Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nature ; 567(7746): 91-95, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30842636

RESUMEN

Coastal wetlands (mangrove, tidal marsh and seagrass) sustain the highest rates of carbon sequestration per unit area of all natural systems1,2, primarily because of their comparatively high productivity and preservation of organic carbon within sedimentary substrates3. Climate change and associated relative sea-level rise (RSLR) have been proposed to increase the rate of organic-carbon burial in coastal wetlands in the first half of the twenty-first century4, but these carbon-climate feedback effects have been modelled to diminish over time as wetlands are increasingly submerged and carbon stores become compromised by erosion4,5. Here we show that tidal marshes on coastlines that experienced rapid RSLR over the past few millennia (in the late Holocene, from about 4,200 years ago to the present) have on average 1.7 to 3.7 times higher soil carbon concentrations within 20 centimetres of the surface than those subject to a long period of sea-level stability. This disparity increases with depth, with soil carbon concentrations reduced by a factor of 4.9 to 9.1 at depths of 50 to 100 centimetres. We analyse the response of a wetland exposed to recent rapid RSLR following subsidence associated with pillar collapse in an underlying mine and demonstrate that the gain in carbon accumulation and elevation is proportional to the accommodation space (that is, the space available for mineral and organic material accumulation) created by RSLR. Our results suggest that coastal wetlands characteristic of tectonically stable coastlines have lower carbon storage owing to a lack of accommodation space and that carbon sequestration increases according to the vertical and lateral accommodation space6 created by RSLR. Such wetlands will provide long-term mitigating feedback effects that are relevant to global climate-carbon modelling.


Asunto(s)
Secuestro de Carbono , Carbono/metabolismo , Agua de Mar/análisis , Humedales , Carbono/análisis , Sedimentos Geológicos/química , Historia Antigua , Océanos y Mares
2.
Glob Chang Biol ; 30(1): e17098, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273507

RESUMEN

Quantifying carbon fluxes into and out of coastal soils is critical to meeting greenhouse gas reduction and coastal resiliency goals. Numerous 'blue carbon' studies have generated, or benefitted from, synthetic datasets. However, the community those efforts inspired does not have a centralized, standardized database of disaggregated data used to estimate carbon stocks and fluxes. In this paper, we describe a data structure designed to standardize data reporting, maximize reuse, and maintain a chain of credit from synthesis to original source. We introduce version 1.0.0. of the Coastal Carbon Library, a global database of 6723 soil profiles representing blue carbon-storing systems including marshes, mangroves, tidal freshwater forests, and seagrasses. We also present the Coastal Carbon Atlas, an R-shiny application that can be used to visualize, query, and download portions of the Coastal Carbon Library. The majority (4815) of entries in the database can be used for carbon stock assessments without the need for interpolating missing soil variables, 533 are available for estimating carbon burial rate, and 326 are useful for fitting dynamic soil formation models. Organic matter density significantly varied by habitat with tidal freshwater forests having the highest density, and seagrasses having the lowest. Future work could involve expansion of the synthesis to include more deep stock assessments, increasing the representation of data outside of the U.S., and increasing the amount of data available for mangroves and seagrasses, especially carbon burial rate data. We present proposed best practices for blue carbon data including an emphasis on disaggregation, data publication, dataset documentation, and use of standardized vocabulary and templates whenever appropriate. To conclude, the Coastal Carbon Library and Atlas serve as a general example of a grassroots F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) data effort demonstrating how data producers can coordinate to develop tools relevant to policy and decision-making.


Asunto(s)
Carbono , Suelo , Carbono/química , Suelo/química , Ecosistema , Humedales , Políticas
3.
New Phytol ; 240(5): 2121-2136, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37452486

RESUMEN

Predicting the fate of coastal marshes requires understanding how plants respond to rapid environmental change. Environmental change can elicit shifts in trait variation attributable to phenotypic plasticity and act as selective agents to shift trait means, resulting in rapid evolution. Comparably, less is known about the potential for responses to reflect the evolution of trait plasticity. Here, we assessed the relative magnitude of eco-evolutionary responses to interacting global change factors using a multifactorial experiment. We exposed replicates of 32 Schoenoplectus americanus genotypes 'resurrected' from century-long, soil-stored seed banks to ambient or elevated CO2 , varying levels of inundation, and the presence of a competing marsh grass, across two sites with different salinities. Comparisons of responses to global change factors among age cohorts and across provenances indicated that plasticity has evolved in five of the seven traits measured. Accounting for evolutionary factors (i.e. evolution and sources of heritable variation) in statistical models explained an additional 9-31% of trait variation. Our findings indicate that evolutionary factors mediate ecological responses to environmental change. The magnitude of evolutionary change in plant traits over the last century suggests that evolution could play a role in pacing future ecosystem response to environmental change.


Asunto(s)
Ecosistema , Humedales , Plantas/genética , Poaceae , Fenotipo
4.
Mol Ecol ; 31(17): 4571-4585, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35792676

RESUMEN

Although it is becoming widely appreciated that microbes can enhance plant tolerance to environmental stress, the nature of microbial mediation of exposure responses is not well understood. We addressed this deficit by examining whether microbial mediation of plant responses to elevated salinity is contingent on the environment and factors intrinsic to the host. We evaluated the influence of contrasting environmental conditions relative to host genotype, provenance and evolution by conducting a common-garden experiment utilizing ancestral and descendant cohorts of Schoenoplectus americanus genotypes recovered from two 100+ year coastal marsh seed banks. We compared S. americanus productivity and trait variation as well as associated endophytic microbial communities according to plant genotype, provenance, and age cohort under high and low salinity stress with and without native soil inoculation. The magnitude and direction of microbial mediation of S. americanus responses to elevated salinity varied according to individual genotype, provenance, as well as temporal shifts in genotypic variation and G × E (gene by environment) interactions. Relationships differed between plant traits and the structure of endosphere communities. Our findings indicate that plant-microbe associations and microbial mediation of plant stress are not only context-dependent but also dynamic. Our results additionally suggest that evolution can shape the fate of marsh ecosystems by altering how microbes confer plant tolerance to pressures linked to global change.


Asunto(s)
Microbiota , Salinidad , Genotipo , Humanos , Estrés Salino , Humedales
5.
Glob Chang Biol ; 28(20): 5881-5900, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689431

RESUMEN

Observations of woody plant mortality in coastal ecosystems are globally widespread, but the overarching processes and underlying mechanisms are poorly understood. This knowledge deficiency, combined with rapidly changing water levels, storm surges, atmospheric CO2 , and vapor pressure deficit, creates large predictive uncertainty regarding how coastal ecosystems will respond to global change. Here, we synthesize the literature on the mechanisms that underlie coastal woody-plant mortality, with the goal of producing a testable hypothesis framework. The key emergent mechanisms underlying mortality include hypoxic, osmotic, and ionic-driven reductions in whole-plant hydraulic conductance and photosynthesis that ultimately drive the coupled processes of hydraulic failure and carbon starvation. The relative importance of these processes in driving mortality, their order of progression, and their degree of coupling depends on the characteristics of the anomalous water exposure, on topographic effects, and on taxa-specific variation in traits and trait acclimation. Greater inundation exposure could accelerate mortality globally; however, the interaction of changing inundation exposure with elevated CO2 , drought, and rising vapor pressure deficit could influence mortality likelihood. Models of coastal forests that incorporate the frequency and duration of inundation, the role of climatic drivers, and the processes of hydraulic failure and carbon starvation can yield improved estimates of inundation-induced woody-plant mortality.


Asunto(s)
Dióxido de Carbono , Ecosistema , Carbono , Sequías , Árboles , Agua
6.
Proc Natl Acad Sci U S A ; 116(43): 21623-21628, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591204

RESUMEN

Terrestrial ecosystem responses to climate change are mediated by complex plant-soil feedbacks that are poorly understood, but often driven by the balance of nutrient supply and demand. We actively increased aboveground plant-surface temperature, belowground soil temperature, and atmospheric CO2 in a brackish marsh and found nonlinear and nonadditive feedbacks in plant responses. Changes in root-to-shoot allocation by sedges were nonlinear, with peak belowground allocation occurring at +1.7 °C in both years. Above 1.7 °C, allocation to root versus shoot production decreased with increasing warming such that there were no differences in root biomass between ambient and +5.1 °C plots in either year. Elevated CO2 altered this response when crossed with +5.1 °C, increasing root-to-shoot allocation due to increased plant nitrogen demand and, consequently, root production. We suggest these nonlinear responses to warming are caused by asynchrony between the thresholds that trigger increased plant nitrogen (N) demand versus increased N mineralization rates. The resulting shifts in biomass allocation between roots and shoots have important consequences for forecasting terrestrial ecosystem responses to climate change and understanding global trends.

7.
New Phytol ; 225(4): 1470-1475, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31665818

RESUMEN

Trees are sources, sinks, and conduits for gas exchange between the atmosphere and soil, and effectively link these terrestrial realms in a soil-plant-atmosphere continuum. We demonstrated that naturally produced radon-222 (222 Rn) gas has the potential to disentangle the biotic and physical processes that regulate gas transfer between soils or plants and the atmosphere in field settings where exogenous tracer applications are challenging. Patterns in stem radon emissions across tree species, seasons, and diurnal periods suggest that plant transport of soil gases is controlled by plant hydraulics, whether by diffusion or mass flow via transpiration. We establish for the first time that trees emit soil gases during the night when transpiration rates are negligible, suggesting that axial diffusion is an important and understudied mechanism of plant and soil gas transmission.


Asunto(s)
Dióxido de Carbono/metabolismo , Metano/metabolismo , Transpiración de Plantas/fisiología , Radón/metabolismo , Árboles/fisiología , Transporte Biológico , Suelo , Madera
8.
New Phytol ; 222(1): 35-51, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30521089

RESUMEN

Contents Summary 35 I. Introduction 36 II. Tree CH4 fluxes 36 III. Tree emissions of soil-produced CH4 40 IV. Tree-produced CH4 42 V. Trees in forest CH4 budgets 44 VI. Conclusions 46 Acknowledgements 48 Author contributions 48 References 48 SUMMARY: Forest ecosystem methane (CH4 ) research has focused on soils, but trees are also important sources and sinks in forest CH4 budgets. Living and dead trees transport and emit CH4 produced in soils; living trees and dead wood emit CH4 produced inside trees by microorganisms; and trees produce CH4 through an abiotic photochemical process. Here, we review the state of the science on the production, consumption, transport, and emission of CH4 by living and dead trees, and the spatial and temporal dynamics of these processes across hydrologic gradients inclusive of wetland and upland ecosystems. Emerging research demonstrates that tree CH4 emissions can significantly increase the source strength of wetland forests, and modestly decrease the sink strength of upland forests. Scaling from stem or leaf measurements to trees or forests is limited by knowledge of the mechanisms by which trees transport soil-produced CH4 , microbial processes produce and oxidize CH4 inside trees, a lack of mechanistic models, the diffuse nature of forest CH4 fluxes, complex overlap between sources and sinks, and extreme variation across individuals. Understanding the complex processes that regulate CH4 source-sink dynamics in trees and forests requires cross-disciplinary research and new conceptual models that transcend the traditional binary classification of wetland vs upland forest.


Asunto(s)
Bosques , Metano/biosíntesis , Árboles/metabolismo , Transporte Biológico , Suelo/química , Humedales
9.
New Phytol ; 222(1): 18-28, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30394559

RESUMEN

Tree stems from wetland, floodplain and upland forests can produce and emit methane (CH4 ). Tree CH4 stem emissions have high spatial and temporal variability, but there is no consensus on the biophysical mechanisms that drive stem CH4 production and emissions. Here, we summarize up to 30 opportunities and challenges for stem CH4 emissions research, which, when addressed, will improve estimates of the magnitudes, patterns and drivers of CH4 emissions and trace their potential origin. We identified the need: (1) for both long-term, high-frequency measurements of stem CH4 emissions to understand the fine-scale processes, alongside rapid large-scale measurements designed to understand the variability across individuals, species and ecosystems; (2) to identify microorganisms and biogeochemical pathways associated with CH4 production; and (3) to develop a mechanistic model including passive and active transport of CH4 from the soil-tree-atmosphere continuum. Addressing these challenges will help to constrain the magnitudes and patterns of CH4 emissions, and allow for the integration of pathways and mechanisms of CH4 production and emissions into process-based models. These advances will facilitate the upscaling of stem CH4 emissions to the ecosystem level and quantify the role of stem CH4 emissions for the local to global CH4 budget.


Asunto(s)
Ciclo del Carbono , Metano/metabolismo , Tallos de la Planta/metabolismo , Árboles/metabolismo , Modelos Biológicos , Agua
10.
Nature ; 504(7478): 53-60, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24305148

RESUMEN

Coastal populations and wetlands have been intertwined for centuries, whereby humans both influence and depend on the extensive ecosystem services that wetlands provide. Although coastal wetlands have long been considered vulnerable to sea-level rise, recent work has identified fascinating feedbacks between plant growth and geomorphology that allow wetlands to actively resist the deleterious effects of sea-level rise. Humans alter the strength of these feedbacks by changing the climate, nutrient inputs, sediment delivery and subsidence rates. Whether wetlands continue to survive sea-level rise depends largely on how human impacts interact with rapid sea-level rise, and socio-economic factors that influence transgression into adjacent uplands.


Asunto(s)
Humedales , Animales , Cambio Climático , Ecosistema , Eutrofización , Humanos , Océanos y Mares , Olas de Marea
11.
Microb Ecol ; 76(3): 782-790, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29536132

RESUMEN

The rapid expansion of Phragmites australis in brackish marshes of the East Coast of the USA has drawn much attention, because it may change vegetation diversity and ecosystem functions. In particular, higher primary production of Phragmites than that of other native species such as Spartina patens and Schoenoplectus americanus has been noted, suggesting possible changes in carbon storage potential in salt marshes. To better understand the long-term effect of the invasion of Phragmites on carbon storage, however, information on decomposition rates of soil organic matter is essential. To address this issue, we compared microbial enzyme activities and microbial functional gene abundances (fungi, laccase, denitrifier, and methanogens) in three depths of soils with three different plants in a brackish marsh in Maryland, USA. Laccase and phenol oxidase activities were measured to assess the decomposition potential of recalcitrant carbon while ß-glucosidase activity was determined as proxy for cellulose decomposition rate. Microbial activities near the surface (0-15 cm) were the highest in Spartina-community sites followed by Phragmites- and Schoenoplectus-community sites. A comparison of stable isotopic signatures (δ13C and δ15N) of soils and plant leaves suggests that deep organic carbon in the soils mainly originated from Spartina, and only the surface soils may have been influenced by Phragmites litter. In contrast, fungal, laccase, and denitrifier abundances determined by real-time qPCR exhibited no discernible patterns among the surface soils of the three vegetation types. However, the abundance of methanogens was higher in the deep Phragmites-community soil. Therefore, Phragmites invasion will accelerate CH4 emission by greater CH4 production in deep soils with abundant methanogens, although enzymatic mechanisms revealed the potential for larger C accumulation by Phragmites invasion in salt marshes in the east coast of the USA.


Asunto(s)
Bacterias/enzimología , Bacterias/aislamiento & purificación , Proteínas Bacterianas/análisis , Proteínas Fúngicas/análisis , Hongos/enzimología , Poaceae/crecimiento & desarrollo , Microbiología del Suelo , Suelo/química , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/clasificación , Hongos/aislamiento & purificación , Especies Introducidas , Lacasa/análisis , Lacasa/metabolismo , Monofenol Monooxigenasa/análisis , Monofenol Monooxigenasa/metabolismo , Humedales , beta-Glucosidasa/análisis , beta-Glucosidasa/metabolismo
12.
New Phytol ; 214(4): 1432-1439, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28370057

RESUMEN

Global budgets ascribe 4-10% of atmospheric methane (CH4 ) sinks to upland soils and have assumed until recently that soils are the sole surface for CH4 exchange in upland forests. Here we report that CH4 is emitted from the stems of dominant tree species in a temperate upland forest, measured using both the traditional static-chamber method and a new high-frequency, automated system. Tree emissions averaged across 68 observations on 17 trees from May to September were 1.59 ± 0.88 µmol CH4  m-2  stem h-1 (mean ± 95% confidence interval), while soils adjacent to the trees consumed atmospheric CH4 at a rate of -4.52 ± 0.64 µmol CH4  m-2  soil h-1 (P < 0.0001). High-frequency measurements revealed diurnal patterns in the rate of tree-stem CH4 emissions. A simple scaling exercise suggested that tree emissions offset 1-6% of the growing season soil CH4 sink and may have briefly changed the forest to a net CH4 source.


Asunto(s)
Bosques , Metano/análisis , Árboles/metabolismo , Ecosistema , Monitoreo del Ambiente/métodos , Maryland , Metano/metabolismo , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Suelo/química
13.
Glob Chang Biol ; 23(5): 2104-2116, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27779794

RESUMEN

Understanding the processes that control deep soil carbon (C) dynamics and accumulation is of key importance, given the relevance of soil organic matter (SOM) as a vast C pool and climate change buffer. Methodological constraints of measuring SOM decomposition in the field prevent the addressing of real-time rhizosphere effects that regulate nutrient cycling and SOM decomposition. An invasive lineage of Phragmites australis roots deeper than native vegetation (Schoenoplectus americanus and Spartina patens) in coastal marshes of North America and has potential to dramatically alter C cycling and accumulation in these ecosystems. To evaluate the effect of deep rooting on SOM decomposition we designed a mesocosm experiment that differentiates between plant-derived, surface SOM-derived (0-40 cm, active root zone of native marsh vegetation), and deep SOM-derived mineralization (40-80 cm, below active root zone of native vegetation). We found invasive P. australis allocated the highest proportion of roots in deeper soils, differing significantly from the native vegetation in root : shoot ratio and belowground biomass allocation. About half of the CO2 produced came from plant tissue mineralization in invasive and native communities; the rest of the CO2 was produced from SOM mineralization (priming). Under P. australis, 35% of the CO2 was produced from deep SOM priming and 9% from surface SOM. In the native community, 9% was produced from deep SOM priming and 44% from surface SOM. SOM priming in the native community was proportional to belowground biomass, while P. australis showed much higher priming with less belowground biomass. If P. australis deep rooting favors the decomposition of deep-buried SOM accumulated under native vegetation, P. australis invasion into a wetland could fundamentally change SOM dynamics and lead to the loss of the C pool that was previously sequestered at depth under the native vegetation, thereby altering the function of a wetland as a long-term C sink.


Asunto(s)
Secuestro de Carbono , Poaceae/química , Humedales , Carbono , Cambio Climático , América del Norte , Suelo
14.
Ecol Appl ; 27(3): 859-874, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27992951

RESUMEN

Coastal ecosystems produce and sequester significant amounts of carbon ("blue carbon"), which has been well documented in humid and semi-humid regions of temperate and tropical climates but less so in arid regions where mangroves, marshes, and seagrasses exist near the limit of their tolerance for extreme temperature and salinity. To better understand these unique systems, we measured whole-ecosystem carbon stocks in 58 sites across the United Arab Emirates (UAE) in natural and planted mangroves, salt marshes, seagrass beds, microbial mats, and coastal sabkha (inter- and supratidal unvegetated salt flats). Natural mangroves held significantly more carbon in above- and belowground biomass than other vegetated ecosystems. Planted mangrove carbon stocks increased with age, but there were large differences for sites of similar age. Soil carbon varied widely across sites (2-367 Mg C/ha), with ecosystem averages that ranged from 49 to 156 Mg C/ha. For the first time, microbial mats were documented to contain soil carbon pools comparable to vascular plant-dominated ecosystems, and could arguably be recognized as a unique blue carbon ecosystem. Total ecosystem carbon stocks ranged widely from 2 to 515 Mg C/ha (seagrass bed and mangrove, respectively). Seagrass beds had the lowest carbon stock per unit area, but the largest stock per total area due to their large spatial coverage. Compared to similar ecosystems globally, mangroves and marshes in the UAE have lower plant and soil carbon stocks; however, the difference in soil stocks is far larger than with plant stocks. This incongruent difference between stocks is likely due to poor carbon preservation under conditions of weakly reduced soils (200-350 mV), coarse-grained sediments, and active shoreline migration. This work represents the first attempt to produce a country-wide coastal ecosystem carbon accounting using a uniform sampling protocol, and was motivated by specific policy goals identified by the Abu Dhabi Global Environmental Data Initiative. These carbon stock data supported two objectives: to quantify carbon stocks and infer sequestration capacity in arid blue carbon ecosystems, and to explore the potential to incorporate blue carbon science into national reporting and planning documents.


Asunto(s)
Alismatales/fisiología , Secuestro de Carbono , Ecosistema , Emiratos Árabes Unidos , Humedales
15.
New Phytol ; 211(2): 429-39, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26918765

RESUMEN

Upland forests are traditionally thought to be net sinks for atmospheric methane (CH4 ). In such forests, in situ CH4 fluxes on tree trunks have been neglected relative to soil and canopy fluxes. We measured in situ CH4 fluxes from the trunks of living trees and other surfaces, such as twigs and soils, using a static closed-chamber method, and estimated the CH4 budget in a temperate upland forest in Beijing. We found that the trunks of Populus davidiana emitted large quantities of CH4 during July 2014-July 2015, amounting to mean annual emissions of 85.3 and 103.1 µg m(-2)  h(-1) on a trunk surface area basis on two replicate plots. The emission rates were similar in magnitude to those from tree trunks in wetland forests. The emitted CH4 was derived from the heartwood of trunks. On a plot or ecosystem scale, trunk CH4 emissions were equivalent to c. 30-90% of the amount of CH4 consumed by soils throughout the year, with an annual average of 63%. Our findings suggest that wet heartwoods, regardless of rot or not, occur widely in living trees on various habitats, where CH4 can be produced.


Asunto(s)
Ecosistema , Metano/análisis , Suelo/química , Árboles/química , Oxidación-Reducción , Factores de Tiempo , Madera/química
16.
Glob Chang Biol ; 22(1): 391-403, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26577708

RESUMEN

Biogeochemical models that incorporate nitrogen (N) limitation indicate that N availability will control the magnitude of ecosystem carbon uptake in response to rising CO2 . Some models, however, suggest that elevated CO2 may promote ecosystem N accumulation, a feedback that in the long term could circumvent N limitation of the CO2 response while mitigating N pollution. We tested this prediction using a nine-year CO2 xN experiment in a tidal marsh. Although the effects of CO2 are similar between uplands and wetlands in many respects, this experiment offers a greater likelihood of detecting CO2 effects on N retention on a decadal timescale because tidal marshes have a relatively open N cycle and can accrue soil organic matter rapidly. To determine how elevated CO2 affects N dynamics, we assessed the three primary fates of N in a tidal marsh: (1) retention in plants and soil, (2) denitrification to the atmosphere, and (3) tidal export. We assessed changes in N pools and tracked the fate of a (15) N tracer added to each plot in 2006 to quantify the fraction of added N retained in vegetation and soil, and to estimate lateral N movement. Elevated CO2 alone did not increase plant N mass, soil N mass, or (15) N label retention. Unexpectedly, CO2 and N interacted such that the combined N+CO2 treatment increased ecosystem N accumulation despite the stimulation in N losses indicated by reduced (15) N label retention. These findings suggest that in N-limited ecosystems, elevated CO2 is unlikely to increase long-term N accumulation and circumvent progressive N limitation without additional N inputs, which may relieve plant-microbe competition and allow for increased plant N uptake.


Asunto(s)
Dióxido de Carbono/metabolismo , Ecosistema , Ciclo del Nitrógeno , Nitrógeno/metabolismo , Plantas/metabolismo , Humedales , Atmósfera/química , Maryland , Isótopos de Nitrógeno , Suelo/química , Olas de Marea
17.
Nature ; 466(7302): 96-9, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20596018

RESUMEN

Terrestrial ecosystems gain carbon through photosynthesis and lose it mostly in the form of carbon dioxide (CO(2)). The extent to which the biosphere can act as a buffer against rising atmospheric CO(2) concentration in global climate change projections remains uncertain at the present stage. Biogeochemical theory predicts that soil nitrogen (N) scarcity may limit natural ecosystem response to elevated CO(2) concentration, diminishing the CO(2)-fertilization effect on terrestrial plant productivity in unmanaged ecosystems. Recent models have incorporated such carbon-nitrogen interactions and suggest that anthropogenic N sources could help sustain the future CO(2)-fertilization effect. However, conclusive demonstration that added N enhances plant productivity in response to CO(2)-fertilization in natural ecosystems remains elusive. Here we manipulated atmospheric CO(2) concentration and soil N availability in a herbaceous brackish wetland where plant community composition is dominated by a C(3) sedge and C(4) grasses, and is capable of responding rapidly to environmental change. We found that N addition enhanced the CO(2)-stimulation of plant productivity in the first year of a multi-year experiment, indicating N-limitation of the CO(2) response. But we also found that N addition strongly promotes the encroachment of C(4) plant species that respond less strongly to elevated CO(2) concentrations. Overall, we found that the observed shift in the plant community composition ultimately suppresses the CO(2)-stimulation of plant productivity by the third and fourth years. Although extensive research has shown that global change factors such as elevated CO(2) concentrations and N pollution affect plant species differently and that they may drive plant community changes, we demonstrate that plant community shifts can act as a feedback effect that alters the whole ecosystem response to elevated CO(2) concentrations. Moreover, we suggest that trade-offs between the abilities of plant taxa to respond positively to different perturbations may constrain natural ecosystem response to global change.


Asunto(s)
Dióxido de Carbono/metabolismo , Ecosistema , Nitrógeno/metabolismo , Plantas/metabolismo , Atmósfera/análisis , Atmósfera/química , Biomasa , Dióxido de Carbono/análisis , Actividades Humanas , Desarrollo de la Planta , Poaceae/crecimiento & desarrollo , Poaceae/metabolismo , Ríos , Suelo/análisis , Agua/análisis , Humedales
18.
New Phytol ; 200(3): 753-766, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23718224

RESUMEN

Rising atmospheric carbon dioxide (CO2) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO2. We used open-top chambers to manipulate CO2 during regrowth after fire, and measured C, N and tracer (15) N in ecosystem components throughout the experiment. Elevated CO2 increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO2 increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term (15) N tracer indicated that CO2 exposure increased N losses and altered N distribution, with no effect on N inputs. Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO2 on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO2 in current biogeochemical models, where the effect of elevated CO2 on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Ambiente , Nitrógeno/metabolismo , Quercus/metabolismo , Microbiología del Suelo , Suelo/química , Atmósfera , Ciclo del Carbono , Ecosistema , Incendios , Ciclo del Nitrógeno , Fotosíntesis , Quercus/crecimiento & desarrollo , Árboles , Clima Tropical
19.
New Phytol ; 200(3): 767-777, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23869799

RESUMEN

Disturbance affects most terrestrial ecosystems and has the potential to shape their responses to chronic environmental change. Scrub-oak vegetation regenerating from fire disturbance in subtropical Florida was exposed to experimentally elevated carbon dioxide (CO2) concentration (+350 µl l(-1)) using open-top chambers for 11 yr, punctuated by hurricane disturbance in year 8. Here, we report the effects of elevated CO2 on aboveground and belowground net primary productivity (NPP) and nitrogen (N) cycling during this experiment. The stimulation of NPP and N uptake by elevated CO2 peaked within 2 yr after disturbance by fire and hurricane, when soil nutrient availability was high. The stimulation subsequently declined and disappeared, coincident with low soil nutrient availability and with a CO2 -induced reduction in the N concentration of oak stems. These findings show that strong growth responses to elevated CO2 can be transient, are consistent with a progressively limited response to elevated CO2 interrupted by disturbance, and illustrate the importance of biogeochemical responses to extreme events in modulating ecosystem responses to global environmental change.


Asunto(s)
Dióxido de Carbono/metabolismo , Tormentas Ciclónicas , Ecosistema , Incendios , Nitrógeno/metabolismo , Quercus/crecimiento & desarrollo , Suelo/química , Atmósfera , Biomasa , Florida , Ciclo del Nitrógeno , Tallos de la Planta/metabolismo , Quercus/metabolismo , Árboles/crecimiento & desarrollo , Árboles/metabolismo
20.
Environ Microbiol ; 14(5): 1145-58, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22264231

RESUMEN

Six terrestrial ecosystems in the USA were exposed to elevated atmospheric CO(2) in single or multifactorial experiments for more than a decade to assess potential impacts. We retrospectively assessed soil bacterial community responses in all six-field experiments and found ecosystem-specific and common patterns of soil bacterial community response to elevated CO(2) . Soil bacterial composition differed greatly across the six ecosystems. No common effect of elevated atmospheric CO(2) on bacterial biomass, richness and community composition across all of the ecosystems was identified, although significant responses were detected in individual ecosystems. The most striking common trend across the sites was a decrease of up to 3.5-fold in the relative abundance of Acidobacteria Group 1 bacteria in soils exposed to elevated CO(2) or other climate factors. The Acidobacteria Group 1 response observed in exploratory 16S rRNA gene clone library surveys was validated in one ecosystem by 100-fold deeper sequencing and semi-quantitative PCR assays. Collectively, the 16S rRNA gene sequencing approach revealed influences of elevated CO(2) on multiple ecosystems. Although few common trends across the ecosystems were detected in the small surveys, the trends may be harbingers of more substantive changes in less abundant, more sensitive taxa that can only be detected by deeper surveys. Representative bacterial 16S rRNA gene clone sequences were deposited in GenBank with Accession No. JQ366086­JQ387568.


Asunto(s)
Bacterias/metabolismo , Dióxido de Carbono/metabolismo , Ecosistema , Microbiología del Suelo , Acidobacteria/genética , Bacterias/genética , Biodiversidad , Biomasa , Dióxido de Carbono/análisis , Genes de ARNr/genética , Suelo/análisis , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA