Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36943380

RESUMEN

MOTIVATION: Deep learning attained excellent results in digital pathology recently. A challenge with its use is that high quality, representative training datasets are required to build robust models. Data annotation in the domain is labor intensive and demands substantial time commitment from expert pathologists. Active learning (AL) is a strategy to minimize annotation. The goal is to select samples from the pool of unlabeled data for annotation that improves model accuracy. However, AL is a very compute demanding approach. The benefits for model learning may vary according to the strategy used, and it may be hard for a domain specialist to fine tune the solution without an integrated interface. RESULTS: We developed a framework that includes a friendly user interface along with run-time optimizations to reduce annotation and execution time in AL in digital pathology. Our solution implements several AL strategies along with our diversity-aware data acquisition (DADA) acquisition function, which enforces data diversity to improve the prediction performance of a model. In this work, we employed a model simplification strategy [Network Auto-Reduction (NAR)] that significantly improves AL execution time when coupled with DADA. NAR produces less compute demanding models, which replace the target models during the AL process to reduce processing demands. An evaluation with a tumor-infiltrating lymphocytes classification application shows that: (i) DADA attains superior performance compared to state-of-the-art AL strategies for different convolutional neural networks (CNNs), (ii) NAR improves the AL execution time by up to 4.3×, and (iii) target models trained with patches/data selected by the NAR reduced versions achieve similar or superior classification quality to using target CNNs for data selection. AVAILABILITY AND IMPLEMENTATION: Source code: https://github.com/alsmeirelles/DADA.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Programas Informáticos , Procesamiento de Imagen Asistido por Computador , Curaduría de Datos
2.
Front Med (Lausanne) ; 9: 894430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712087

RESUMEN

Background: Deep learning methods have demonstrated remarkable performance in pathology image analysis, but they are computationally very demanding. The aim of our study is to reduce their computational cost to enable their use with large tissue image datasets. Methods: We propose a method called Network Auto-Reduction (NAR) that simplifies a Convolutional Neural Network (CNN) by reducing the network to minimize the computational cost of doing a prediction. NAR performs a compound scaling in which the width, depth, and resolution dimensions of the network are reduced together to maintain a balance among them in the resulting simplified network. We compare our method with a state-of-the-art solution called ResRep. The evaluation is carried out with popular CNN architectures and a real-world application that identifies distributions of tumor-infiltrating lymphocytes in tissue images. Results: The experimental results show that both ResRep and NAR are able to generate simplified, more efficient versions of ResNet50 V2. The simplified versions by ResRep and NAR require 1.32× and 3.26× fewer floating-point operations (FLOPs), respectively, than the original network without a loss in classification power as measured by the Area under the Curve (AUC) metric. When applied to a deeper and more computationally expensive network, Inception V4, NAR is able to generate a version that requires 4× lower than the original version with the same AUC performance. Conclusions: NAR is able to achieve substantial reductions in the execution cost of two popular CNN architectures, while resulting in small or no loss in model accuracy. Such cost savings can significantly improve the use of deep learning methods in digital pathology. They can enable studies with larger tissue image datasets and facilitate the use of less expensive and more accessible graphics processing units (GPUs), thus reducing the computing costs of a study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA