Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Lasers Med Sci ; 35(1): 79-85, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31081523

RESUMEN

Chagas disease is endemic in Latin America and increasingly found in non-endemic countries. Its treatment is limited due to the variable efficacy and several side effects of benznidazole. Photodynamic antimicrobial chemotherapy (PACT) may be an attractive approach for treating Chagas disease. Here, the trypanocidal activity of PACT was investigated in vitro using phenothiazine derivatives. The cytotoxicity of both, methylene blue (MB) and toluidine blue (TBO), was determined on macrophages cultures using AlamarBlue method. The trypanocidal activity of the two photosensitizers was initially evaluated by determining their IC50 values against trypomastigote forms. After this, the trypanocidal effect was evaluated in cultures of infected macrophages using an automatized image analysis protocol. All experiments were performed in the dark and in the clear phase (after a photodynamic exposure). The compounds showed no cytotoxicity in both phases at the tested concentrations. The IC50 values for the sole use of MB and TBO were 2.6 and 1.2 µM, respectively. The photoactivation of the compounds using a fixed energy density (J/cm2) caused a reduction of the IC50 values to 1.0 and 0.9 µM, respectively. It was found that, on infected macrophage, the use of TBO significantly reduced the number of infected cells and parasitic load, and this effect was increased in the presence of light. The results of the present study are indicative that PACT may be considered as both selective and effective therapeutic intervention for treating Chagas disease.


Asunto(s)
Antiparasitarios/farmacología , Fenotiazinas/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiinfecciosos/farmacología , Antiparasitarios/uso terapéutico , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Enfermedad de Chagas/tratamiento farmacológico , Humanos , Luz , Azul de Metileno/química , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Ratones Endogámicos BALB C , Carga de Parásitos , Fenotiazinas/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Cloruro de Tolonio/química , Cloruro de Tolonio/farmacología , Cloruro de Tolonio/uso terapéutico , Trypanosoma cruzi/efectos de la radiación
2.
Bioorg Med Chem ; 26(8): 1971-1985, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29523468

RESUMEN

4-(Nitrophenyl)hydrazone derivatives of N-acylhydrazone were synthesized and screened for suppress lymphocyte proliferation and nitrite inhibition in macrophages. Compared to an unsubstituted N-acylhydrazone, active compounds were identified within initial series when hydroxyl, chloride and nitro substituents were employed. Structure-activity relationship was further developed by varying the position of these substituents as well as attaching structurally-related substituents. Changing substituent position revealed a more promising compound series of anti-inflammatory agents. In contrast, an N-methyl group appended to the 4-(nitrophenyl)hydrazone moiety reduced activity. Anti-inflammatory activity of compounds is achieved by modulating IL-1ß secretion and prostaglandin E2 synthesis in macrophages and by inhibiting calcineurin phosphatase activity in lymphocytes. Compound SintMed65 was advanced into an acute model of peritonitis in mice, where it inhibited the neutrophil infiltration after being orally administered. In summary, we demonstrated in great details the structural requirements and the underlying mechanism for anti-inflammatory activity of a new family of hydrazone-N-acylhydrazone, which may represent a valuable medicinal chemistry direction for the anti-inflammatory drug development in general.


Asunto(s)
Antiinflamatorios/síntesis química , Diseño de Fármacos , Hidrazonas/química , Factores Inmunológicos/síntesis química , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Hidrazonas/farmacología , Hidrazonas/uso terapéutico , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Conformación Molecular , Óxido Nítrico/metabolismo , Peritonitis/tratamiento farmacológico , Peritonitis/patología , Relación Estructura-Actividad
3.
Antimicrob Agents Chemother ; 58(10): 6044-55, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25092707

RESUMEN

cis-[RuCl(NO2)(dppb)(5,5'-mebipy)] (complex 1), cis-[Ru(NO2)2(dppb)(5,5'-mebipy)] (complex 2), ct-[RuCl(NO)(dppb)(5,5'-mebipy)](PF6)2 (complex 3), and cc-[RuCl(NO)(dppb)(5,5'-mebipy)](PF6)2 (complex 4), where 5,5'-mebipy is 5,5'-dimethyl-2,2'-bipyridine and dppb is 1,4-bis(diphenylphosphino)butane, were synthesized and characterized. The structure of complex 2 was determined by X-ray crystallography. These complexes exhibited a higher anti-Trypanosoma cruzi activity than benznidazole, the current antiparasitic drug. Complex 3 was the most potent, displaying a 50% effective concentration (EC50) of 2.1 ± 0.6 µM against trypomastigotes and a 50% inhibitory concentration (IC50) of 1.3 ± 0.2 µM against amastigotes, while it displayed a 50% cytotoxic concentration (CC50) of 51.4 ± 0.2 µM in macrophages. It was observed that the nitrosyl complex 3, but not its analog lacking the nitrosyl group, releases nitric oxide into parasite cells. This release has a diminished effect on the trypanosomal protease cruzain but induces substantial parasite autophagy, which is followed by a series of irreversible morphological impairments to the parasites and finally results in cell death by necrosis. In infected mice, orally administered complex 3 (five times at a dose of 75 µmol/kg of body weight) reduced blood parasitemia and increased the survival rate of the mice. Combination index analysis of complex 3 indicated that its in vitro activity against trypomastigotes is synergic with benznidazole. In addition, drug combination enhanced efficacy in infected mice, suggesting that ruthenium-nitrosyl complexes are potential constituents for drug combinations.


Asunto(s)
Autofagia/efectos de los fármacos , Compuestos Nitrosos/farmacología , Compuestos Organometálicos/farmacología , Rutenio/química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Compuestos Nitrosos/química , Compuestos Organometálicos/química , Tripanocidas/química
4.
FASEB J ; 27(12): 4691-702, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23964077

RESUMEN

Chagas disease, caused by Trypanosoma cruzi infection, is a leading cause of heart failure in Latin American countries. In a previous study, we showed beneficial effects of granulocyte colony-stimulating factor (G-CSF) administration in the heart function of mice with chronic T. cruzi infection. Presently, we investigated the mechanisms by which this cytokine exerts its beneficial effects. Mice chronically infected with T. cruzi were treated with human recombinant G-CSF (3 courses of 200 µg/kg/d for 5 d). Inflammation and fibrosis were reduced in the hearts of G-CSF-treated mice, compared with the hearts of vehicle-treated mice, which correlated with decreased syndecan-4, intercellular adhesion molecule-1, and galectin-3 expressions. Marked reductions in interferon-γ and tumor necrosis factor-α and increased interleukin-10 and transforming growth factor-ß were found after G-CSF administration. Because the therapy did not induce a Th1 to Th2 immune response deviation, we investigated the role of regulatory T (Treg) cells. A significant increase in CD3(+)Foxp3(+) cells was observed in the hearts of G-CSF-treated mice. In addition, a reduction of parasitism was observed after G-CSF treatment. Our results indicate a role of Treg cells in the immunosuppression induced by G-CSF treatment and reinforces its potential therapeutic use for patients with Chagas disease.


Asunto(s)
Cardiomiopatía Chagásica/tratamiento farmacológico , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Inmunomodulación , Miocarditis/tratamiento farmacológico , Linfocitos T Reguladores/efectos de los fármacos , Animales , Complejo CD3/genética , Complejo CD3/metabolismo , Cardiomiopatía Chagásica/inmunología , Cardiomiopatía Chagásica/metabolismo , Citocinas/genética , Citocinas/metabolismo , Fibrosis/tratamiento farmacológico , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Factor Estimulante de Colonias de Granulocitos/inmunología , Corazón/parasitología , Humanos , Inyecciones Intraperitoneales , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocardio/inmunología , Miocardio/metabolismo , Miocardio/patología , Carga de Parásitos , Sindecano-4/genética , Sindecano-4/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Transcripción Genética , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/patogenicidad
5.
Parasitology ; 140(14): 1811-21, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24001147

RESUMEN

We previously observed that physalins have immunomodulatory properties, as well as antileishmanial and antiplasmodial activities. Here, we investigated the anti-Trypanosoma cruzi activity of physalins B, D, F and G. We found that physalins B and F were the most potent compounds against trypomastigote and epimastigote forms of T. cruzi. Electron microscopy of trypomastigotes incubated with physalin B showed disruption of kinetoplast, alterations in Golgi apparatus and endoplasmic reticulum, followed by the formation of myelin-like figures, which were stained with MDC to confirm their autophagic vacuole identity. Physalin B-mediated alteration in Golgi apparatus was likely due to T. cruzi protease perturbation; however physalins did not inhibit activity of the trypanosomal protease cruzain. Flow cytometry examination showed that cell death is mainly caused by necrosis. Treatment with physalins reduced the invasion process, as well as intracellular parasite development in macrophage cell culture, with a potency similar to benznidazole. We observed that a combination of physalins and benznidazole has a greater anti-T. cruzi activity than when compounds were used alone. These results indicate that physalins, specifically B and F, are potent and selective trypanocidal agents. They cause structural alterations and induce autophagy, which ultimately lead to parasite cell death by a necrotic process.


Asunto(s)
Physalis/química , Secoesteroides/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Secoesteroides/química , Tripanocidas/química , Trypanosoma cruzi/fisiología , Trypanosoma cruzi/ultraestructura
6.
Dalton Trans ; 52(46): 17176-17184, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37937931

RESUMEN

The synthesized complexes, cis-[Ru(NO)(NO2)(phen)2](PF6)2 (NONO2P) and cis-[Ru(NO)(NO2)(bpy)2](PF6)2 (NONO2B), were characterized by using elemental analysis, voltammetry and electronic and vibrational spectroscopy. Under electrochemical and photochemical stimulation in an aqueous medium, there are indications of the formation of complexes, which suggests that the nitro and nitrosyl groups are converted into nitric oxide. Both compounds do not show cytotoxic activity against human umbilical vein endothelial cells (HUVECs). The cis-[Ru(NO)(NO2)(phen)2](PF6)2 complex presented vasorelaxation activity in superior mesenteric arteries from Wistar rats: the biphasic concentration-response curve indicates two sites of action. In the presence of NO scavengers, we observed an impaired relaxing effect induced by NONO2P, suggesting that the vasorelaxant effect is due to NO production from this compound.


Asunto(s)
Donantes de Óxido Nítrico , Rutenio , Ratas , Animales , Humanos , Donantes de Óxido Nítrico/farmacología , Vasodilatadores/farmacología , Dióxido de Nitrógeno , Células Endoteliales , Ratas Wistar , Óxido Nítrico , Rutenio/farmacología , Rutenio/química
7.
Toxicol Lett ; 337: 121-133, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33238178

RESUMEN

Envenoming, resulting from snake bites, is a global public health problem. The present study was undertaken to investigate the influence of Crotalus durissus cascavella (Cdcas) venom on cardiac activity and the mechanisms of action underlying its effect. To investigate the inotropic and chronotropic effects induced by Cdcas, studies were performed on the left and right atria. A series of tests were conducted to investigate whether the negative inotropic effect, induced by Cdcas, was related to cardiac damage. Cdcas venom (0.1-30 µg/mL) elicited a significant negative inotropic effect. The addition of Cdcas crude venom (7.5, 15 and 30 µg/mL) did not induce significant alterations in cell proliferation, nor in the enzymatic activity of total-CK and CKMB. Ultrastructural evaluation demonstrated that cardiac cells from isoproterenol and Cdcas groups revealed discreet swelling and displaced intermyofibrillar mitochondria with disorganization of the cristae. No change was observed in cardiac electrical activity in perfused isolated rat hearts with Cdcas. In addition, Cdcas reduced contractility in isolated cardiomyocytes from the rat left ventricle. The negative inotropic effect of Cdcas was reduced by l-NAME (100 µM), PTIO (100 µM), ODQ (10 µM) and KT5823 (1 µM), suggesting the participation of NO/cGMP/PKG pathway due to Cdcas. In non-anesthetized rats, Cdcas induced hypotension followed by bradycardia, the latter was also observed by ECG (anesthetized animals). Our results suggest that the negative inotropic effect induced by Cdcas venom is unrelated to cardiac toxicity, at least, at the concentrations tested; and occurs through of NO/cGMP/PKG pathway, likely leading to hypotension and bradycardia when administered in vivo.


Asunto(s)
Venenos de Crotálidos/toxicidad , Crotalus , Corazón/efectos de los fármacos , Animales , Presión Arterial/efectos de los fármacos , Cardiotónicos/toxicidad , Proliferación Celular/efectos de los fármacos , Creatina Quinasa/efectos de los fármacos , Creatina Quinasa/metabolismo , Venenos de Crotálidos/antagonistas & inhibidores , Venenos de Crotálidos/química , Atrios Cardíacos/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/efectos de los fármacos , Técnicas In Vitro , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miocardio/enzimología , Miocardio/patología , Miocardio/ultraestructura , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Wistar , Mordeduras de Serpientes
8.
Stem Cells Int ; 2018: 9108681, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30140292

RESUMEN

Mesenchymal stem/stromal cells (MSCs) have been investigated for the treatment of diseases that affect the cardiovascular system, including Chagas disease. MSCs are able to promote their beneficial actions through the secretion of proregenerative and immunomodulatory factors, including insulin-like growth factor-1 (IGF-1), which has proregenerative actions in the heart and skeletal muscle. Here, we evaluated the therapeutic potential of IGF-1-overexpressing MSCs (MSC_IGF-1) in a mouse model of chronic Chagas disease. C57BL/6 mice were infected with Colombian strain Trypanosoma cruzi and treated with MSCs, MSC_IGF-1, or vehicle (saline) six months after infection. RT-qPCR analysis confirmed the presence of transplanted cells in both the heart and skeletal muscle tissues. Transplantation of either MSCs or MSC_IGF-1 reduced the number of inflammatory cells in the heart when compared to saline controls. Moreover, treatment with MSCs or MSC_IGF-1 significantly reduced TNF-α, but only MSC treatment reduced IFN-γ production compared to the saline group. Skeletal muscle sections of both MSC- and MSC_IGF-1-treated mice showed a reduction in fibrosis compared to saline controls. Importantly, the myofiber area was reduced in T. cruzi-infected mice, and this was recovered after treatment with MSC_IGF-1. Gene expression analysis in the skeletal muscle showed a higher expression of pro- and anti-inflammatory molecules in MSC_IGF-1-treated mice compared to MSCs alone, which significantly reduced the expression of TNF-α and IL-1ß. In conclusion, our results indicate the therapeutic potential of MSC_IGF-1, with combined immunomodulatory and proregenerative actions to the cardiac and skeletal muscles.

9.
Biomed Pharmacother ; 79: 129-34, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27044821

RESUMEN

Human T-lymphotropic virus type 1 (HTLV-1) induces a strong activation of the immune system, especially in individuals with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Physalin F is a secosteroid with potent anti-inflammatory and immunomodulatory activities. The present study aimed to investigate the effects of physalin F on peripheral blood mononuclear cells (PBMC) of HAM/TSP subjects. A concentration-dependent inhibition of spontaneous proliferation of PBMC from HAM/TSP subjects was observed in the presence of physalin F, as evaluated by (3)H-thymidine uptake. The IC50 for physalin F was 0.97 ± 0.11 µM. Flow cytometry analysis using Cytometric Bead Array (CBA) showed that physalin F (10 µM) significantly reduced the levels of IL-2, IL-6, IL-10, TNF-α and IFN-γ, but not IL-17A, in supernatants of PBMC cultures. Next, apoptosis induction was addressed by using flow cytometry to evaluate annexin V expression. Treatment with physalin F (10 µM) increased the apoptotic population of PBMC in HAM/TSP subjects. Transmission electron microscopy analysis of PBMC showed that physalin F induced ultrastructural changes, such as pyknotic nuclei, damaged mitochondria, enhanced autophagic vacuole formation, and the presence of myelin-like figures. In conclusion, physalin F induces apoptosis of PBMC, decreasing the spontaneous proliferation and cytokine production caused by HTLV-1 infection.


Asunto(s)
Inmunosupresores/uso terapéutico , Leucocitos Mononucleares/patología , Paraparesia Espástica Tropical/sangre , Paraparesia Espástica Tropical/tratamiento farmacológico , Physalis/química , Secoesteroides/uso terapéutico , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Humanos , Inmunosupresores/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/ultraestructura , Paraparesia Espástica Tropical/patología , Fosfatidilserinas/metabolismo , Secoesteroides/química , Secoesteroides/farmacología
10.
J Inorg Biochem ; 156: 153-63, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26795676

RESUMEN

Three new mixed and mononuclear Ru(II) complexes containing 1,3-thiazolidine-2-thione (tzdtH) were synthesized and characterized by spectroscopic analysis, molar conductivity, cyclic voltammetry, high-resolution electrospray ionization mass spectra and X-ray diffraction. The complexes presented unique stereochemistry and the proposed formulae are: [Ru(tzdt)(bipy)(dppb)]PF6 (1), cis-[Ru(tzdt)2(PPh3)2] (2) and trans-[Ru(tzdt)(PPh3)2(bipy)]PF6 (3), where dppb=1,4-bis(diphenylphosphino)butane and bipy=2,2'-bipyridine. These complexes demonstrated strong cytotoxicity against cancer cell lines when compared to cisplatin. Specifically, complex 2 was the most potent cytotoxic agent against MCF-7 breast cells, while complexes 1 and 3 were more active in DU-145 prostate cells. Binding of complexes to ctDNA was determined by UV-vis titration and viscosity measurements and revealed binding constant (Kb) values in range of 1.0-4.9×10(3)M(-1), which are characteristic of compounds possessing weak affinity to ctDNA. In addition, these complexes presented antiparasitic activity against Trypanosoma cruzi. Specifically, complex 3 demonstrated strong potency, moderate selectivity index and acted in synergism with the approved antiparasitic drug, benznidazole. Additionally, complex 3 caused parasite cell death through a necrotic process. In conclusion, we demonstrated that Ru(II) complexes have powerful pharmacological activity, while the metal-free tzdtH does not provoke the same outcome.


Asunto(s)
Antineoplásicos/farmacología , Antiprotozoarios/farmacología , Compuestos de Rutenio/química , Tiazolidinas/química , Trypanosoma cruzi/efectos de los fármacos , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA