Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38279302

RESUMEN

Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), also known as Parkinson's disease protein 5, is a highly expressed protein in the brain. It plays an important role in the ubiquitin-proteasome system (UPS), where it acts as a deubiquitinase (DUB) enzyme. Being the smallest member of the UCH family of DUBs, it catalyzes the reaction of ubiquitin precursor processing and the cleavage of ubiquitinated protein remnants, thus maintaining the level of ubiquitin monomers in the brain cells. UCHL1 mutants, containing amino acid substitutions, influence catalytic activity and its aggregability. Some of them protect cells and transgenic mice in toxin-induced Parkinson's disease (PD) models. Studies of putative protein partners of UCHL1 revealed about sixty individual proteins located in all major compartments of the cell: nucleus, cytoplasm, endoplasmic reticulum, plasma membrane, mitochondria, and peroxisomes. These include proteins related to the development of PD, such as alpha-synuclein, amyloid-beta precursor protein, ubiquitin-protein ligase parkin, and heat shock proteins. In the context of the catalytic paradigm, the importance of these interactions is not clear. However, there is increasing understanding that UCHL1 exhibits various effects in a catalytically independent manner through protein-protein interactions. Since this protein represents up to 5% of the soluble protein in the brain, PD-related changes in its structure will have profound effects on the proteomes/interactomes in which it is involved. Growing evidence is accumulating that the role of UCHL1 in PD is obviously determined by a balance of canonic catalytic activity and numerous activity-independent protein-protein interactions, which still need better characterization.


Asunto(s)
Enfermedad de Parkinson , Animales , Ratones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinas/metabolismo
2.
Biochemistry (Mosc) ; 88(3): 319-336, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37076280

RESUMEN

Proteasomes are highly conserved multienzyme complexes responsible for proteolytic degradation of the short-lived, regulatory, misfolded, and damaged proteins. They play an important role in the processes of brain plasticity, and decrease in their function is accompanied by the development of neurodegenerative pathology. Studies performed in different laboratories both on cultured mammalian and human cells and on preparations of the rat and rabbit brain cortex revealed a large number of proteasome-associated proteins. Since the identified proteins belong to certain metabolic pathways, multiple enrichment of the proteasome fraction with these proteins indicates their important role in proteasome functioning. Extrapolation of the experimental data, obtained on various biological objects, to the human brain suggests that the proteasome-associated proteins account for at least 28% of the human brain proteome. The proteasome interactome of the brain contains a large number of proteins involved in the assembly of these supramolecular complexes, regulation of their functioning, and intracellular localization, which could be changed under different conditions (for example, during oxidative stress) or in different phases of the cell cycle. In the context of molecular functions of the Gene Ontology (GO) Pathways, the proteins of the proteasome interactome mediate cross-talk between components of more than 30 metabolic pathways annotated in terms of GO. The main result of these interactions is binding of adenine and guanine nucleotides, crucial for realization of the nucleotide-dependent functions of the 26S and 20S proteasomes. Since the development of neurodegenerative pathology is often associated with regioselective decrease in the functional activity of proteasomes, a positive therapeutic effect would be obviously provided by the factors increasing proteasomal activity. In any case, pharmacological regulation of the brain proteasomes seems to be realized through the changes in composition and/or activity of the proteins associated with proteasomes (deubiquitinase, PKA, CaMKIIα, etc.).


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteoma , Animales , Ratas , Humanos , Conejos , Complejo de la Endopetidasa Proteasomal/metabolismo , Citoplasma/metabolismo , Proteolisis , Proteoma/metabolismo , Mamíferos/metabolismo , Plasticidad Neuronal
3.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108803

RESUMEN

Affinity-based proteomic profiling is widely used for the identification of proteins involved in the formation of various interactomes. Since protein-protein interactions (PPIs) reflect the role of particular proteins in the cell, identification of interaction partners for a protein of interest can reveal its function. The latter is especially important for the characterization of multifunctional proteins, which can play different roles in the cell. Pyruvate kinase (PK), a classical glycolytic enzyme catalyzing the last step of glycolysis, exists in four isoforms: PKM1, PKM2, PKL, and PKR. The enzyme isoform expressed in actively dividing cells, PKM2, exhibits many moonlighting (noncanonical) functions. In contrast to PKM2, PKM1, predominantly expressed in adult differentiated tissues, lacks well-documented moonlighting functions. However, certain evidence exists that it can also perform some functions unrelated to glycolysis. In order to evaluate protein partners, bound to PKM1, in this study we have combined affinity-based separation of mouse brain proteins with mass spectrometry identification. The highly purified PKM1 and a 32-mer synthetic peptide (PK peptide), sharing high sequence homology with the interface contact region of all PK isoforms, were used as the affinity ligands. This proteomic profiling resulted in the identification of specific and common proteins bound to both affinity ligands. Quantitative affinity binding to the affinity ligands of selected identified proteins was validated using a surface plasmon resonance (SPR) biosensor. Bioinformatic analysis has shown that the identified proteins, bound to both full-length PKM1 and the PK peptide, form a protein network (interactome). Some of these interactions are relevant for the moonlighting functions of PKM1. The proteomic dataset is available via ProteomeXchange with the identifier PXD041321.


Asunto(s)
Proteínas Portadoras , Piruvato Quinasa , Animales , Ratones , Piruvato Quinasa/metabolismo , Proteínas Portadoras/metabolismo , Ligandos , Proteómica , Isoformas de Proteínas/metabolismo , Glucólisis , Encéfalo/metabolismo
4.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409068

RESUMEN

Ubiquitination (the covalent attachment of ubiquitin molecules to target proteins) is one of the main post-translational modifications of proteins. Historically, the type of polyubiquitination, which involves K48 lysine residues of the monomeric ubiquitin, was the first studied type of ubiquitination. It usually targets proteins for their subsequent proteasomal degradation. All the other types of ubiquitination, including monoubiquitination; multi-monoubiquitination; and polyubiquitination involving lysine residues K6, K11, K27, K29, K33, and K63 and N-terminal methionine, were defined as atypical ubiquitination (AU). Good evidence now exists that AUs, participating in the regulation of various cellular processes, are crucial for the development of Parkinson's disease (PD). These AUs target various proteins involved in PD pathogenesis. The K6-, K27-, K29-, and K33-linked polyubiquitination of alpha-synuclein, the main component of Lewy bodies, and DJ-1 (another PD-associated protein) is involved in the formation of insoluble aggregates. Multifunctional protein kinase LRRK2 essential for PD is subjected to K63- and K27-linked ubiquitination. Mitophagy mediated by the ubiquitin ligase parkin is accompanied by K63-linked autoubiquitination of parkin itself and monoubiquitination and polyubiquitination of mitochondrial proteins with the formation of both classical K48-linked ubiquitin chains and atypical K6-, K11-, K27-, and K63-linked polyubiquitin chains. The ubiquitin-specific proteases USP30, USP33, USP8, and USP15, removing predominantly K6-, K11-, and K63-linked ubiquitin conjugates, antagonize parkin-mediated mitophagy.


Asunto(s)
Enfermedad de Parkinson , Humanos , Lisina/metabolismo , Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson/metabolismo , Tioléster Hidrolasas/metabolismo , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
5.
Biochem Biophys Res Commun ; 577: 58-63, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34507066

RESUMEN

There is an urgent need for a malaria vaccine that can prevent severe disease in young children and adults. Despite earlier work showing an immunological mechanism for preventing infection and reducing disease severity, there is currently no reliable vaccine that can provide durable protection. In part, this may reflect a limited number of ways that the host can respond to the NANP repeat sequences of circumsporozoite protein (CSP) in the parasite. In addition, it may reflect antigenic escape by the parasite from protective antibodies. To be successful, a vaccine must protect against repeated exposure to infected mosquitoes in endemic areas. We have created a series of live viral vectors based on the rubella vaccine strain that express multiple tandem repeats of NANP, and we demonstrate immunogenicity in a rhesus macaque model. We tested the vectors in a sequential immunization strategy. In the first step, the animals were primed with CSP-DNA vaccine and boosted with rubella/CSP vectors. In the second step, we gave rubella/CSP vectors again, followed by recombinant CSP protein. Following the second step, antibody titers were comparable to adult exposure to malaria in an endemic area. The antibodies were specific for native CSP protein on sporozoites, and they persisted for at least 1½ years in two out of three macaques. Given the safety profile of rubella vaccine in children, these vectors could be most useful in protecting young children, who are at greatest risk of severe malarial disease.


Asunto(s)
Macaca mulatta/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Vacuna contra la Rubéola/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Técnica del Anticuerpo Fluorescente/métodos , Humanos , Inmunidad/inmunología , Inmunización/métodos , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Vacuna contra la Rubéola/genética , Vacuna contra la Rubéola/metabolismo , Factores de Tiempo , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología
6.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545384

RESUMEN

Isatin (indole-2,3-dione) is an endogenous regulator, exhibiting a wide range of biological and pharmacological activities. At doses of 100 mg/kg and above, isatin is neuroprotective in different experimental models of neurodegeneration. Good evidence exists that its effects are realized via interaction with numerous isatin-binding proteins identified in the brain and peripheral tissues studied. In this study, we investigated the effect of a single dose administration of isatin to mice (100 mg/kg, 24 h) on differentially expressed proteins and a profile of the isatin-binding proteins in brain hemispheres. Isatin administration to mice caused downregulation of 31 proteins. However, these changes cannot be attributed to altered expression of corresponding genes. Although at this time point isatin influenced the expression of more than 850 genes in brain hemispheres (including 433 upregulated and 418 downregulated genes), none of them could account for the changes in the differentially expressed proteins. Comparative proteomic analysis of brain isatin-binding proteins of control and isatin-treated mice revealed representative groups of proteins sensitive to isatin administration. Control-specific proteins (n = 55) represent specific targets that interact directly with isatin. Appearance of brain isatin-binding proteins specific to isatin-treated mice (n = 94) may be attributed to the formation of new clusters of protein-protein interactions and/or novel binding sites induced by a high concentration of this regulator (ligand-induced binding sites). Thus, isatin administration produces multiple effects in the brain, which include changes in gene expression and also profiles of isatin-binding proteins and their interactomes. Further studies are needed for deeper insight into the mechanisms of the multilevel changes in the brain proteome induced by isatin. In the context of the neuroprotective action, these changes may be aimed at interruption of pathological links that begin to form after initiation of pathological processes.


Asunto(s)
Encéfalo/efectos de los fármacos , Isatina/farmacología , Fármacos Neuroprotectores/farmacología , Proteínas/metabolismo , Animales , Sitios de Unión , Encéfalo/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Isatina/administración & dosificación , Isatina/metabolismo , Masculino , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/administración & dosificación , Proteínas/genética , Proteoma/genética , Proteoma/metabolismo
7.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066693

RESUMEN

Isatin (indole-2, 3-dione) is a non-peptide endogenous bioregulator exhibiting a wide spectrum of biological activity, realized in the cell via interactions with numerous isatin-binding proteins, their complexes, and (sub) interactomes. There is increasing evidence that isatin may be involved in the regulation of complex formations by modulating the affinity of the interacting protein partners. Recently, using Surface Plasmon Resonance (SPR) analysis, we have found that isatin in a concentration dependent manner increased interaction between two human mitochondrial proteins, ferrochelatase (FECH), and adrenodoxine reductase (ADR). In this study, we have investigated the affinity-enhancing effect of isatin on the FECH/ADR interaction. The SPR analysis has shown that FECH forms not only homodimers, but also FECH/ADR heterodimers. The affinity-enhancing effect of isatin on the FECH/ADR interaction was highly specific and was not reproduced by structural analogues of isatin. Bioinformatic analysis performed using three dimensional (3D) models of the interacting proteins and in silico molecular docking revealed the most probable mechanism involving FECH/isatin/ADR ternary complex formation. In this complex, isatin is targeted to the interface of interacting FECH and ADR monomers, forming hydrogen bonds with both FECH and ADR. This is a new regulatory mechanism by which isatin can modulate protein-protein interactions (PPI).


Asunto(s)
Ferredoxina-NADP Reductasa/química , Ferroquelatasa/química , Isatina/química , Ferredoxina-NADP Reductasa/metabolismo , Ferroquelatasa/metabolismo , Humanos , Isatina/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Resonancia por Plasmón de Superficie
8.
Sensors (Basel) ; 18(5)2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29783662

RESUMEN

We have developed an original experimental approach based on the use of surface plasmon resonance (SPR) biosensors, applicable for investigation of potential partners involved in protein⁻protein interactions (PPI) as well as protein⁻peptide or protein⁻small molecule interactions. It is based on combining a SPR biosensor, size exclusion chromatography (SEC), mass spectrometric identification of proteins (LC-MS/MS) and direct molecular fishing employing principles of affinity chromatography for isolation of potential partner proteins from the total lysate of biological samples using immobilized target proteins (or small non-peptide compounds) as ligands. Applicability of this approach has been demonstrated within the frame of the Human Proteome Project (HPP) and PPI regulation by a small non-peptide biologically active compound, isatin.


Asunto(s)
Técnicas Biosensibles , Mapas de Interacción de Proteínas , Proteínas/química , Resonancia por Plasmón de Superficie/métodos , Cromatografía en Gel , Proteínas Inmovilizadas/química , Ligandos , Espectrometría de Masas , Unión Proteica , Bibliotecas de Moléculas Pequeñas/química , Espectrometría de Masas en Tándem
9.
Arch Biochem Biophys ; 619: 10-15, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28238672

RESUMEN

Cytochromes P450 (CYPs) play an important role in the metabolism of xenobiotics and various endogenous substrates. Being a crucial component of the microsomal monooxygenase system, CYPs are involved in numerous protein-protein interactions. However, mechanisms underlying molecular interactions between components of the monooxygenase system still need better characterization. In this study thermodynamic parameters of paired interactions between mammalian CYPs and cytochromes b5 (CYB5) have been evaluated using a Surface Plasmon Resonance (SPR) based biosensor Biacore 3000. Analysis of 18 pairs of CYB5-CYP complexes formed by nine different isoforms of mammalian CYPs and two isoforms of human CYB5 has shown that thermodynamically these complexes can be subdivided into enthalpy-driven and entropy-driven groups. Formation of the enthalpy-driven complexes was observed in the case of microsomal CYPs allosterically regulated by CYB5 (CYB5A-CYP3A4, CYB5A-CYP3A5, CYB5A-CYP17A1). The entropy-driven complexes were formed when CYB5 had no effect on the CYP activity (CYB5A-CYP51A1, CYB5A-CYP1B1, CYB5B-CYP11A1). Results of this study suggest that such interactions determining protein clustering are indirectly linked to the monooxygenase functioning. Positive ΔH values typical for such interactions may be associated with displacement of the solvation shells of proteins upon clustering. CYB5-CYP complex formation accompanied by allosteric regulation of CYP activity by CYB5 is enthalpy-dependent.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Citocromos b5/química , Sitio Alostérico , Animales , Técnicas Biosensibles , Bovinos , Escherichia coli/metabolismo , Caballos , Humanos , Cinética , Unión Proteica , Mapeo de Interacción de Proteínas , Termodinámica , Xenobióticos/química
10.
Rapid Commun Mass Spectrom ; 30(11): 1283-94, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27173110

RESUMEN

RATIONALE: Studies of molecular biodegradation by mass spectrometry often require synthetic compounds labeled with stable isotopes as internal standards. However, labeling is very expensive especially when a large number of compounds are needed for analysis of biotransformation. Here we describe an approach for qualitative and quantitative analysis using bradykinin (BK) and its in vitro degradation metabolites as an example. Its novelty lies in the use of deuterated peptides which are obtained by a high-temperature solid-state exchange (HSCIE) reaction. METHODS: Deuterated and native BK were analyzed by positive electrospray ionization high-resolution mass spectrometry (ESI-HRMS) using an Orbitrap Fusion mass spectrometer. High-energy collision-induced dissociation (HCD) experiments were performed on [M+H](+) and [M+2H](2+) ions in targeted-MS(2) mode with adjusted normalized HCD value. RESULTS: After the HSCIE reaction, each amino acid residue of the deuterated peptide contained deuterium atoms and the average degree of substitution was 5.5 atoms per the peptide molecule. The deuterated peptide demonstrated the same chromatographic mobility as the unlabeled counterpart, and lack of racemization during substitution with deuterium. Deuterium-labeled and unlabeled BKs were incubated with human plasma and their corresponding fragments BK(1-5) and BK(1-7), well known as the major metabolites, were detected. CONCLUSIONS: Quantitative assays demonstrated applicability of the heavy peptide for both sequencing and quantification of generated fragments. Applicability of the HSCIE deuterated peptide for analysis of routes of its degradation has been shown in in vitro experiments. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Bradiquinina/sangre , Bradiquinina/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Biotransformación , Bradiquinina/análisis , Línea Celular , Deuterio/análisis , Deuterio/sangre , Deuterio/metabolismo , Medición de Intercambio de Deuterio/métodos , Calor , Humanos
11.
Kidney Blood Press Res ; 41(5): 593-603, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27577995

RESUMEN

BACKGROUND/AIMS: Renalase is a recently discovered flavoprotein involved in regulation of blood pressure. Altered renalase levels have been found in blood of patients with end stage renal disease. The antihypertensive effect of circulating renalase is attributed to putative FAD-dependent monoamine oxidase activity demonstrated by some authors. Being synthesized as an intracellular flavoprotein renalase requires the presence of its N-terminal peptide for FAD accommodation. However, conventional routes of export of secretory proteins outside the cell usually include cleavage of their N-terminal peptide. The aim of this study was to investigate whether renalase is secreted by НЕK293T cells as a full length protein (via proposed nonconventional pathway) or its export is accompanied by the loss of its N-terminal peptide. METHODS: We have expressed human recombinant renalase-1 in human kidney НЕK293T cells and analyzed this protein inside the cells and in the extracellular medium for the presence of the N-terminal peptide by using high resolution targeted MS/MS. RESULTS: Intracellular renalase contained clearly detectable N-terminal peptide, which was absent in extracellular renalase. CONCLUSIONS: Lack of the N-terminal peptide, the structural precondition for FAD binding, suggests that extracellular (circulating) renalase acts in a FAD-independent manner and mechanisms of its action are not associated with FAD.


Asunto(s)
Monoaminooxidasa/metabolismo , Fragmentos de Péptidos/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Expresión Génica , Técnicas de Transferencia de Gen , Células HEK293 , Humanos , Monoaminooxidasa/genética
12.
J Gen Virol ; 96(9): 2928-2937, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26296571

RESUMEN

Specific sequence changes in codons 70 and 91 of the hepatitis C virus genotype 1b (HCV GT1b) core gene have been associated with increased risk of hepatocellular carcinoma (HCC). Essentially all previous studies were conducted in Asian populations with a wide range of liver disease, and none were conducted specifically in GT1a-infected individuals. We conducted a pilot study in a multiethnic population in the USA with HCV-related cirrhosis to determine if this association extended to GT1a-infected individuals and to determine if other sequence changes in the HCV core gene were associated with HCC risk. HCV core gene sequences from sera of 90 GT1 HCV carriers with cirrhosis (42 with HCC) were analysed using standard RT-PCR-based procedures. Nucleotide sequence data were compared with reference sequences available from GenBank. The frequency of sequence changes in codon 91 was not statistically different between HCC (7/19) and non-HCC (11/22) GT1b carriers. In GT1a carriers, sequence changes in codon 91 were observed less often than in GT1b carriers but were not observed in non-HCC subjects (4/23 vs 0/26, P = 0.03, Fisher's exact test). Sequence changes in codon 70 were not distributed differently between HCC and non-HCC GT1a and 1b carriers. Most importantly, for GT1a carriers, a panel of specific nucleotide changes in other codons was collectively present in all subjects with HCC, but not in any of the non-HCC patients. The utility of this test panel for early detection of HCC in GT1a-infected individuals needs to be assessed in larger populations, including longitudinal studies.


Asunto(s)
Carcinoma Hepatocelular/virología , Hepacivirus/genética , Antígenos del Núcleo de la Hepatitis B/genética , Hepatitis C Crónica/virología , Neoplasias Hepáticas/virología , Adulto , Anciano , Secuencia de Bases , Codón , Femenino , Genotipo , Hepacivirus/clasificación , Hepacivirus/aislamiento & purificación , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutación , Factores de Riesgo
13.
J Virol ; 88(18): 10738-47, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24991013

RESUMEN

UNLABELLED: Noroviruses (NoV) are members of the family Caliciviridae. The human NoV open reading frame 1 (ORF1) encodes a 200-kDa polyprotein which is cleaved by the viral 20-kDa 3C-like protease (Pro, NS6) into 6 nonstructural proteins that are necessary for viral replication. The NoV ORF1 polyprotein is processed in a specific order, with "early" sites (NS1/2-3 and NS3-4) being cleaved rapidly and three "late" sites (NS4-5, NS5-6, and NS6-7) processed subsequently and less efficiently. Previously, we demonstrated that the NoV polyprotein processing order is directly correlated with the efficiency of the enzyme, which is regulated by the primary amino acid sequences surrounding ORF1 cleavage sites. Using fluorescence resonance energy transfer (FRET) peptides representing the NS2-3 and NS6-7 ORF1 cleavage sites, we now demonstrate that the amino acids spanning positions P4 to P2' (P4-P2') surrounding each site comprise the core sequence controlling NoV protease enzyme efficiency. Furthermore, the NoV polyprotein self-processing order can be altered by interchanging this core sequence between NS2-3 and any of the three late sites in in vitro transcription-translation assays. We also demonstrate that the nature of the side chain at the P3 position for the NS1/2-3 (Nterm/NTPase) site confers significant influence on enzyme catalysis (kcat and kcat/Km), a feature overlooked in previous structural studies. Molecular modeling provides possible explanations for the P3 interactions with NoV protease. IMPORTANCE: Noroviruses (NoV) are the prevailing cause of nonbacterial acute gastroenteritis worldwide and pose a significant financial burden on health care systems. Proteolytic processing of the viral nonstructural polyprotein is required for norovirus replication. Previously, the core sequence of amino acids surrounding the scissile bonds responsible for governing the relative processing order had not been determined. Using both FRET-based peptides and full-length NoV polyprotein, we have successfully demonstrated that the core sequences spanning positions P4-P2' surrounding the NS2-3, NS4-5, NS5-6, and NS6-7 cleavage sites contain all of the structural information necessary to control processing order. We also provide insight into a previously overlooked role for the NS2-3 P3 residue in enzyme efficiency. This article builds upon our previous studies on NoV protease enzymatic activities and polyprotein processing order. Our work provides significant additional insight into understanding viral polyprotein processing and has important implications for improving the design of inhibitors targeting the NoV protease.


Asunto(s)
Infecciones por Caliciviridae/virología , Norovirus/metabolismo , Virus Norwalk/metabolismo , Poliproteínas/química , Poliproteínas/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Secuencias de Aminoácidos , Humanos , Norovirus/química , Norovirus/genética , Virus Norwalk/química , Virus Norwalk/genética , Sistemas de Lectura Abierta , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Poliproteínas/genética , Procesamiento Proteico-Postraduccional , Proteínas no Estructurales Virales/genética
14.
Proteomics ; 14(20): 2261-74, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25044858

RESUMEN

There is increasing evidence that proteins function in the cell as integrated stable or temporally formed protein complexes, interactomes. Previously, using model systems we demonstrated applicability of direct molecular fishing on paramagnetic particles for protein interactomics (Ershov et al. Proteomics, 2012, 12, 3295). In the present study, we have used a combination of affinity-based molecular fishing and subsequent MS for investigation of human liver proteins involved in interactions with immobilized microsomal cytochrome b5 (CYB5A), and also transthyretin and BSA as alternative affinity ligands (baits). The LC-MS/MS identification of prey proteins fished on these baits revealed three sets of proteins: 98, 120, and 220, respectively. Comparison analysis of these sets revealed only three proteins common for all the baits. In the case of paired analysis, the number of common proteins varied from 2 to 9. The binding capacity of some identified proteins has been validated by a SPR-based biosensor. All the investigated proteins effectively interacted with the immobilized CYB5A (Kd values ranged from 0.07 to 1.1 µM). Results of this study suggest that direct molecular fishing is applicable for analysis of protein-protein interactions (PPI) under normal and pathological conditions, in which altered PPIs are especially important.


Asunto(s)
Citocromos b5/metabolismo , Hígado/metabolismo , Prealbúmina/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Resonancia por Plasmón de Superficie/métodos , Animales , Bovinos , Cromatografía Liquida/métodos , Humanos , Proteínas Inmovilizadas/metabolismo , Ligandos , Unión Proteica , Albúmina Sérica Bovina/metabolismo , Espectrometría de Masas en Tándem/métodos
15.
Int J Mol Sci ; 16(1): 476-95, 2014 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-25551598

RESUMEN

The amyloid-ß peptide is considered as a key player in the development and progression of Alzheimer's disease (AD). Although good evidence exists that amyloid-ß accumulates inside cells, intracellular brain amyloid-binding proteins remain poorly characterized. Proteomic profiling of rat brain homogenates, performed in this study, resulted in identification of 89 individual intracellular amyloid-binding proteins, and approximately 25% of them were proteins that we had previously identified as specifically binding to isatin, an endogenous neuroprotector molecule. A significant proportion of the amyloid-binding proteins (more than 30%) are differentially expressed or altered/oxidatively modified in AD patients. Incubation of brain homogenates with 70 µM hydrogen peroxide significantly influenced the profile of amyloid-ß binding proteins and 0.1 mM isatin decreased the number of identified amyloid-ß binding proteins both in control and hydrogen peroxide treated brain homogenates. The effects of hydrogen peroxide and isatin have been confirmed in optical biosensor experiments with purified glyceraldehyde-3-phosphate dehydrogenase, one of the known crucial amyloid-ß binding proteins (also identified in this study). Data obtained suggest that isatin protects crucial intracellular protein targets against amyloid binding, and possibly favors intracellular degradation of this protein via preventing formation of amyloid-ß oligomers described in the literature for some isatin derivatives.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Peróxido de Hidrógeno/metabolismo , Isatina/metabolismo , Actinas/metabolismo , Animales , Encéfalo/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Masculino , Unión Proteica , Mapas de Interacción de Proteínas , Proteómica , Ratas
16.
Proteomics ; 13(21): 3101-2, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24133050

RESUMEN

Gan et al. (Proteomics 2013, 13, 3117-3123) described a new "macropore" protocol for effective protein digestion by trypsin suitable for a wide range of pH including acidic pH. It was effective not only in experiments with solutions of a model protein (myoglobin), but also with a subfraction of rat liver cytosol. This significantly simplifies and accelerates protein digestion procedures for subsequent MS. However, further studies are needed to find limits of experimental applicability of the described protocol in proteomics.


Asunto(s)
Fragmentos de Péptidos/análisis , Mapeo Peptídico/métodos , Proteómica/métodos , Dióxido de Silicio/química , Tripsina/metabolismo , Animales
17.
J Proteome Res ; 12(1): 123-34, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23256950

RESUMEN

The final goal of the Russian part of the Chromosome-centric Human Proteome Project (C-HPP) was established as the analysis of the chromosome 18 (Chr 18) protein complement in plasma, liver tissue and HepG2 cells with the sensitivity of 10(-18) M. Using SRM, we have recently targeted 277 Chr 18 proteins in plasma, liver, and HepG2 cells. On the basis of the results of the survey, the SRM assays were drafted for 250 proteins: 41 proteins were found only in the liver tissue, 82 proteins were specifically detected in depleted plasma, and 127 proteins were mapped in both samples. The targeted analysis of HepG2 cells was carried out for 49 proteins; 41 of them were successfully registered using ordinary SRM and 5 additional proteins were registered using a combination of irreversible binding of proteins on CN-Br Sepharose 4B with SRM. Transcriptome profiling of HepG2 cells performed by RNAseq and RT-PCR has shown a significant correlation (r = 0.78) for 42 gene transcripts. A pilot affinity-based interactome analysis was performed for cytochrome b5 using analytical and preparative optical biosensor fishing followed by MS analysis of the fished proteins. All of the data on the proteome complement of the Chr 18 have been integrated into our gene-centric knowledgebase ( www.kb18.ru ).


Asunto(s)
Cromosomas Humanos Par 18 , Bases de Datos de Proteínas , Proteoma/análisis , Proteínas Sanguíneas/clasificación , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Cromosomas Humanos Par 18/genética , Cromosomas Humanos Par 18/metabolismo , Expresión Génica , Genoma Humano , Células Hep G2 , Humanos , Hígado/metabolismo , Espectrometría de Masas , Transcriptoma
18.
Int J Mol Sci ; 14(6): 12764-79, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23783275

RESUMEN

Renalase is a recently discovered protein, involved in regulation of blood pressure in humans and animals. Although several splice variants of human renalase mRNA transcripts have been recognized, only one protein product, hRenalase1, has been found so far. In this study, we have used polymerase chain reaction (PCR)-based amplification of individual exons of the renalase gene and their joining for construction of full-length hRenalase2 coding sequence followed by expression of hRenalase2 as a polyHis recombinant protein in Escherichia coli cells. To date this is the first report on synthesis and purification of hRenalase2. Applicability of this approach was verified by constructing hRenalase1 coding sequence, its sequencing and expression in E. coli cells. hRenalase1 was used for generation of polyclonal antiserum in sheep. Western blot analysis has shown that polyclonal anti-renalase1 antibodies effectively interact with the hRenalase2 protein. The latter suggests that some functions and expression patterns of hRenalase1 documented by antibody-based data may be attributed to the presence of hRenalase2. The realized approach may be also used for construction of coding sequences of various (especially weakly expressible) genes, their transcript variants, etc.


Asunto(s)
Escherichia coli/metabolismo , Regulación de la Expresión Génica , Monoaminooxidasa/genética , Sistemas de Lectura Abierta/genética , Células Procariotas/metabolismo , Transcripción Genética , Animales , Secuencia de Bases , Western Blotting , Exones/genética , Humanos , Datos de Secuencia Molecular , Monoaminooxidasa/aislamiento & purificación , Ovinos
19.
Proteomics ; 12(4-5): 621-37, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22246677

RESUMEN

Affinity chromatography becomes a more and more popular method used in proteomic studies for separation of various groups of proteins (subproteomes). The review highlights the role of affinity chromatography fractionation for proteomic profiling of the most of intensively studied groups of proteins including cyclic nucleotide-binding proteins, protein kinases (kinomes), phosphoproteins, glycoproteins, ubiquitinated proteins. Special attention is paid to the use of affinity chromatography for the characterization of small-molecule protein targets. The latter is especially important for the elucidation of direct protein targets of potential drug substances for evaluation of their possible side-effects or additional pharmacological application.


Asunto(s)
Cromatografía de Afinidad/métodos , Proteínas , Proteómica/métodos , Fraccionamiento Celular , Fraccionamiento Químico , Perfilación de la Expresión Génica , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo
20.
Int J Mol Sci ; 13(9): 11593-11609, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23109873

RESUMEN

Applicability of in vitro biotinylated ubiquitin for evaluation of endogenous ubiquitin conjugation and analysis of ubiquitin-associated protein-protein interactions has been investigated. Incubation of rat brain mitochondria with biotinylated ubiquitin followed by affinity chromatography on avidin-agarose, intensive washing, tryptic digestion of proteins bound to the affinity sorbent and their mass spectrometry analysis resulted in reliable identification of 50 proteins belonging to mitochondrial and extramitochondrial compartments. Since all these proteins were bound to avidin-agarose only after preincubation of the mitochondrial fraction with biotinylated ubiquitin, they could therefore be referred to as specifically bound proteins. A search for specific ubiquitination signature masses revealed several extramitochondrial and intramitochondrial ubiquitinated proteins representing about 20% of total number of proteins bound to avidin-agarose. The interactome analysis suggests that the identified non-ubiquitinated proteins obviously form tight complexes either with ubiquitinated proteins or with their partners and/or mitochondrial membrane components. Results of the present study demonstrate that the use of biotinylated ubiquitin may be considered as the method of choice for in vitro evaluation of endogenous ubiquitin-conjugating machinery in particular subcellular organelles and changes in ubiquitin/organelle associated interactomes. This may be useful for evaluation of changes in interactomes induced by protein ubiquitination under norm and various brain pathologies.


Asunto(s)
Encéfalo/metabolismo , Mitocondrias/metabolismo , Proteoma/metabolismo , Ubiquitinación , Animales , Biotinilación , Masculino , Mapas de Interacción de Proteínas , Proteoma/genética , Ratas , Ratas Wistar , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA