Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(18): e2118126119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476513

RESUMEN

Zoonotic transmission of coronaviruses poses an ongoing threat to human populations. Endemic outbreaks of swine acute diarrhea syndrome coronavirus (SADS-CoV) have caused severe economic losses in the pig industry and have the potential to cause human outbreaks. Currently, there are no vaccines or specific antivirals against SADS-CoV, and our limited understanding of SADS-CoV host entry factors could hinder prompt responses to a potential human outbreak. Using a genomewide CRISPR knockout screen, we identified placenta-associated 8 protein (PLAC8) as an essential host factor for SADS-CoV infection. Knockout of PLAC8 abolished SADS-CoV infection, which was restored by complementing PLAC8 from multiple species, including human, rhesus macaques, mouse, pig, pangolin, and bat, suggesting a conserved infection pathway and susceptibility of SADS-CoV among mammals. Mechanistically, PLAC8 knockout does not affect viral entry; rather, knockout cells displayed a delay and reduction in viral subgenomic RNA expression. In a swine primary intestinal epithelial culture (IEC) infection model, differentiated cultures have high levels of PLAC8 expression and support SADS-CoV replication. In contrast, expanding IECs have low levels of PLAC8 expression and are resistant to SADS-CoV infection. PLAC8 expression patterns translate in vivo; the immunohistochemistry of swine ileal tissue revealed high levels of PLAC8 protein in neonatal compared to adult tissue, mirroring the known SADS-CoV pathogenesis in neonatal piglets. Overall, PLAC8 is an essential factor for SADS-CoV infection and may serve as a promising target for antiviral development for potential pandemic SADS-CoV.


Asunto(s)
Alphacoronavirus , Infecciones por Coronavirus , Enfermedades de los Porcinos , Alphacoronavirus/genética , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Infecciones por Coronavirus/epidemiología , Porcinos
2.
RNA ; 28(11): 1519-1533, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36041871

RESUMEN

Metazoan histone mRNAs are the only cellular eukaryotic mRNAs that are not polyadenylated, ending instead in a conserved stem-loop. SLBP is bound to the 3' end of histone mRNAs and is required for translation of histone mRNA. The expression of histone mRNAs is tightly cell-cycle regulated. A major regulatory step is rapid degradation of histone mRNA at the end of S-phase or when DNA synthesis is inhibited in S-phase. 3'hExo, a 3' to 5' exonuclease, binds to the SLBP/SL complex and trims histone mRNA to 3 nt after the stem-loop. Together with a terminal uridyl transferase, 3'hExo maintains the length of the histone mRNA during S-phase. 3'hExo is essential for initiating histone mRNA degradation on polyribosomes, initiating degradation into the 3' side of the stem-loop. There is extensive uridylation of degradation intermediates in the 3' side of the stem when histone mRNA is degraded. Here, we knocked out TUT7 and 3'hExo and we show that both modification of histone mRNA during S-phase and degradation of histone mRNA involve the interaction of 3'hExo, and a specific TUTase, TENT3B (TUT7, ZCCHC6). Knockout of 3'hExo prevents the initiation of 3' to 5' degradation, stabilizing histone mRNA, whereas knockout of TUT7 prevents uridylation of the mRNA degradation intermediates, slowing the rate of degradation. In synchronized 3'hExo KO cells, histone mRNA degradation is delayed, but the histone mRNA is degraded prior to mitosis by a different pathway.


Asunto(s)
Histonas , Estabilidad del ARN , Animales , Humanos , Histonas/genética , Histonas/metabolismo , Menogaril , Células HeLa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo
3.
J Virol ; 94(19)2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669336

RESUMEN

Adeno-associated viruses (AAV) are composed of nonenveloped, icosahedral protein shells that can be adapted to package and deliver recombinant therapeutic DNA. Approaches to engineer recombinant capsids for gene therapy applications have focused on rational design or library-based approaches that can address one or two desirable attributes; however, there is an unmet need to comprehensively improve AAV vector properties. Such cannot be achieved by utilizing sequence data alone but requires harnessing the three-dimensional (3D) structural properties of AAV capsids. Here, we solve the structures of a natural AAV isolate complexed with antibodies using cryo-electron microscopy and harness this structural information to engineer AAV capsid libraries through saturation mutagenesis of different antigenic footprints. Each surface loop was evolved by infectious cycling in the presence of a helper adenovirus to yield a new AAV variant that then serves as a template for evolving the next surface loop. This stepwise process yielded a humanized AAV8 capsid (AAVhum.8) displaying nonnatural surface loops that simultaneously display tropism for human hepatocytes, increased gene transfer efficiency, and neutralizing antibody evasion. Specifically, AAVhum.8 can better evade neutralizing antisera from multiple species than AAV8. Further, AAVhum.8 displays robust transduction in a human liver xenograft mouse model with expanded tropism for both murine and human hepatocytes. This work supports the hypothesis that critical properties, such as AAV capsid antibody evasion and tropism, can be coevolved by combining rational design and library-based evolution for clinical gene therapy.IMPORTANCE Clinical gene therapy with recombinant AAV vectors has largely relied on natural capsid isolates. There is an unmet need to comprehensively improve AAV tissue tropism, transduction efficiency, and antibody evasion. Such cannot be achieved by utilizing capsid sequence data alone but requires harnessing the 3D structural properties of AAV capsids. Here, we combine rational design and library-based evolution to coevolve multiple, desirable properties onto AAV by harnessing 3D structural information.


Asunto(s)
Proteínas de la Cápside/inmunología , Cápside/inmunología , Dependovirus/inmunología , Tropismo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Línea Celular , Microscopía por Crioelectrón , Dependovirus/genética , Terapia Genética , Hepatocitos/metabolismo , Humanos , Ratones , Simulación del Acoplamiento Molecular
4.
PLoS Pathog ; 15(8): e1007988, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31386698

RESUMEN

Adeno-associated viruses (AAV) are Dependoparvoviruses that have shown promise as recombinant vectors for gene therapy. While infectious pathways of AAV are well studied, gaps remain in our understanding of host factors affecting vector genome expression. Here, we map the role of ring finger protein 121 (RNF121), an E3 ubiquitin ligase, as a key regulator of AAV genome transcription. CRISPR-mediated knockout of RNF121 (RNF121 KO) in different cells markedly decreased AAV transduction regardless of capsid serotype or vector dose. Recombinant AAV transduction is partially rescued by overexpressing RNF121, but not by co-infection with helper Adenovirus. Major steps in the AAV infectious pathway including cell surface binding, cellular uptake, nuclear entry, capsid uncoating and second strand synthesis are unaffected. While gene expression from transfected plasmids or AAV genomes is unaffected, mRNA synthesis from AAV capsid-associated genomes is markedly decreased in RNF121 KO cells. These observations were attributed to transcriptional arrest as corroborated by RNAPol-ChIP and mRNA half-life measurements. Although AAV capsid proteins do not appear to be direct substrates of RNF121, the catalytic domain of the E3 ligase appears essential. Inhibition of ubiquitin-proteasome pathways revealed that blocking Valosin Containing Protein (VCP/p97), which targets substrates to the proteasome, can selectively and completely restore AAV-mediated transgene expression in RNF121 KO cells. Expanding on this finding, transcriptomic and proteomic analysis revealed that the catalytic subunit of DNA PK (DNAPK-Cs), a known activator of VCP, is upregulated in RNF121 KO cells and that the DNA damage machinery is enriched at sites of stalled AAV genome transcription. We postulate that a network of RNF121, VCP and DNA damage response elements function together to regulate transcriptional silencing and/or activation of AAV vector genomes.


Asunto(s)
Carcinoma Hepatocelular/virología , Proteína Quinasa Activada por ADN/metabolismo , Dependovirus/genética , Genoma Viral , Proteínas de la Membrana/metabolismo , Transducción Genética , Proteína que Contiene Valosina/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proteína Quinasa Activada por ADN/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteoma , Transcriptoma , Células Tumorales Cultivadas , Ubiquitina/metabolismo , Ubiquitinación , Proteína que Contiene Valosina/genética , Internalización del Virus
6.
RNA ; 23(8): 1209-1223, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28455422

RESUMEN

ZFP36L2 (L2) destabilizes AU-rich element (ARE)-containing transcripts and has been implicated in female fertility. We have shown that only one of three putative AREs within the 3' UTR of murine luteinizing hormone receptor mRNA, ARE2197 (UAUUUAU), is capable of interacting with L2. To assess whether structural elements of ARE2197 could explain this unique binding ability, we performed whole-transcript SHAPE-MaP (selective 2' hydroxyl acylation by primer extension-mutational profiling) of the full-length mLHR mRNA. The data revealed that the functional ARE2197 is located in a hairpin loop structure and most nucleotides are highly reactive. In contrast, each of the nonbinding AREs, 2301 and 2444, contains only a pentamer AUUUA; and in ARE2301 much of the ARE sequence is poorly accessible. Because the functional mARE was also found to be conserved in humans at the sequence level (ARE 2223), we decided to investigate whether binding and structure are also preserved. Similar to mouse, only one ARE in hLHR mRNA is capable of binding to L2; and it is also located in a hairpin structure, based on our SHAPE-MaP data. To investigate the role of secondary structure in the binding, we mutated specific nucleotides in both functional AREs. Mutations in the flexible stem region proximal to the loop that enforce strong base-pairing, drastically reduced L2 binding affinity; this confirms that the structural context is critical for L2 recognition of hARE2223. Collectively, our results suggest that a combination of minimal ARE sequence, placement of the ARE in a hairpin loop, and stem flexibility mediate high-affinity L2 binding to hLHR mRNA.


Asunto(s)
Elementos Ricos en Adenilato y Uridilato/genética , ARN Mensajero/metabolismo , Receptores de HL/metabolismo , Tristetraprolina/metabolismo , Animales , Emparejamiento Base , Secuencia de Bases , Humanos , Ratones , Mutación/genética , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética , Receptores de HL/genética , Alineación de Secuencia , Tristetraprolina/química , Tristetraprolina/genética
7.
RNA ; 23(5): 619-627, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28223408

RESUMEN

Circular RNAs (circRNAs) are highly stable, covalently closed RNAs that are regulated in a spatiotemporal manner and whose functions are largely unknown. These molecules have the potential to be incorporated into engineered systems with broad technological implications. Here we describe a switch for inducing back-splicing of an engineered circRNA that relies on the CRISPR endoribonuclease, Csy4, as an activator of circularization. The endoribonuclease activity and 3' end-stabilizing properties of Csy4 are particularly suited for this task. Coexpression of Csy4 and the circRNA switch allows for the removal of downstream competitive splice sites and stabilization of the 5' cleavage product. This subsequently results in back-splicing of the 5' cleavage product into a circRNA that can translate a reporter protein from an internal ribosomal entry site (IRES). Our platform outlines a straightforward approach toward regulating splicing and could find potential applications in synthetic biology as well as in studying the properties of different circRNAs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Endorribonucleasas/metabolismo , ARN/metabolismo , Células HEK293 , Humanos , Empalme del ARN , ARN Circular
8.
J Virol ; 92(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29695425

RESUMEN

Adeno-associated viruses (AAVs) encode a unique assembly-activating protein (AAP) within their genomes that is essential for capsid assembly. Studies to date have focused on establishing the role of AAP as a chaperone that mediates the stability, nucleolar transport, and assembly of AAV capsid proteins. Here, we map structure-function correlates of AAP using secondary structure analysis, followed by deletion and substitutional mutagenesis of specific domains, namely, the N-terminal hydrophobic region (HR), conserved core (CC), proline-rich region (PRR), threonine/serine-rich region (T/S), and basic region (BR). First, we establish that the centrally located PRR and T/S are flexible linker domains that can either be deleted completely or replaced by heterologous functional domains that enable ancillary functions such as fluorescent imaging or increased AAP stability. We also demonstrate that the C-terminal BR domains can be substituted with heterologous nuclear or nucleolar localization sequences that display various abilities to support AAV capsid assembly. Further, by replacing the BR domain with immunoglobulin (IgG) Fc domains, we assessed AAP complexation with AAV capsid subunits and demonstrate that the hydrophobic region (HR) and the conserved core (CC) in the AAP N terminus are the sole determinants for viral protein (VP) recognition. However, VP recognition alone is not sufficient for capsid assembly. Our study sheds light on the modular structure-function correlates of AAP and provides multiple approaches to engineer AAP that might prove useful toward understanding and controlling AAV capsid assembly.IMPORTANCE Adeno-associated viruses (AAVs) encode a unique assembly-activating protein (AAP) within their genomes that is essential for capsid assembly. Understanding how AAP acts as a chaperone for viral assembly could help improve efficiency and potentially control this process. Our studies reveal that AAP has a modular architecture, with each module playing a distinct role and can be engineered for carrying out new functions.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Dependovirus/fisiología , Infecciones por Parvoviridae/virología , Ensamble de Virus , Núcleo Celular/metabolismo , Células HeLa , Humanos , Señales de Localización Nuclear , Conformación Proteica , Dominios Proteicos , Estabilidad Proteica , Transporte de Proteínas , Virión
9.
Cell Rep ; 43(4): 114076, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607917

RESUMEN

The severe acute respiratory syndrome coronavirus 2 pandemic is characterized by the emergence of novel variants of concern (VOCs) that replace ancestral strains. Here, we dissect the complex selective pressures by evaluating variant fitness and adaptation in human respiratory tissues. We evaluate viral properties and host responses to reconstruct forces behind D614G through Omicron (BA.1) emergence. We observe differential replication in airway epithelia, differences in cellular tropism, and virus-induced cytotoxicity. D614G accumulates the most mutations after infection, supporting zoonosis and adaptation to the human airway. We perform head-to-head competitions and observe the highest fitness for Gamma and Delta. Under these conditions, RNA recombination favors variants encoding the B.1.617.1 lineage 3' end. Based on viral growth kinetics, Alpha, Gamma, and Delta exhibit increased fitness compared to D614G. In contrast, the global success of Omicron likely derives from increased transmission and antigenic variation. Our data provide molecular evidence to support epidemiological observations of VOC emergence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiología , SARS-CoV-2/genética , COVID-19/virología , COVID-19/transmisión , Replicación Viral , Mutación/genética , Mucosa Respiratoria/virología , Aptitud Genética , Animales , Células Epiteliales/virología , Chlorocebus aethiops , Adaptación Fisiológica/genética , Células Vero
10.
bioRxiv ; 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37034784

RESUMEN

A hallmark of Dengue virus (DENV) pathogenesis is the potential for antibody-dependent enhancement, which is associated with deadly DENV secondary infection, complicates the identification of correlates of protection, and negatively impacts the safety and efficacy of DENV vaccines. ADE is linked to antibodies targeting the fusion loop (FL) motif of the envelope protein, which is completely conserved in mosquito-borne flaviviruses and required for viral entry and fusion. In the current study, we utilized saturation mutagenesis and directed evolution to engineer a functional variant with a mutated FL (D2-FL) which is not neutralized by FL-targeting monoclonal antibodies. The FL mutations were combined with our previously evolved prM cleavage site to create a mature version of D2-FL (D2-FLM), which evades both prM- and FL-Abs but retains sensitivity to other type-specific and quaternary cross-reactive (CR) Abs. CR serum from heterotypic (DENV4) infected non-human primates (NHP) showed lower neutralization titers against D2-FL and D2-FLM than isogenic wildtype DENV2 while similar neutralization titers were observed in serum from homotypic (DENV2) infected NHP. We propose D2-FL and D2-FLM as valuable tools to delineate CR Ab subtypes in serum as well as an exciting platform for safer live attenuated DENV vaccines suitable for naïve individuals and children.

11.
Elife ; 122023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37725085

RESUMEN

A hallmark of dengue virus (DENV) pathogenesis is the potential for antibody-dependent enhancement, which is associated with deadly DENV secondary infection, complicates the identification of correlates of protection, and negatively impacts the safety and efficacy of DENV vaccines. Antibody-dependent enhancement is linked to antibodies targeting the fusion loop (FL) motif of the envelope protein, which is completely conserved in mosquito-borne flaviviruses and required for viral entry and fusion. In the current study, we utilized saturation mutagenesis and directed evolution to engineer a functional variant with a mutated FL (D2-FL), which is not neutralized by FL-targeting monoclonal antibodies. The FL mutations were combined with our previously evolved prM cleavage site to create a mature version of D2-FL (D2-FLM), which evades both prM- and FL-Abs but retains sensitivity to other type-specific and quaternary cross-reactive (CR) Abs. CR serum from heterotypic (DENV4)-infected non-human primates (NHP) showed lower neutralization titers against D2-FL and D2-FLM than isogenic wildtype DENV2 while similar neutralization titers were observed in serum from homotypic (DENV2)-infected NHP. We propose D2-FL and D2-FLM as valuable tools to delineate CR Ab subtypes in serum as well as an exciting platform for safer live-attenuated DENV vaccines suitable for naïve individuals and children.


Asunto(s)
Culicidae , Vacunas , Animales , Anticuerpos Monoclonales , Reacciones Cruzadas , Ingeniería
12.
mBio ; 14(5): e0081823, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800919

RESUMEN

IMPORTANCE: The four dengue virus (DENV) serotypes infect several hundred million people each year. Although primary infection is generally mild, subsequent infection by differing serotypes increases the risk for symptomatic disease ranging from fever to life-threatening shock. Despite the availability of licensed vaccines, a comprehensive understanding of antibodies that target the viral envelope protein and protect from infection remains incomplete. In this manuscript, we develop a panel of recombinant viruses that graft each envelope domain of DENV2 onto the DENV4 envelope glycoprotein, revealing protein interactions important for virus viability. Furthermore, we map neutralizing antibody responses after primary DENV2 natural infection and a human challenge model to distinct domains on the viral envelope protein. The panel of recombinant viruses provides a new tool for dissecting the E domain-specific targeting of protective antibody responses, informing future DENV vaccine design.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Anticuerpos Antivirales , Proteínas del Envoltorio Viral/genética , Serogrupo , Anticuerpos Neutralizantes
13.
Res Sq ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292668

RESUMEN

Biomolecules continually sample alternative conformations. Consequently, even the most energetically favored ground conformational state has a finite lifetime. Here, we show that, in addition to the 3D structure, the lifetime of a ground conformational state determines its biological activity. Using hydrogen-deuterium exchange nuclear magnetic resonance spectroscopy, we found that Zika virus exoribonuclease-resistant RNA (xrRNA) encodes a ground conformational state with a lifetime that is ~105-107 longer than that of canonical base pairs. Mutations that shorten the apparent lifetime of the ground state without affecting its 3D structure decreased exoribonuclease resistance in vitro and impaired virus replication in cells. Additionally, we observed this exceptionally long-lived ground state in xrRNAs from diverse infectious mosquito-borne flaviviruses. These results demonstrate the biological significance of the lifetime of a preorganized ground state and further suggest that elucidating the lifetimes of dominant 3D structures of biomolecules may be crucial for understanding their behaviors and functions.

14.
Nat Commun ; 14(1): 1371, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914616

RESUMEN

The four dengue virus serotypes co-circulate globally and cause significant human disease. Dengue vaccine development is challenging because some virus-specific antibodies are protective, while others are implicated in enhanced viral replication and more severe disease. Current dengue tetravalent vaccines contain four live attenuated serotypes formulated to theoretically induce balanced protective immunity. Among the number of vaccine candidates in clinical trials, only Dengvaxia is licensed for use in DENV seropositive individuals. To simplify live-virus vaccine design, we identify co-evolutionary constraints inherent in flavivirus virion assembly and design chimeric viruses to replace domain II (EDII) of the DENV2 envelope (E) glycoprotein with EDII from DENV4. The chimeric DENV2/4EDII virus replicates efficiently in vitro and in vivo. In male macaques, a single inoculation of DENV2/4EDII induces type-specific neutralizing antibodies to both DENV2 and DENV4, thereby providing a strategy to simplify DENV vaccine design by utilizing a single bivalent E glycoprotein immunogen for two DENV serotypes.


Asunto(s)
Virus del Dengue , Dengue , Masculino , Humanos , Virus del Dengue/genética , Anticuerpos Antivirales , Serogrupo , Proteínas del Envoltorio Viral/genética , Anticuerpos Neutralizantes
15.
Sci Transl Med ; 15(715): eadg5567, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37756379

RESUMEN

The repeated emergence of zoonotic human betacoronaviruses (ß-CoVs) dictates the need for broad therapeutics and conserved epitope targets for countermeasure design. Middle East respiratory syndrome (MERS)-related coronaviruses (CoVs) remain a pressing concern for global health preparedness. Using metagenomic sequence data and CoV reverse genetics, we recovered a full-length wild-type MERS-like BtCoV/li/GD/2014-422 (BtCoV-422) recombinant virus, as well as two reporter viruses, and evaluated their human emergence potential and susceptibility to currently available countermeasures. Similar to MERS-CoV, BtCoV-422 efficiently used human and other mammalian dipeptidyl peptidase protein 4 (DPP4) proteins as entry receptors and an alternative DPP4-independent infection route in the presence of exogenous proteases. BtCoV-422 also replicated efficiently in primary human airway, lung endothelial, and fibroblast cells, although less efficiently than MERS-CoV. However, BtCoV-422 shows minor signs of infection in 288/330 human DPP4 transgenic mice. Several broad CoV antivirals, including nucleoside analogs and 3C-like/Mpro protease inhibitors, demonstrated potent inhibition against BtCoV-422 in vitro. Serum from mice that received a MERS-CoV mRNA vaccine showed reduced neutralizing activity against BtCoV-422. Although most MERS-CoV-neutralizing monoclonal antibodies (mAbs) had limited activity, one anti-MERS receptor binding domain mAb, JC57-11, neutralized BtCoV-422 potently. A cryo-electron microscopy structure of JC57-11 in complex with BtCoV-422 spike protein revealed the mechanism of cross-neutralization involving occlusion of the DPP4 binding site, highlighting its potential as a broadly neutralizing mAb for group 2c CoVs that use DPP4 as a receptor. These studies provide critical insights into MERS-like CoVs and provide candidates for countermeasure development.


Asunto(s)
Quirópteros , Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Animales , Ratones , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Microscopía por Crioelectrón , Anticuerpos Monoclonales/metabolismo
16.
Cell Host Microbe ; 31(11): 1850-1865.e5, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37909048

RESUMEN

The envelope (E) glycoprotein is the primary target of type-specific (TS) neutralizing antibodies (nAbs) after infection with any of the four distinct dengue virus serotypes (DENV1-4). nAbs can be elicited to distinct structural E domains (EDs) I, II, or III. However, the relative contribution of these domain-specific antibodies is unclear. To identify the primary DENV3 nAb targets in sera after natural infection or vaccination, chimeric DENV1 recombinant encoding DENV3 EDI, EDII, or EDIII were generated. DENV3 EDII is the principal target of TS polyclonal nAb responses and encodes two or more neutralizing epitopes. In contrast, some were individuals vaccinated with a DENV3 monovalent vaccine-elicited serum TS nAbs targeting each ED in a subject-dependent fashion, with an emphasis on EDI and EDIII. Vaccine responses were also sensitive to DENV3 genotypic variation. This DENV1/3 panel allows the measurement of serum ED TS nAbs, revealing differences in TS nAb immunity after natural infection or vaccination.


Asunto(s)
Vacunas contra el Dengue , Virus del Dengue , Dengue , Humanos , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Proteínas del Envoltorio Viral/genética , Glicoproteínas , Vacunación
17.
Nat Microbiol ; 8(10): 1820-1833, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37749254

RESUMEN

The pathogenic and cross-species transmission potential of SARS-CoV-2-related coronaviruses (CoVs) remain poorly characterized. Here we recovered a wild-type pangolin (Pg) CoV GD strain including derivatives encoding reporter genes using reverse genetics. In primary human cells, PgCoV replicated efficiently but with reduced fitness and showed less efficient transmission via airborne route compared with SARS-CoV-2 in hamsters. PgCoV was potently inhibited by US Food and Drug Administration approved drugs, and neutralized by COVID-19 patient sera and SARS-CoV-2 therapeutic antibodies in vitro. A pan-Sarbecovirus antibody and SARS-CoV-2 S2P recombinant protein vaccine protected BALB/c mice from PgCoV infection. In K18-hACE2 mice, PgCoV infection caused severe clinical disease, but mice were protected by a SARS-CoV-2 human antibody. Efficient PgCoV replication in primary human cells and hACE2 mice, coupled with a capacity for airborne spread, highlights an emergence potential. However, low competitive fitness, pre-immune humans and the benefit of COVID-19 countermeasures should impede its ability to spread globally in human populations.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Cricetinae , Humanos , Animales , Ratones , Especificidad del Huésped , Pangolines , SARS-CoV-2/genética , COVID-19/prevención & control , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Ratones Endogámicos BALB C
18.
Ann N Y Acad Sci ; 1521(1): 46-66, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36697369

RESUMEN

Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.


Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Humanos , SARS-CoV-2 , Virus ARN Monocatenarios Positivos , Antivirales/uso terapéutico , Pandemias , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/prevención & control , Infección por el Virus Zika/tratamiento farmacológico
19.
mBio ; 13(3): e0038622, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35481749

RESUMEN

Maturation of dengue viruses (DENVs) alters the structure, immunity, and infectivity of the virion and highly mature particles represent the dominant form in vivo. The production of highly mature virions principally relies on the structure and function of the viral premature membrane protein (prM) and its cleavage by the host protease furin. We redeveloped a reliable clonal cell line (VF1) which produces single-round mature DENVs without the need for DENV reverse genetics. More importantly, using protein engineering and directed evolution of the prM cleavage site, we engineered genetically stable mature DENVs in all serotypes independent of cell or host, usually with minimal impact on viral yield. Using these complementary strategies to regulate maturation, we demonstrate that the resulting mature DENVs are antigenically distinct from their isogenic partially mature forms. Given the clinical importance of mature DENVs in immunity, our study provides reliable strategies and reagents for the production of stable, high-titer mature DENVs for DENV antibody neutralization and vaccination immunity studies. Biologically, our data from directed evolution across host species reveals distinct maturation-dependent selective pressures between mammalian and insect cells, verifying the substrate preference between mammalian and insect furin, while hinting at an evolutionary equilibrium of DENV prM cleavage site between its host and vector in nature. IMPORTANCE Mature DENVs represent the dominant form in vivo and are the target for vaccine development. Here, we used multiple strategies, including protein engineering and natural and directed evolution to generate DENV1, -2, -3, and -4 variants that are highly mature without compromising replication efficiency compared to the parental strains. Given the clinical importance of mature DENVs in immunity, this work provides a roadmap for engineering highly mature DENV that could apply to future vaccine development. Our directed-evolution data also shed light on the divergent evolutionary relationship of DENVs between its host and vector.


Asunto(s)
Virus del Dengue , Dengue , Animales , Anticuerpos Antivirales , Virus del Dengue/fisiología , Furina/genética , Mamíferos , Serogrupo , Proteínas del Envoltorio Viral/genética , Virión
20.
Sci Transl Med ; 14(643): eabm3410, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35315683

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic remains uncontrolled despite the rapid rollout of safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. In addition, the emergence of SARS-CoV-2 variants of concern, with their potential to escape neutralization by therapeutic monoclonal antibodies, emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parent nucleoside of remdesivir, which targets the highly conserved virus RNA-dependent RNA polymerase. GS-621763 exhibited antiviral activity against SARS-CoV-2 in lung cell lines and two different human primary lung cell culture systems. GS-621763 was also potently antiviral against a genetically unrelated emerging coronavirus, Middle East respiratory syndrome CoV (MERS-CoV). The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 administration reduced viral load and lung pathology; treatment also improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral that has recently received EUA approval, proved both drugs to be similarly efficacious in mice. These data support the exploration of GS-441524 oral prodrugs for the treatment of COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Infecciones por Coronavirus , Profármacos , Adenosina/análogos & derivados , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Humanos , Ratones , Nucleósidos , Padres , Profármacos/farmacología , Profármacos/uso terapéutico , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA