, circulating pro-inflammatory factors can promote cognitive decline7,8, and in the brain, microglia lose the ability to clear misfolded proteins that are associated with neurodegeneration9,10. However, the underlying mechanisms that initiate and sustain maladaptive inflammation with ageing are not well defined. Here we show that in ageing mice myeloid cell bioenergetics are suppressed in response to increased signalling by the lipid messenger prostaglandin E2 (PGE2), a major modulator of inflammation11. In ageing macrophages and microglia, PGE2 signalling through its EP2 receptor promotes the sequestration of glucose into glycogen, reducing glucose flux and mitochondrial respiration. This energy-deficient state, which drives maladaptive pro-inflammatory responses, is further augmented by a dependence of aged myeloid cells on glucose as a principal fuel source. In aged mice, inhibition of myeloid EP2 signalling rejuvenates cellular bioenergetics, systemic and brain inflammatory states, hippocampal synaptic plasticity and spatial memory. Moreover, blockade of peripheral myeloid EP2 signalling is sufficient to restore cognition in aged mice. Our study suggests that cognitive ageing is not a static or irrevocable condition but can be reversed by reprogramming myeloid glucose metabolism to restore youthful immune functions.


Asunto(s)
Envejecimiento/metabolismo , Disfunción Cognitiva/prevención & control , Células Mieloides/metabolismo , Adulto , Anciano , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Respiración de la Célula , Células Cultivadas , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/genética , Dinoprostona/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Glucógeno/biosíntesis , Glucógeno/metabolismo , Humanos , Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/metabolismo , Mitocondrias/metabolismo , Células Mieloides/inmunología , Subtipo EP2 de Receptores de Prostaglandina E/antagonistas & inhibidores , Subtipo EP2 de Receptores de Prostaglandina E/deficiencia , Subtipo EP2 de Receptores de Prostaglandina E/genética , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal/efectos de los fármacos , Memoria Espacial/efectos de los fármacos
6.
Nature ; 588(7836): 174-179, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32906142

RESUMEN

Mitochondria require nicotinamide adenine dinucleotide (NAD+) to carry out the fundamental processes that fuel respiration and mediate cellular energy transduction. Mitochondrial NAD+ transporters have been identified in yeast and plants1,2, but their existence in mammals remains controversial3-5. Here we demonstrate that mammalian mitochondria can take up intact NAD+, and identify SLC25A51 (also known as MCART1)-an essential6,7 mitochondrial protein of previously unknown function-as a mammalian mitochondrial NAD+ transporter. Loss of SLC25A51 decreases mitochondrial-but not whole-cell-NAD+ content, impairs mitochondrial respiration, and blocks the uptake of NAD+ into isolated mitochondria. Conversely, overexpression of SLC25A51 or SLC25A52 (a nearly identical paralogue of SLC25A51) increases mitochondrial NAD+ levels and restores NAD+ uptake into yeast mitochondria lacking endogenous NAD+ transporters. Together, these findings identify SLC25A51 as a mammalian transporter capable of importing NAD+ into mitochondria.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , NAD/metabolismo , Animales , Transporte Biológico , Línea Celular , Respiración de la Célula/genética , Prueba de Complementación Genética , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Catión Orgánico/deficiencia , Proteínas de Transporte de Catión Orgánico/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Trends Biochem Sci ; 46(5): 345-348, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33622580

RESUMEN

Scientific success is mainly supported by mentoring, which often occurs through face-to-face interactions. Changes to the research environment incurred by the Coronavirus 2019 (COVID-19) pandemic have necessitated mentorship adaptations. Here, we describe how mentors can broaden their mentorship to support trainee growth and provide reassurance about trainee development amid uncertain circumstances.


Asunto(s)
COVID-19/epidemiología , Tutoría , Pandemias , Investigadores/educación , SARS-CoV-2 , Humanos
8.
Nat Methods ; 19(2): 223-230, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35132243

RESUMEN

Isotope tracing has helped to determine the metabolic activities of organs. Methods to probe metabolic heterogeneity within organs are less developed. We couple stable-isotope-labeled nutrient infusion to matrix-assisted laser desorption ionization imaging mass spectrometry (iso-imaging) to quantitate metabolic activity in mammalian tissues in a spatially resolved manner. In the kidney, we visualize gluconeogenic flux and glycolytic flux in the cortex and medulla, respectively. Tricarboxylic acid cycle substrate usage differs across kidney regions; glutamine and citrate are used preferentially in the cortex and fatty acids are used in the medulla. In the brain, we observe spatial gradations in carbon inputs to the tricarboxylic acid cycle and glutamate under a ketogenic diet. In a carbohydrate-rich diet, glucose predominates throughout but in a ketogenic diet, 3-hydroxybutyrate contributes most strongly in the hippocampus and least in the midbrain. Brain nitrogen sources also vary spatially; branched-chain amino acids contribute most in the midbrain, whereas ammonia contributes in the thalamus. Thus, iso-imaging can reveal the spatial organization of metabolic activity.


Asunto(s)
Encéfalo/metabolismo , Isótopos de Carbono/farmacocinética , Riñón/metabolismo , Isótopos de Nitrógeno/farmacocinética , Animales , Dieta , Enzimas , Gluconeogénesis , Ácido Glutámico/biosíntesis , Glucólisis , Masculino , Ratones Endogámicos C57BL , Imagen Molecular , Análisis de la Célula Individual , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Ácidos Tricarboxílicos/metabolismo , Flujo de Trabajo
9.
J Cell Physiol ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226956

RESUMEN

A first-generation college student is typically defined as a student whose biological parent(s) or guardian(s) never attended college or who started but did not finish college. However, "first-generation" can represent diverse family education situations. The first-generation student community is a multifaceted, and intersectional group of individuals who frequently lack educational/financial resources to succeed and, consequently, require supportive environments with rigorous mentorship. However, first-generation students often do not make their identity as first-generation students known to others due to several psychosocial and academic factors. Therefore, they are often "invisible minorities" in higher education. In this paper, we describe the diverse family situations of first-generation students, further define "first-generation," and suggest five actions that first-generation trainees at the undergraduate/graduate stages can engage in to succeed in an academic climate. We also provide suggestions for mentors to accommodate first-generation students' unique experiences and equip them with tools to deliver intentional mentoring practices. We hope that this paper will help promote first-generation student success throughout the academic pipeline.

10.
J Cell Physiol ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462753

RESUMEN

While some established undergraduate summer programs are effective across many institutions, these programs may only be available to some principal investigators or may not fully address the diverse needs of incoming undergraduates. This article outlines a 10-week science, technology, engineering, mathematics, and medicine (STEMM) education program designed to prepare undergraduate students for graduate school through a unique model incorporating mentoring dyads and triads, cultural exchanges, and diverse activities while emphasizing critical thinking, research skills, and cultural sensitivity. Specifically, we offer a straightforward and adaptable guide that we have used for mentoring undergraduate students in a laboratory focused on mitochondria and microscopy, but which may be customized for other disciplines. Key components include self-guided projects, journal clubs, various weekly activities such as mindfulness training and laboratory techniques, and a focus on individual and cultural expression. Beyond this unique format, this 10-week program also seeks to offer an intensive research program that emulates graduate-level experiences, offering an immersive environment for personal and professional development, which has led to numerous achievements for past students, including publications and award-winning posters.

11.
J Cell Physiol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770789

RESUMEN

The sorting and assembly machinery (SAM) Complex is responsible for assembling ß-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.

12.
Am J Physiol Heart Circ Physiol ; 326(3): H786-H796, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38276949

RESUMEN

Diversity, equity, inclusion, and accessibility (DEIA) efforts are increasingly recognized as critical for the success of academic institutions. These efforts are facilitated mainly through the formation of dedicated DEIA committees. DEIA committees enhance professional development and create a more inclusive environment, which benefits all members of the institution. Although leadership and faculty membership have recognized the importance and necessity of DEIA, the roles of DEIA committees may be more ambiguous. Although leadership and faculty may seek to support DEIA at their institutions, they may not always fully understand the necessity of these committees or how to successfully create a committee, foster and promote its success, and sustain its impact. Thus, here, we offer a background rationale and guide for strategically setting up DEIA committees for success and impact within an academic institution with applicability to scientific societies.


Asunto(s)
Diversidad, Equidad e Inclusión , Liderazgo
13.
Nat Methods ; 18(11): 1377-1385, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34711973

RESUMEN

Liquid chromatography-high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain unidentified. Here we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times and (when available) tandem mass spectrometry fragmentation patterns. Peaks are connected based on mass differences reflecting adduction, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically informative peak-peak relationships, including for peaks lacking tandem mass spectrometry spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery.


Asunto(s)
Algoritmos , Curaduría de Datos/normas , Hígado/metabolismo , Metaboloma , Metabolómica/normas , Saccharomyces cerevisiae/metabolismo , Animales , Cromatografía Liquida/métodos , Curaduría de Datos/métodos , Metabolómica/métodos , Ratones , Espectrometría de Masas en Tándem/métodos
14.
Mol Genet Metab ; 140(3): 107686, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37607437

RESUMEN

Inborn errors of purine metabolism are rare syndromes with an array of complex phenotypes in humans. One such disorder, adenylosuccinate lyase deficiency (ASLD), is caused by a decrease in the activity of the bi-functional purine biosynthetic enzyme adenylosuccinate lyase (ADSL). Mutations in human ADSL cause epilepsy, muscle ataxia, and autistic-like symptoms. Although the genetic basis of ASLD is known, the molecular mechanisms driving phenotypic outcome are not. Here, we characterize neuromuscular and reproductive phenotypes associated with a deficiency of adsl-1 in Caenorhabditis elegans. We demonstrate that adsl-1 function contributes to regulation of spontaneous locomotion, that adsl-1 functions acutely for proper mobility, and that aspects of adsl-1-related dysfunction are reversible. Using pharmacological supplementation, we correlate phenotypes with distinct metabolic perturbations. The neuromuscular defect correlates with accumulation of a purine biosynthetic intermediate whereas reproductive deficiencies can be ameliorated by purine supplementation, indicating differing molecular mechanisms behind the phenotypes. Because purine metabolism is highly conserved in metazoans, we suggest that similar separable metabolic perturbations result in the varied symptoms in the human disorder and that a dual-approach therapeutic strategy may be beneficial.


Asunto(s)
Adenilosuccinato Liasa , Trastorno Autístico , Errores Innatos del Metabolismo de la Purina-Pirimidina , Animales , Humanos , Trastorno Autístico/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenilosuccinato Liasa/genética , Adenilosuccinato Liasa/metabolismo , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/diagnóstico , Fenotipo , Purinas
16.
EMBO Rep ; 21(7): e50918, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32596868

RESUMEN

Many students and early-career scientists too often agree to new tasks and chores and end up overworked. Learning how and when to say "no" is therefore an important part of career development.


Asunto(s)
Selección de Profesión , Estudiantes , Humanos , Aprendizaje
17.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35162994

RESUMEN

Experimental evolution with Drosophila melanogaster has been used extensively for decades to study aging and longevity. In recent years, the addition of DNA and RNA sequencing to this framework has allowed researchers to leverage the statistical power inherent to experimental evolution to study the genetic basis of longevity itself. Here, we incorporated metabolomic data into to this framework to generate even deeper insights into the physiological and genetic mechanisms underlying longevity differences in three groups of experimentally evolved D. melanogaster populations with different aging and longevity patterns. Our metabolomic analysis found that aging alters mitochondrial metabolism through increased consumption of NAD+ and increased usage of the TCA cycle. Combining our genomic and metabolomic data produced a list of biologically relevant candidate genes. Among these candidates, we found significant enrichment for genes and pathways associated with neurological development and function, and carbohydrate metabolism. While we do not explicitly find enrichment for aging canonical genes, neurological dysregulation and carbohydrate metabolism are both known to be associated with accelerated aging and reduced longevity. Taken together, our results provide plausible genetic mechanisms for what might be driving longevity differences in this experimental system. More broadly, our findings demonstrate the value of combining multiple types of omic data with experimental evolution when attempting to dissect mechanisms underlying complex and highly polygenic traits such as aging.


Asunto(s)
Envejecimiento/genética , Drosophila melanogaster/fisiología , Genómica/métodos , Metabolómica/métodos , Envejecimiento/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Ciclo del Ácido Cítrico , Evolución Molecular Dirigida , Drosophila melanogaster/genética , Longevidad , Mitocondrias/metabolismo , Herencia Multifactorial , NAD/metabolismo , Polimorfismo de Nucleótido Simple
18.
Anal Chem ; 92(17): 11573-11581, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32614575

RESUMEN

Annotation of untargeted high-resolution full-scan LC-MS metabolomics data remains challenging due to individual metabolites generating multiple LC-MS peaks arising from isotopes, adducts, and fragments. Adduct annotation is a particular challenge, as the same mass difference between peaks can arise from adduct formation, fragmentation, or different biological species. To address this, here we describe a buffer modification workflow (BMW) in which the same sample is run by LC-MS in both liquid chromatography solvent with 14NH3-acetate buffer and in solvent with the buffer modified with 15NH3-formate. Buffer switching results in characteristic mass and signal intensity changes for adduct peaks, facilitating their annotation. This relatively simple and convenient chromatography modification annotated yeast metabolomics data with similar effectiveness to growing the yeast in isotope-labeled media. Application to mouse liver data annotated both known metabolite and known adduct peaks with 95% accuracy. Overall, it identified 26% of ∼27 000 liver LC-MS features as putative metabolites, of which ∼2600 showed HMDB or KEGG database formula match. This workflow is well suited to biological samples that cannot be readily isotope labeled, including plants, mammalian tissues, and tumors.


Asunto(s)
Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Acetatos/química , Aminas/química , Animales , Tampones (Química) , Cromatografía Liquida , Bases de Datos Factuales , Femenino , Formiatos/química , Marcaje Isotópico , Hígado/metabolismo , Extractos Hepáticos/química , Ratones Endogámicos C57BL , Saccharomyces cerevisiae/metabolismo , Solventes/química
19.
Nat Chem Biol ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884808
20.
J Biol Chem ; 292(27): 11147-11153, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28559281

RESUMEN

NAD+ biosynthesis is an attractive and promising therapeutic target for influencing health span and obesity-related phenotypes as well as tumor growth. Full and effective use of this target for therapeutic benefit requires a complete understanding of NAD+ biosynthetic pathways. Here, we report a previously unrecognized role for a conserved phosphoribosyltransferase in NAD+ biosynthesis. Because a required quinolinic acid phosphoribosyltransferase (QPRTase) is not encoded in its genome, Caenorhabditis elegans are reported to lack a de novo NAD+ biosynthetic pathway. However, all the genes of the kynurenine pathway required for quinolinic acid (QA) production from tryptophan are present. Thus, we investigated the presence of de novo NAD+ biosynthesis in this organism. By combining isotope-tracing and genetic experiments, we have demonstrated the presence of an intact de novo biosynthesis pathway for NAD+ from tryptophan via QA, highlighting the functional conservation of this important biosynthetic activity. Supplementation with kynurenine pathway intermediates also boosted NAD+ levels and partially reversed NAD+-dependent phenotypes caused by mutation of pnc-1, which encodes a nicotinamidase required for NAD+ salvage biosynthesis, demonstrating contribution of de novo synthesis to NAD+ homeostasis. By investigating candidate phosphoribosyltransferase genes in the genome, we determined that the conserved uridine monophosphate phosphoribosyltransferase (UMPS), which acts in pyrimidine biosynthesis, is required for NAD+ biosynthesis in place of the missing QPRTase. We suggest that similar underground metabolic activity of UMPS may function in other organisms. This mechanism for NAD+ biosynthesis creates novel possibilities for manipulating NAD+ biosynthetic pathways, which is key for the future of therapeutics.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Complejos Multienzimáticos , NAD , Orotato Fosforribosiltransferasa , Orotidina-5'-Fosfato Descarboxilasa , Ácido Quinolínico/metabolismo , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutación , NAD/biosíntesis , NAD/genética , Orotato Fosforribosiltransferasa/genética , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/genética , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Triptófano/genética , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA