RESUMEN
BACKGROUND: Major fish allergens, including parvalbumin (PV), are heat stable and can withstand extensive cooking processes. Thus, the management of fish allergy generally relies on complete avoidance. Fish-allergic patients may be advised to consume canned fish, as some fish-allergic individuals have reported tolerance to canned fish. However, the safety of consuming canned fish has not been evaluated with comprehensive immunological and molecular analysis of canned fish products. METHODS: We characterized the in vitro immunoreactivity of serum obtained from fish-allergic subjects to canned fish. Seventeen canned fish products (salmon n = 8; tuna n = 7; sardine n = 2) were assessed for the content and integrity of PV using allergen-specific antibodies. Subsequently, the sIgE binding of five selected products was evaluated for individual fish-allergic patients (n = 53). Finally, sIgE-binding proteins were identified by mass spectrometry. RESULTS: The canned fish showed a markedly reduced PV content and binding to PV-specific antibodies compared with conventionally cooked fish. However, PV and other heat-stable fish allergens, including tropomyosin and collagen, still maintained their sIgE-binding capacity. Of 53 patients, 66% showed sIgE binding to canned fish proteins. The canned sardine contained proteins bound to sIgE from 51% of patients, followed by canned salmon (43%-45%) and tuna (8%-17%). PV was the major allergen in canned salmon and sardine. Tropomyosin and/or collagen also showed sIgE binding. CONCLUSION: We showed that canned fish products may not be safe for all fish-allergic patients. Canned fish products should only be considered into the diet of individuals with fish allergy, after detailed evaluation which may include in vitro diagnostics to various heat-stable fish allergens and food challenge conducted in suitable environments.
Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Animales , Humanos , Tropomiosina , Peces , Anticuerpos , Salmón , Productos Pesqueros/efectos adversos , Parvalbúminas , ColágenoRESUMEN
BACKGROUND: Diagnostic tests for fish allergy are hampered by the large number of under-investigated fish species. Four salmon allergens are well-characterized and registered with the WHO/IUIS while no catfish allergens have been described so far. In 2008, freshwater-cultured catfish production surpassed that of salmon, the globally most-cultured marine species. We aimed to identify, quantify, and compare all IgE-binding proteins in salmon and catfish. METHODS: Seventy-seven pediatric patients with clinically confirmed fish allergy underwent skin prick tests to salmon and catfish. The allergen repertoire of raw and heated protein extracts was evaluated by immunoblotting using five allergen-specific antibodies and patients' serum followed by mass spectrometric analyses. RESULTS: Raw and heated extracts from catfish displayed a higher frequency of IgE-binding compared to those from salmon (77% vs 70% and 64% vs 53%, respectively). The major fish allergen parvalbumin demonstrated the highest IgE-binding capacity (10%-49%), followed by triosephosphate isomerase (TPI; 19%-34%) in raw and tropomyosin (6%-32%) in heated extracts. Six previously unidentified fish allergens, including TPI, were registered with the WHO/IUIS. Creatine kinase from salmon and catfish was detected by IgE from 14% and 10% of patients, respectively. Catfish L-lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, and glucose-6-phosphate isomerase showed IgE-binding for 6%-13% of patients. In salmon, these proteins could not be separated successfully. CONCLUSIONS: We detail the allergen repertoire of two highly farmed fish species. IgE-binding to fish tropomyosins and TPIs was demonstrated for the first time in a large patient cohort. Tropomyosins, in addition to parvalbumins, should be considered for urgently needed improved fish allergy diagnostics.
Asunto(s)
Alérgenos/inmunología , Hipersensibilidad a los Alimentos , Animales , Bagres , Niño , Hipersensibilidad a los Alimentos/diagnóstico , Humanos , Parvalbúminas , SalmónRESUMEN
BACKGROUND: Commercial allergen extracts for allergy skin prick testing (SPT) are widely used for diagnosing fish allergy. However, there is currently no regulatory requirement for standardization of protein and allergen content, potentially impacting the diagnostic reliability of SPTs. We therefore sought to analyse commercial fish extracts for the presence and concentration of fish proteins and in vitro IgE reactivity using serum from fish-allergic patients. METHODS: Twenty-six commercial fish extracts from five different manufacturers were examined. The protein concentrations were determined, protein compositions analysed by mass spectrometry, followed by SDS-PAGE and subsequent immunoblotting with antibodies detecting 4 fish allergens (parvalbumin, tropomyosin, aldolase and collagen). IgE-reactive proteins were identified using serum from 16 children with confirmed IgE-mediated fish allergy, with focus on cod, tuna and salmon extracts. RESULTS: The total protein, allergen concentration and IgE reactivity of the commercial extracts varied over 10-fold between different manufacturers and fish species. The major fish allergen parvalbumin was not detected by immunoblotting in 6/26 extracts. In 7/12 extracts, five known fish allergens were detected by mass spectrometry. For cod and tuna, almost 70% of patients demonstrated the strongest IgE reactivity to collagen, tropomyosin, aldolase A or ß-enolase but not parvalbumin. CONCLUSIONS: Commercial fish extracts often contain insufficient amounts of important allergens including parvalbumin and collagen, resulting in low IgE reactivity. A comprehensive proteomic approach for the evaluation of SPT extracts for their utility in allergy diagnostics is presented. There is an urgent need for standardized allergen extracts, which will improve the diagnosis and management of fish allergy.