Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Dev Biol ; 471: 97-105, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33340512

RESUMEN

During neurulation, cranial neural crest cells (CNCCs) migrate long distances from the neural tube to their terminal site of differentiation. The pathway traveled by the CNCCs defines the blueprint for craniofacial construction, abnormalities of which contribute to three-quarters of human birth defects. Biophysical cues like naturally occurring electric fields (EFs) have been proposed to be one of the guiding mechanisms for CNCC migration from the neural tube to identified position in the branchial arches. Such endogenous EFs can be mimicked by applied EFs of physiological strength that has been reported to guide the migration of amphibian and avian neural crest cells (NCCs), namely galvanotaxis or electrotaxis. However, the behavior of mammalian NCCs in external EFs has not been reported. We show here that mammalian CNCCs migrate towards the anode in direct current (dc) EFs. Reversal of the field polarity reverses the directedness. The response threshold was below 30 â€‹mV/mm and the migration directedness and displacement speed increased with increase in field strength. Both CNCC line (O9-1) and primary mouse CNCCs show similar galvanotaxis behavior. Our results demonstrate for the first time that the mammalian CNCCs respond to physiological EFs by robust directional migration towards the anode in a voltage-dependent manner.


Asunto(s)
Región Branquial/embriología , Diferenciación Celular , Movimiento Celular , Electricidad , Transducción de Señal , Animales , Región Branquial/citología , Línea Celular , Ratones , Cresta Neural/citología
2.
Cell Mol Life Sci ; 77(14): 2681-2699, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31974658

RESUMEN

This review provides a comprehensive overview on the biomedical applications of electrical stimulation (EStim). EStim has a wide range of direct effects on both biomolecules and cells. These effects have been exploited to facilitate proliferation and functional development of engineered tissue constructs for regenerative medicine applications. They have also been tested or used in clinics for pain mitigation, muscle rehabilitation, the treatment of motor/consciousness disorders, wound healing, and drug delivery. However, the research on fundamental mechanism of cellular response to EStim has fell behind its applications, which has hindered the full exploitation of the clinical potential of EStim. Moreover, despite the positive outcome from the in vitro and animal studies testing the efficacy of EStim, existing clinical trials failed to establish strong, conclusive supports for the therapeutic efficacy of EStim for most of the clinical applications mentioned above. Two potential directions of future research to improve the clinical utility of EStim are presented, including the optimization and standardization of the stimulation protocol and the development of more tissue-matching devices.


Asunto(s)
Estimulación Eléctrica , Manejo del Dolor , Medicina Regenerativa , Ingeniería de Tejidos , Animales , Proliferación Celular/efectos de la radiación , Humanos
3.
Neurobiol Dis ; 140: 104837, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32199908

RESUMEN

Amyotrophic Lateral Sclerosis (ALS), a late-onset neurodegenerative disorder characterized by the loss of motor neurons in the central nervous system, has no known cure to-date. Disease causing mutations in human Fused in Sarcoma (FUS) leads to aggressive and juvenile onset of ALS. FUS is a well-conserved protein across different species, which plays a crucial role in regulating different aspects of RNA metabolism. Targeted misexpression of FUS in Drosophila model recapitulates several interesting phenotypes relevant to ALS including cytoplasmic mislocalization, defects at the neuromuscular junction and motor dysfunction. We screened for the genetic modifiers of human FUS-mediated neurodegenerative phenotype using molecularly defined deficiencies. We identified hippo (hpo), a component of the evolutionarily conserved Hippo growth regulatory pathway, as a genetic modifier of FUS mediated neurodegeneration. Gain-of-function of hpo triggers cell death whereas its loss-of-function promotes cell proliferation. Downregulation of the Hippo signaling pathway, using mutants of Hippo signaling, exhibit rescue of FUS-mediated neurodegeneration in the Drosophila eye, as evident from reduction in the number of TUNEL positive nuclei as well as rescue of axonal targeting from the retina to the brain. The Hippo pathway activates c-Jun amino-terminal (NH2) Kinase (JNK) mediated cell death. We found that downregulation of JNK signaling is sufficient to rescue FUS-mediated neurodegeneration in the Drosophila eye. Our study elucidates that Hippo signaling and JNK signaling are activated in response to FUS accumulation to induce neurodegeneration. These studies will shed light on the genetic mechanism involved in neurodegeneration observed in ALS and other associated disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Degeneración Nerviosa/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Animales , Axones/metabolismo , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas Motoras/metabolismo , Mutación , Unión Neuromuscular/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Transducción de Señal
4.
Hum Genomics ; 9: 5, 2015 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-25928839

RESUMEN

Serogroup A of Neisseria meningitidis is the organism responsible for causing epidemic diseases in developing countries by a pilus-mediated adhesion to human brain endothelial cells. Type IV pilus assembly protein (PilF) associated with bacterial adhesion, aggregation, invasion, host cell signaling, surface motility, and natural transformation can be considered as a candidate for effective anti-meningococcal drug development. Since the crystal structure of PilF was not available, in the present study, it was modeled after the Z2491 strain (CAM09255.1) using crystal structure of chain A of Vibrio cholerae putative Ntpase EpsE (Protein Data Bank (PDB) ID: 1P9R) and then we based this analysis on sequence comparisons and structural similarity using in silico methods and docking processes, to design a suitable inhibitor molecule. The ligand 3-{(4S)-5-{[(1R)-1-cyclohexylethyl]amino}-4-[(5S)-5-(prop-2-en-1-yl) cyclopent-1-en-1-yl]-1,4-dihydro-7H-pyrrolo[2,3-d] pyrimidin-7-yl}-1,2-dideoxy-b-L-erythro-hex-1-en-3-ulofuranosyl binds to the protein with a binding energy of -8.10 kcal and showed a drug likeness of 0.952 with no predicted health hazard. It can be utilized as a potent inhibitor of N. meningitidis pilus-mediated adhesion to human brain endothelial cells preventing meningeal colonization.


Asunto(s)
Proteínas Bacterianas/química , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Neisseria meningitidis/química , Secuencia de Aminoácidos/genética , Adhesión Bacteriana/genética , Proteínas Bacterianas/genética , Dominio Catalítico/genética , Simulación por Computador , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Neisseria meningitidis/genética , Neisseria meningitidis/patogenicidad , Nucleósido-Trifosfatasa/química , Nucleósido-Trifosfatasa/genética , Conformación Proteica , Vibrio cholerae/química , Vibrio cholerae/genética
5.
Adv Mater ; 36(1): e2306691, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37680065

RESUMEN

Conductive hydrogels are promising materials with mixed ionic-electronic conduction to interface living tissue (ionic signal transmission) with medical devices (electronic signal transmission). The hydrogel form factor also uniquely bridges the wet/soft biological environment with the dry/hard environment of electronics. The synthesis of hydrogels for bioelectronics requires scalable, biocompatible fillers with high electronic conductivity and compatibility with common aqueous hydrogel formulations/resins. Despite significant advances in the processing of carbon nanomaterials, fillers that satisfy all these requirements are lacking. Herein, intrinsically dispersible acid-crystalized PEDOT:PSS nanoparticles (ncrys-PEDOTX ) are reported which are processed through a facile and scalable nonsolvent induced phase separation method from commercial PEDOT:PSS without complex instrumentation. The particles feature conductivities of up to 410 S cm-1 , and when compared to other common conductive fillers, display remarkable dispersibility, enabling homogeneous incorporation at relatively high loadings within diverse aqueous biomaterial solutions without additives or surfactants. The aqueous dispersibility of the ncrys-PEDOTX particles also allows simple incorporation into resins designed for microstereolithography without sonication or surfactant optimization; complex biomedical structures with fine features (< 150 µm) are printed with up to 10% particle loading . The ncrys-PEDOTX particles overcome the challenges of traditional conductive fillers, providing a scalable, biocompatible, plug-and-play platform for soft organic bioelectronic materials.

6.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398108

RESUMEN

The peripheral nerves (PNs) innervate the dermis and epidermis, which have been suggested to play an important role in wound healing. Several methods to quantify skin innervation during wound healing have been reported. Those usually require multiple observers, are complex and labor-intensive, and noise/background associated with the Immunohistochemistry (IHC) images could cause quantification errors/user bias. In this study, we employed the state-of-the-art deep neural network, DnCNN, to perform pre-processing and effectively reduce the noise in the IHC images. Additionally, we utilized an automated image analysis tool, assisted by Matlab, to accurately determine the extent of skin innervation during various stages of wound healing. The 8mm wound is generated using a circular biopsy punch in the wild-type mouse. Skin samples were collected on days 3,7,10 and 15, and sections from paraffin-embedded tissues were stained against pan-neuronal marker- protein-gene-product 9.5 (PGP 9.5) antibody. On day 3 and day 7, negligible nerve fibers were present throughout the wound with few only on the lateral boundaries of the wound. On day 10, a slight increase in nerve fiber density appeared, which significantly increased on day 15. Importantly we found a positive correlation (R- 2 = 0.933) between nerve fiber density and re-epithelization, suggesting an association between re-innervation and re-epithelization. These results established a quantitative time course of re-innervation in wound healing, and the automated image analysis method offers a novel and useful tool to facilitate the quantification of innervation in the skin and other tissues.

7.
Res Sq ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461461

RESUMEN

The peripheral nerves (PNs) innervate the dermis and epidermis, which have been suggested to play an important role in wound healing. Several methods to quantify skin innervation during wound healing have been reported. Those usually require multiple observers, are complex and labor-intensive, and noise/background associated with the Immunohistochemistry (IHC) images could cause quantification errors/user bias. In this study, we employed the state-of-the-art deep neural network, DnCNN, to perform pre-processing and effectively reduce the noise in the IHC images. Additionally, we utilized an automated image analysis tool, assisted by Matlab, to accurately determine the extent of skin innervation during various stages of wound healing. The 8mm wound is generated using a circular biopsy punch in the wild-type mouse. Skin samples were collected on days 3,7,10 and 15, and sections from paraffin-embedded tissues were stained against pan-neuronal marker- protein-gene-product 9.5 (PGP 9.5) antibody. On day 3 and day 7, negligible nerve fibers were present throughout the wound with few only on the lateral boundaries of the wound. On day 10, a slight increase in nerve fiber density appeared, which significantly increased on day 15. Importantly we found a positive correlation (R 2 = 0.933) between nerve fiber density and re-epithelization, suggesting an association between re-innervation and re-epithelization. These results established a quantitative time course of re-innervation in wound healing, and the automated image analysis method offers a novel and useful tool to facilitate the quantification of innervation in the skin and other tissues.

8.
Sci Rep ; 13(1): 16885, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803028

RESUMEN

The peripheral nerves (PNs) innervate the dermis and epidermis, and are suggested to play an important role in wound healing. Several methods to quantify skin innervation during wound healing have been reported. Those usually require multiple observers, are complex and labor-intensive, and the noise/background associated with the immunohistochemistry (IHC) images could cause quantification errors/user bias. In this study, we employed the state-of-the-art deep neural network, Denoising Convolutional Neural Network (DnCNN), to perform pre-processing and effectively reduce the noise in the IHC images. Additionally, we utilized an automated image analysis tool, assisted by Matlab, to accurately determine the extent of skin innervation during various stages of wound healing. The 8 mm wound is generated using a circular biopsy punch in the wild-type mouse. Skin samples were collected on days 3, 7, 10 and 15, and sections from paraffin-embedded tissues were stained against pan-neuronal marker- protein-gene-product 9.5 (PGP 9.5) antibody. On day 3 and day 7, negligible nerve fibers were present throughout the wound with few only on the lateral boundaries of the wound. On day 10, a slight increase in nerve fiber density appeared, which significantly increased on day 15. Importantly, we found a positive correlation (R2 = 0.926) between nerve fiber density and re-epithelization, suggesting an association between re-innervation and re-epithelization. These results established a quantitative time course of re-innervation in wound healing, and the automated image analysis method offers a novel and useful tool to facilitate the quantification of innervation in the skin and other tissues.


Asunto(s)
Aprendizaje Profundo , Ratones , Animales , Cicatrización de Heridas/fisiología , Piel/patología , Nervios Periféricos , Fibras Nerviosas/patología
9.
Nat Commun ; 14(1): 7019, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945597

RESUMEN

Implantable cell therapies and tissue transplants require sufficient oxygen supply to function and are limited by a delay or lack of vascularization from the transplant host. Previous exogenous oxygenation strategies have been bulky and had limited oxygen production or regulation. Here, we show an electrocatalytic approach that enables bioelectronic control of oxygen generation in complex cellular environments to sustain engineered cell viability and therapy under hypoxic stress and at high cell densities. We find that nanostructured sputtered iridium oxide serves as an ideal catalyst for oxygen evolution reaction at neutral pH. We demonstrate that this approach exhibits a lower oxygenation onset and selective oxygen production without evolution of toxic byproducts. We show that this electrocatalytic on site oxygenator can sustain high cell loadings (>60k cells/mm3) in hypoxic conditions in vitro and in vivo. Our results showcase that exogenous oxygen production devices can be readily integrated into bioelectronic platforms, enabling high cell loadings in smaller devices with broad applicability.


Asunto(s)
Hipoxia , Oxígeno , Humanos , Hipoxia de la Célula , Fenómenos Fisiológicos Respiratorios
10.
STAR Protoc ; 3(1): 101140, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35128481

RESUMEN

Cell death maintains tissue homeostasis by eliminating dispensable cells. Misregulation of cell death is seen in diseases like cancer, neurodegeneration, etc. Therefore, cell death assays like TUNEL have become reliable tools, where fragmented DNA of dying cells gets fluorescently labeled and can be detected under microscope. We used TUNEL assay in Drosophila melanogaster third-instar larval eye-antennal imaginal discs to label and quantify cell death. This assay is sensitive to detect DNA fragmentation, an important event, during apoptosis in retinal neurons. For complete details on the use and execution of this profile, please refer to Wang et al. (1999), Tare et al. (2011), and Mehta et al. (2021).


Asunto(s)
Drosophila , Discos Imaginales , Animales , Apoptosis , Drosophila/genética , Drosophila melanogaster , Etiquetado Corte-Fin in Situ
11.
Sci Rep ; 12(1): 9912, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705588

RESUMEN

Many cell types migrate in response to naturally generated electric fields. Furthermore, it has been suggested that the external application of an electric field may be used to intervene in and optimize natural processes such as wound healing. Precise cell guidance suitable for such optimization may rely on predictive models of cell migration, which do not generalize. Here, we present a machine learning model that can forecast directedness of cell migration given a timeseries of previous directedness and electric field values. This model is trained using time series galvanotaxis data of mammalian cranial neural crest cells obtained through time-lapse microscopy of cells cultured at 37 °C in a galvanotaxis chamber at ambient pressure. Next, we show that our modeling approach can be used for a variety of cell types and experimental conditions with very limited training data using transfer learning methods. We adapt the model to predict cell behavior for keratocytes (room temperature, ~ 18-20 °C) and keratinocytes (37 °C) under similar experimental conditions with a small dataset (~ 2-5 cells). Finally, this model can be used to perform in silico studies by simulating cell migration lines under time-varying and unseen electric fields. We demonstrate this by simulating feedback control on cell migration using a proportional-integral-derivative (PID) controller. This data-driven approach provides predictive models of cell migration that may be suitable for designing electric field based cellular control mechanisms for applications in precision medicine such as wound healing.


Asunto(s)
Electricidad , Queratinocitos , Animales , Movimiento Celular/fisiología , Estimulación Eléctrica/métodos , Queratinocitos/fisiología , Aprendizaje Automático , Mamíferos , Cicatrización de Heridas/fisiología
12.
iScience ; 24(10): 103166, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34746690

RESUMEN

Newts utilize their unique genes to restore missing parts by strategic regulation of conserved signaling pathways. Lack of genetic tools poses challenges to determine the function of such genes. Therefore, we used the Drosophila eye model to demonstrate the potential of 5 unique newt (Notophthalmus viridescens) gene(s), viropana1-viropana5 (vna1-vna5), which were ectopically expressed in L 2 mutant and GMR-hid, GMR-GAL4 eye. L 2 exhibits the loss of ventral half of early eye and head involution defective (hid) triggers cell-death during later eye development. Surprisingly, newt genes significantly restore missing photoreceptor cells both in L 2 and GMR>hid background by upregulating cell-proliferation and blocking cell-death, regulating evolutionarily conserved Wingless (Wg)/Wnt signaling pathway and exhibit non-cell-autonomous rescues. Further, Wg/Wnt signaling acts downstream of newt genes. Our data highlights that unique newt proteins can regulate conserved pathways to trigger a robust restoration of missing photoreceptor cells in Drosophila eye model with weak restoration capability.

13.
PLoS One ; 14(8): e0220416, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31419228

RESUMEN

Notophthalmus viridescens (Red-spotted Newt) possess amazing capabilities to regenerate their organs and other tissues. Previously, using a de novo assembly of the newt transcriptome combined with proteomic validation, our group identified a novel family of five protein members expressed in adult tissues during regeneration in Notophthalmus viridescens. The presence of a putative signal peptide suggests that all these proteins are secretory in nature. Here we employed iterative threading assembly refinement (I-TASSER) server to generate three-dimensional structure of these novel Newt proteins and predicted their function. Our data suggests that these proteins could act as ion transporters, and be involved in redox reaction(s). Due to absence of transgenic approaches in N. viridescens, and conservation of genetic machinery across species, we generated transgenic Drosophila melanogaster to misexpress these genes. Expression of 2775 transcripts were compared between these five newly identified Newt genes. We found that genes involved in the developmental process, cell cycle, apoptosis, and immune response are among those that are highly enriched. To validate the RNA Seq. data, expression of six highly regulated genes were verified using real time Quantitative Polymerase Chain Reaction (RT-qPCR). These graded gene expression patterns provide insight into the function of novel protein family identified in Newt, and layout a map for future studies in the field.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Notophthalmus viridescens/genética , Proteínas/genética , Animales , Notophthalmus viridescens/metabolismo , Conformación Proteica , Proteínas/metabolismo , Transcriptoma
14.
Int J Biol Macromol ; 93(Pt B): 1639-1646, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27126167

RESUMEN

Supramolecular hydrogel as a novel drug carrier was prepared from N-(9-Fluorenylmethoxycarbonyl) (Fmoc) modified l-phenylalanine. Its different properties like stability at different pH, temperature and rheology were evaluated in reference to salicylic acid (SA) as a model drug, entrapped in the supramolecular hydrogel network. The release behaviour of SA drug in supramolecular hydrogel was investigated by UV-vis spectroscopy. The influence of hydrogelator, pH values of the accepting media, temperature and concentration of SA drug on the release behaviour was investigated under static conditions. The results indicated that the release rate of SA in the supramolecular hydrogels was slightly retarded with an increase of the hydrogelator concentration. Also, the release rates of SA increased with an increase of temperature and its concentration. Furthermore, the release behaviour of SA was found to be different at various pH values in buffers. The study of the release kinetics indicated that the release behaviour of SA from the carrier was in accord with the Peppas model and the diffusion controlled mechanism involved in the Fickian model.


Asunto(s)
Portadores de Fármacos/química , Hidrogeles/química , Fenilalanina/análogos & derivados , Fenilalanina/química , Ácido Salicílico/química , Antibacterianos/química , Antibacterianos/farmacología , Portadores de Fármacos/farmacología , Composición de Medicamentos , Liberación de Fármacos , Fluorenos/química , Humanos , Hidrogeles/farmacología , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Fenilalanina/farmacología , Polimerizacion , Staphylococcus aureus/efectos de los fármacos
15.
J Biomater Appl ; 29(9): 1314-25, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25492055

RESUMEN

In the present study gentamicin was encapsulated within calcium alginate beads and incorporated into porous chitosan, gelatin, double-hybrid silk fibroin, chitosan/gelatin and double-hybrid silk fibroin/chitosan scaffolds. Physiochemical, morphological and biological properties of fabricated amenable model systems were evaluated, revealing hemocompatible nature of double-hybrid silk fibroin/chitosan and double-hybrid silk fibroin scaffolds of hemolysis %<5 and porosity >85%. Fourier transform infrared results confirmed the blend formation and scanning electron microscope images showed good interconnectivity. Double-hybrid silk fibroin/chitosan-blended scaffold shows higher compressive strength and compressive modulus than other fabricated scaffolds. A comparative drug release profile of fabricated scaffolds revealed that double-hybrid silk fibroin/chitosan scaffold is a pertinent model system because of its prolonged drug release, optimal hemocompatability and high compressive modulus.


Asunto(s)
Materiales Biocompatibles/química , Gentamicinas/administración & dosificación , Andamios del Tejido/química , Alginatos/química , Animales , Antibacterianos/administración & dosificación , Bombyx , Quitosano/química , Fuerza Compresiva , Sistemas de Liberación de Medicamentos , Ácido Glucurónico/química , Hemólisis , Ácidos Hexurónicos/química , Humanos , Técnicas In Vitro , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Porosidad , Seda/química , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA