Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Anim Ecol ; 79(4): 923-31, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20302605

RESUMEN

1. Indirect effects mediated by changes in plant traits are the main mechanism by which above- and below-ground herbivores affect each other and their enemies. Only recently the role of decomposers in the regulation of such plant-based systems has been considered. We hypothesized that: (i) below-ground organisms, both herbivores (negative effect on plants) and detritivores (positive effect on plants), will have a profound effect on the interactions among above-ground arthropods; (ii) floral herbivores will negatively affect other above-ground herbivores associated with the plant; and (iii) not only above- and below-ground herbivores, but also detritivores will affect the production of secondary metabolites, i.e. glucosinolates, in the plants. 2. We manipulated the presence of above-ground herbivores, below-ground herbivores and below-ground detritivores on the Brassicaceae Moricandia moricandioides in the field to disentangle their individual and combined effects on other organism groups. We also investigated their effects on the plant's chemical defence to evaluate potential mechanisms. 3. Our results show that not only above- and below-ground herbivores, but also detritivores affected other herbivores and parasitoids associated with the host plant. Most effects were not additive because their strength changed when other organisms belonging to different functional groups or food web compartments were present. Moreover, below-ground herbivore and detritivore effects on above-ground fauna were related to changes in glucosinolate concentrations and in quantity of resources. 4. This study indicates that multitrophic interactions in plant-based food webs can dramatically change by the action of below-ground organisms. One of the most important and novel results is that detritivores induced changes in plant metabolites, modifying the quality and attractiveness of plants to herbivores and parasitoids under field conditions.


Asunto(s)
Brassicaceae/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Animales , Brassicaceae/metabolismo , Cadena Alimentaria , Insectos , Raíces de Plantas/crecimiento & desarrollo , Dinámica Poblacional , Microbiología del Suelo
2.
Proc Biol Sci ; 273(1593): 1465-70, 2006 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-16777739

RESUMEN

Species-energy theory indicates that recent climate warming should have driven increases in species richness in cool and species-poor parts of the Northern Hemisphere. We confirm that the average species richness of British butterflies has increased since 1970-82, but much more slowly than predicted from changes of climate: on average, only one-third of the predicted increase has taken place. The resultant species assemblages are increasingly dominated by generalist species that were able to respond quickly. The time lag is confirmed by the successful introduction of many species to climatically suitable areas beyond their ranges. Our results imply that it may be decades or centuries before the species richness and composition of biological communities adjusts to the current climate.


Asunto(s)
Migración Animal , Biodiversidad , Mariposas Diurnas/fisiología , Clima , Animales , Geografía , Efecto Invernadero , Redes Neurales de la Computación , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA