Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 50(11): 3290-3301, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37310428

RESUMEN

PURPOSE: Isolated REM sleep behaviour disorder (iRBD) patients are at high risk of developing clinical syndromes of the α-synuclein spectrum. Progression markers are needed to determine the neurodegenerative changes and to predict their conversion. Brain imaging with 18F-FDG PET in iRBD is promising, but longitudinal studies are scarce. We investigated the regional brain changes in iRBD over time, related to phenoconversion. METHODS: Twenty iRBD patients underwent two consecutive 18F-FDG PET brain scans and clinical assessments (3.7 ± 0.6 years apart). Seventeen patients also underwent 123I-MIBG and 123I-FP-CIT SPECT scans at baseline. Four subjects phenoconverted to Parkinson's disease (PD) during follow-up. 18F-FDG PET scans were compared to controls with a voxel-wise single-subject procedure. The relationship between regional brain changes in metabolism and PD-related pattern scores (PDRP) was investigated. RESULTS: Individual hypometabolism t-maps revealed three scenarios: (1) normal 18F-FDG PET scans at baseline and follow-up (N = 10); (2) normal scans at baseline but occipital or occipito-parietal hypometabolism at follow-up (N = 4); (3) occipital hypometabolism at baseline and follow-up (N = 6). All patients in the last group had pathological 123I-MIBG and 123I-FP-CIT SPECT. iRBD converters (N = 4) showed occipital hypometabolism at baseline (third scenario). At the group level, hypometabolism in the frontal and occipito-parietal regions and hypermetabolism in the cerebellum and limbic regions were progressive over time. PDRP z-scores increased over time (0.54 ± 0.36 per year). PDRP expression was driven by occipital hypometabolism and cerebellar hypermetabolism. CONCLUSIONS: Our results suggest that occipital hypometabolism at baseline in iRBD implies a short-term conversion to PD. This might help in stratification strategies for disease-modifying trials.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Trastorno de la Conducta del Sueño REM/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Fluorodesoxiglucosa F18 , 3-Yodobencilguanidina , Tomografía de Emisión de Positrones/métodos , Factores de Riesgo
2.
Mov Disord ; 38(1): 57-67, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36190111

RESUMEN

BACKGROUND: Idiopathic rapid eye movement sleep behavior disorder (iRBD) represents the prodromal stage of α-synucleinopathies. Reliable biomarkers are needed to predict phenoconversion. OBJECTIVE: The aim was to derive and validate a brain glucose metabolism pattern related to phenoconversion in iRBD (iRBDconvRP) using spatial covariance analysis (Scaled Subprofile Model and Principal Component Analysis [SSM-PCA]). METHODS: Seventy-six consecutive iRBD patients (70 ± 6 years, 15 women) were enrolled in two centers and prospectively evaluated to assess phenoconversion (30 converters, 73 ± 6 years, 14 Parkinson's disease and 16 dementia with Lewy bodies, follow-up time: 21 ± 14 months; 46 nonconverters, 69 ± 6 years, follow-up time: 33 ± 19 months). All patients underwent [18 F]FDG-PET (18 F-fluorodeoxyglucose positron emitting tomography) to investigate brain glucose metabolism at baseline. SSM-PCA was applied to obtain the iRBDconvRP; nonconverter patients were considered as the reference group. Survival analysis and Cox regression were applied to explore prediction power. RESULTS: First, we derived and validated two distinct center-specific iRBDconvRP that were comparable and significantly able to predict phenoconversion. Then, SSM-PCA was applied to the whole set, identifying the iRBDconvRP. The iRBDconvRP included positive voxel weights in cerebellum; brainstem; anterior cingulate cortex; lentiform nucleus; and middle, mesial temporal, and postcentral areas. Negative voxel weights were found in posterior cingulate, precuneus, middle frontal gyrus, and parietal areas. Receiver operating characteristic analysis showed an area under the curve of 0.85 (sensitivity: 87%, specificity: 72%), discriminating converters from nonconverters. The iRBDconvRP significantly predicted phenoconversion (hazard ratio: 7.42, 95% confidence interval: 2.6-21.4). CONCLUSIONS: We derived and validated an iRBDconvRP to efficiently discriminate converter from nonconverter iRBD patients. [18 F]FDG-PET pattern analysis has potential as a phenoconversion biomarker in iRBD patients. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Femenino , Fluorodesoxiglucosa F18 , Sueño REM , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Trastorno de la Conducta del Sueño REM/metabolismo , Biomarcadores , Glucosa/metabolismo
3.
Neurol Sci ; 44(9): 3161-3168, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37140829

RESUMEN

BACKGROUND: A brain glucose metabolism pattern related to phenoconversion in patients with idiopathic/isolated REM sleep behaviour disorder (iRBDconvRP) was recently identified. However, the validation of the iRBDconvRP in an external, independent group of iRBD patients is needed to verify the reproducibility of such pattern, so to increase its importance in clinical and research settings. The aim of this work was to validate the iRBDconvRP in an independent group of iRBD patients. METHODS: Forty iRBD patients (70 ± 5.59 years, 19 females) underwent brain [18F]FDG-PET in Seoul National University. Thirteen patients phenoconverted at follow-up (7 Parkinson disease, 5 Dementia with Lewy bodies, 1 Multiple system atrophy; follow-up time 35 ± 20.56 months) and 27 patients were still free from parkinsonism/dementia after 62 ± 29.49 months from baseline. We applied the previously identified iRBDconvRP to validate its phenoconversion prediction power. RESULTS: The iRBDconvRP significantly discriminated converters from non-converters iRBD patients (p = 0.016; Area under the Curve 0.74, Sensitivity 0.69, Specificity 0.78), and it significantly predicted phenoconversion (Hazard ratio 4.26, C.I.95%: 1.18-15.39). CONCLUSIONS: The iRBDconvRP confirmed its robustness in predicting phenoconversion in an independent group of iRBD patients, suggesting its potential role as a stratification biomarker for disease-modifying trials.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Trastorno de la Conducta del Sueño REM , Femenino , Humanos , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Reproducibilidad de los Resultados , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
4.
Mov Disord ; 37(3): 624-629, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34796976

RESUMEN

BACKGROUND: Isolated rapid eye movement sleep behavior disorder (iRBD) is prodromal for α-synucleinopathies. OBJECTIVE: The aim of this study was to determine whether pathological cardiac [123 I]meta-iodobenzylguanidine scintigraphy ([123 I]MIBG) is associated with progression of [18 F]fluorodeoxyglucose-positron emission tomography-based Parkinson's disease (PD)-related brain pattern (PDRP) expression in iRBD. METHODS: Seventeen subjects with iRBD underwent [18 F]fluorodeoxyglucose-positron emission tomography brain imaging twice ~3.6 years apart. In addition, [123 I]MIBG and [123 I]N-ω-fluoropropyl-2ß-carbomethoxy-3ß-(4-iodophenyl)nortropane single-photon emission computed tomography ([123 I]FP-CIT-SPECT) at baseline were performed. Olfactory, cognitive, and motor functions were tested annually. RESULTS: Twelve of 17 subjects had pathological [123 I]MIBG. At baseline, 6 of 12 of these expressed the PDRP (suprathreshold PDRP z score). At follow-up, 12 of 17 subjects had suprathreshold PDRP z scores, associated with pathological [123 I]MIBG in 92% and with pathological [123 I]FP-CIT-SPECT in 75%. Subjects with pathological [123 I]MIBG had higher PDRP z score change per year (P = 0.027). Three subjects phenoconverted to PD; all had pathological [123 I]MIBG and [123 I]FP-CIT-SPECT, suprathreshold baseline PDRP z scores, and hyposmia. CONCLUSIONS: Pathological [123 I]MIBG was associated with progressive and suprathreshold PDRP z scores at follow-up. Abnormal [123 I]MIBG likely identifies iRBD as prodromal PD earlier than pathological [123 I]FP-CIT-SPECT. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , 3-Yodobencilguanidina , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Trastorno de la Conducta del Sueño REM/complicaciones , Tomografía Computarizada de Emisión de Fotón Único/métodos
5.
Mol Med ; 27(1): 111, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34530732

RESUMEN

Parkinson's disease (PD) commences several years before the onset of motor features. Pathophysiological understanding of the pre-clinical or early prodromal stages of PD are essential for the development of new therapeutic strategies. Two categories of patients are ideal to study the early disease stages. Idiopathic rapid eye movement sleep behavior disorder (iRBD) represents a well-known prodromal stage of PD in which pathology is presumed to have reached the lower brainstem. The majority of patients with iRBD will develop manifest PD within years to decades. Another category encompasses non-manifest mutation carriers, i.e. subjects without symptoms, but with a known mutation or genetic variant which gives an increased risk of developing PD. The speed of progression from preclinical or prodromal to full clinical stages varies among patients and cannot be reliably predicted on the individual level. Clinical trials will require inclusion of patients with a predictable conversion within a limited time window. Biomarkers are necessary that can confirm pre-motor PD status and can provide information regarding lead time and speed of progression. Neuroimaging changes occur early in the disease process and may provide such a biomarker. Studies have focused on radiotracer imaging of the dopaminergic nigrostriatal system, which can be assessed with dopamine transporter (DAT) single photon emission computed tomography (SPECT). Loss of DAT binding represents an effect of irreversible structural damage to the nigrostriatal system. This marker can be used to monitor disease progression and identify individuals at specific risk for phenoconversion. However, it is known that changes in neuronal activity precede structural changes. Functional neuro-imaging techniques, such as 18F-2-fluoro-2-deoxy-D-glucose Positron Emission Tomography (18F-FDG PET) and functional magnetic resonance imaging (fMRI), can be used to model the effects of disease on brain networks when combined with advanced analytical methods. Because these changes occur early in the disease process, functional imaging studies are of particular interest in prodromal PD diagnosis. In addition, fMRI and 18F-FDG PET may be able to predict a specific future phenotype in prodromal cohorts, which is not possible with DAT SPECT. The goal of the current review is to discuss the network-level brain changes in pre-motor PD.


Asunto(s)
Biomarcadores , Diagnóstico por Imagen , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/metabolismo , Síntomas Prodrómicos , Animales , Biomarcadores/sangre , Encéfalo/metabolismo , Encéfalo/patología , Circulación Cerebrovascular , Diagnóstico por Imagen/métodos , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Dopamina/metabolismo , Metabolismo Energético , Fluorodesoxiglucosa F18 , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Imagen por Resonancia Magnética , Imagen Multimodal , Neurotransmisores/metabolismo , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/etiología , Tomografía de Emisión de Positrones , Índice de Severidad de la Enfermedad
6.
Mov Disord ; 36(1): 230-235, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32909650

RESUMEN

BACKGROUND: Isolated rapid eye movement sleep behavior disorder is known to be prodromal for alpha-synucleinopathies, such as Parkinson's disease (PD) and dementia with Lewy bodies. The [18 F]fluorodeoxyglucose-positron emission tomography (PET)-based PD-related brain pattern can be used to monitor disease progression. OBJECTIVE: We longitudinally investigated PD-related brain pattern expression changes in 20 subjects with isolated rapid eye movement sleep behavior disorder to investigate whether this may be a suitable technique to study prodromal PD progression in these patients and to identify potential phenoconverters. METHODS: Subjects underwent two [18 F]fluorodeoxyglucose-PET brain scans ~3.7 years apart, along with baseline and repeated motor, cognitive, and olfactory testing within roughly the same time frame. RESULTS: At baseline, 8 of 20 (40%) subjects significantly expressed the PD-related brain pattern (with z scores above the receiver operating characteristic-determined threshold). At follow-up, six additional subjects exhibited significant PD-related brain pattern expression (70% in total). PD-related brain pattern expression increased in all subjects (P = 0.00008). Four subjects (20%), all with significant baseline PD-related brain pattern expression, phenoconverted to clinical PD. CONCLUSIONS: Suprathreshold PD-related brain pattern expression and greater score rate of change may signify greater shorter-term risk for phenoconversion. Our results support the use of serial PD-related brain pattern expression measurements as a prodromal PD progression biomarker in patients with isolated rapid eye movement sleep behavior disorder. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Estudios de Seguimiento , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Tomografía de Emisión de Positrones , Síntomas Prodrómicos , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen
7.
Eur J Nucl Med Mol Imaging ; 47(2): 437-450, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31768600

RESUMEN

RATIONALE: In Parkinson's disease (PD), spatial covariance analysis of 18F-FDG PET data has consistently revealed a characteristic PD-related brain pattern (PDRP). By quantifying PDRP expression on a scan-by-scan basis, this technique allows objective assessment of disease activity in individual subjects. We provide a further validation of the PDRP by applying spatial covariance analysis to PD cohorts from the Netherlands (NL), Italy (IT), and Spain (SP). METHODS: The PDRPNL was previously identified (17 controls, 19 PD) and its expression was determined in 19 healthy controls and 20 PD patients from the Netherlands. The PDRPIT was identified in 20 controls and 20 "de-novo" PD patients from an Italian cohort. A further 24 controls and 18 "de-novo" Italian patients were used for validation. The PDRPSP was identified in 19 controls and 19 PD patients from a Spanish cohort with late-stage PD. Thirty Spanish PD patients were used for validation. Patterns of the three centers were visually compared and then cross-validated. Furthermore, PDRP expression was determined in 8 patients with multiple system atrophy. RESULTS: A PDRP could be identified in each cohort. Each PDRP was characterized by relative hypermetabolism in the thalamus, putamen/pallidum, pons, cerebellum, and motor cortex. These changes co-varied with variable degrees of hypometabolism in posterior parietal, occipital, and frontal cortices. Frontal hypometabolism was less pronounced in "de-novo" PD subjects (Italian cohort). Occipital hypometabolism was more pronounced in late-stage PD subjects (Spanish cohort). PDRPIT, PDRPNL, and PDRPSP were significantly expressed in PD patients compared with controls in validation cohorts from the same center (P < 0.0001), and maintained significance on cross-validation (P < 0.005). PDRP expression was absent in MSA. CONCLUSION: The PDRP is a reproducible disease characteristic across PD populations and scanning platforms globally. Further study is needed to identify the topography of specific PD subtypes, and to identify and correct for center-specific effects.


Asunto(s)
Enfermedad de Parkinson , Encéfalo/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Glucosa , Humanos , Italia , Países Bajos , Enfermedad de Parkinson/diagnóstico por imagen , Tomografía de Emisión de Positrones , España
8.
Mov Disord ; 35(11): 2009-2018, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32822512

RESUMEN

It remains unclear whether the supportive imaging features described in the diagnostic criteria for progressive supranuclear palsy (PSP) are suitable for the full clinical spectrum. The aim of the current study was to define and cross-validate the pattern of glucose metabolism in the brain associated with a diagnosis of different PSP variants. A retrospective multicenter cohort study performed on 73 PSP patients who were referred for a fluorodeoxyglucose positron emission tomography PET scan: PSP-Richardson's syndrome, n = 47; PSP-parkinsonian variant, n = 18; and progressive gait freezing, n = 8. In addition, we included 55 healthy controls and 58 Parkinson's disease (PD) patients. Scans were normalized by global mean activity. We analyzed the regional differences in metabolism between the groups. Moreover, we applied a multivariate analysis to obtain a PSP-related pattern that was cross-validated in independent populations at the individual level. Group analysis showed relative hypometabolism in the midbrain, basal ganglia, thalamus, and frontoinsular cortices and hypermetabolism in the cerebellum and sensorimotor cortices in PSP patients compared with healthy controls and PD patients, the latter with more severe involvement in the basal ganglia and occipital cortices. The PSP-related pattern obtained confirmed the regions described above. At the individual level, the PSP-related pattern showed optimal diagnostic accuracy to distinguish between PSP and healthy controls (sensitivity, 80.4%; specificity, 96.9%) and between PSP and PD (sensitivity, 80.4%; specificity, 90.7%). Moreover, PSP-Richardson's syndrome and PSP-parkinsonian variant patients showed significantly more PSP-related pattern expression than PD patients and healthy controls. The glucose metabolism assessed by fluorodeoxyglucose PET is a useful and reproducible supportive diagnostic tool for PSP-Richardson's syndrome and PSP-parkinsonian variant. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos del Movimiento , Parálisis Supranuclear Progresiva , Encéfalo/diagnóstico por imagen , Estudios de Cohortes , Humanos , Estudios Retrospectivos , Parálisis Supranuclear Progresiva/diagnóstico por imagen
9.
Mov Disord ; 32(10): 1482-1486, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28734065

RESUMEN

BACKGROUND: Idiopathic REM sleep behavior disorder is a prodromal stage of Parkinson's disease and dementia with Lewy bodies. Hyposmia, reduced dopamine transporter binding, and expression of the brain metabolic PD-related pattern were each associated with increased risk of conversion to PD. The objective of this study was to study the relationship between the PD-related pattern, dopamine transporter binding, and olfaction in idiopathic REM sleep behavior disorder. METHODS: In this cross-sectional study, 21 idiopathic REM sleep behavior disorder subjects underwent 18 F-fluorodeoxyglucose PET, dopamine transporter imaging, and olfactory testing. For reference, we included 18 F-fluorodeoxyglucose PET data of 19 controls, 20 PD patients, and 22 patients with dementia with Lewy bodies. PD-related pattern expression z-scores were computed from all PET scans. RESULTS: PD-related pattern expression was higher in idiopathic REM sleep behavior disorder subjects compared with controls (P = 0.048), but lower compared with PD (P = 0.001) and dementia with Lewy bodies (P < 0.0001). PD-related pattern expression was higher in idiopathic REM sleep behavior disorder subjects with hyposmia and in subjects with an abnormal dopamine transporter scan (P < 0.05, uncorrected). CONCLUSION: PD-related pattern expression, dopamine transporter binding, and olfaction may provide complementary information for predicting phenoconversion. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Fluorodesoxiglucosa F18 , Trastornos del Olfato/etiología , Tomografía de Emisión de Positrones , Trastorno de la Conducta del Sueño REM , Tomografía Computarizada de Emisión de Fotón Único , Anciano , Análisis de Varianza , Estudios Transversales , Femenino , Humanos , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Trastornos del Olfato/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Escalas de Valoración Psiquiátrica , Trastorno de la Conducta del Sueño REM/complicaciones , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Trastorno de la Conducta del Sueño REM/metabolismo
10.
Q J Nucl Med Mol Imaging ; 61(4): 372-385, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28849633

RESUMEN

Neuroimaging in Parkinson's disease (PD) and other primary Parkinsonian disorders has been increasingly used in the routine clinical work in the last years. The paradigm has changed from an "exclusionary" use, i.e., to rule out causes of secondary Parkinsonism, to an "inclusionary" one, i.e., finding image and network characteristics allowing to identify a specific disease. This is allowed by analyses spanning from the commonly used visual analysis to the most sophisticated postprocessing leading to the identification of covariance patterns both in morphological and functional neuroimaging. However, paralleling the advancement in covariance and connectivity analyses, the issues of standardization and harmonization of data acquisition, and image reconstruction and postprocessing among centers are emerging in the scientific community. Also, the building of scientific evidence still suffers from the lack of large, formal studies and relies on relatively small cohort studies from one or few centers. Joint actions to face these issues are now ongoing in Europe, supported by specific programs, such as the Joint Programming on Neurodegenerative Diseases (JPND). In the present review, some of the most recent and relevant achievements in the field of diffusion tensor magnetic resonance imaging (MRI), functional MRI, fludeoxyglucose-positron-emission tomography, dopamine transporter single-photon emission computed tomography and non-dopaminergic imaging in PD and primary Parkinsonisms are reported.


Asunto(s)
Imagen Multimodal/métodos , Neuroimagen/métodos , Trastornos Parkinsonianos/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Trastornos Parkinsonianos/prevención & control , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos
11.
NPJ Parkinsons Dis ; 10(1): 125, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926405

RESUMEN

The Movement Disorder Society developed research criteria for the detection of the prodromal phase of Parkinson's disease (PD). Accurate identification of this phase is essential for early interventions. Therefore, we investigated the diagnostic value of these research criteria in the general population. Lifelines is an ongoing cohort study of 167,000 participants from the general population of the Northern Netherlands. 160 participants self-reported to have developed PD during three rounds of follow-up of five years each. Data were available to infer six out of eleven risk markers, and six out of twelve prodromal markers. We retrospectively compared the criteria in the prodromal stage of a group of 160 'converters' with 320 age- and sex-matched controls. The overall incidence rate of PD was 0.20 per 1.000 person-years (95% CI: 0.049-0.36), increasing with age and rates were higher in men. The median probability for prodromal PD in PD-converters was 1.29% (interquartile range: 0.46-2.9), compared to 0.83% (0.39-1.8) for controls (P = 0.014). The MDS set of criteria for prodromal PD had an ROC-AUC of 0.577, and was therefore not sufficient to adequately predict conversion to PD. We were unable to predict conversion to PD in the general population using a selection of the prodromal PD research criteria. Ancillary investigations are required to improve the diagnostic accuracy of the criteria, but most are precluded from large-scale use. Strategies, including olfactory tests or alpha-synuclein seeding amplification assays may improve the detection of prodromal PD in the general population.

12.
Artif Intell Med ; 149: 102786, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38462286

RESUMEN

In machine learning, data often comes from different sources, but combining them can introduce extraneous variation that affects both generalization and interpretability. For example, we investigate the classification of neurodegenerative diseases using FDG-PET data collected from multiple neuroimaging centers. However, data collected at different centers introduces unwanted variation due to differences in scanners, scanning protocols, and processing methods. To address this issue, we propose a two-step approach to limit the influence of center-dependent variation on the classification of healthy controls and early vs. late-stage Parkinson's disease patients. First, we train a Generalized Matrix Learning Vector Quantization (GMLVQ) model on healthy control data to identify a "relevance space" that distinguishes between centers. Second, we use this space to construct a correction matrix that restricts a second GMLVQ system's training on the diagnostic problem. We evaluate the effectiveness of this approach on the real-world multi-center datasets and simulated artificial dataset. Our results demonstrate that the approach produces machine learning systems with reduced bias - being more specific due to eliminating information related to center differences during the training process - and more informative relevance profiles that can be interpreted by medical experts. This method can be adapted to similar problems outside the neuroimaging domain, as long as an appropriate "relevance space" can be identified to construct the correction matrix.


Asunto(s)
Neuroimagen , Enfermedad de Parkinson , Humanos , Tomografía de Emisión de Positrones , Aprendizaje Automático , Enfermedad de Parkinson/diagnóstico por imagen
13.
J Cereb Blood Flow Metab ; : 271678X241241895, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578669

RESUMEN

A mounting body of research points to cerebrovascular dysfunction as a fundamental element in the pathophysiology of Parkinson's disease (PD). In the current feasibility study, blood-oxygen-level-dependent (BOLD) MRI was used to measure cerebrovascular reactivity (CVR) in response to hypercapnia in 26 PD patients and 16 healthy controls (HC), and aimed to find a multivariate pattern specific to PD. Whole-brain maps of CVR amplitude (i.e., magnitude of response to CO2) and latency (i.e., time to reach maximum amplitude) were computed, which were further analyzed using scaled sub-profile model principal component analysis (SSM-PCA) with leave-one-out cross-validation. A meaningful pattern based on CVR latency was identified, which was named the PD CVR pattern (PD-CVRP). This pattern was characterized by relatively increased latency in basal ganglia, sensorimotor cortex, supplementary motor area, thalamus and visual cortex, as well as decreased latency in the cerebral white matter, relative to HC. There were no significant associations with clinical measures, though sample size may have limited our ability to detect significant associations. In summary, the PD-CVRP highlights the importance of cerebrovascular dysfunction in PD, and may be a potential biomarker for future clinical research and practice.

14.
Neuroimage Clin ; 39: 103475, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37494757

RESUMEN

BACKGROUND: Brain imaging with [18F]FDG-PET can support the diagnostic work-up of patients with α-synucleinopathies. Validated data analysis approaches are necessary to evaluate disease-specific brain metabolism patterns in neurodegenerative disorders. This study compared the univariate Statistical Parametric Mapping (SPM) single-subject procedure and the multivariate Scaled Subprofile Model/Principal Component Analysis (SSM/PCA) in a cohort of patients with α-synucleinopathies. METHODS: We included [18F]FDG-PET scans of 122 subjects within the α-synucleinopathy spectrum: Parkinson's Disease (PD) normal cognition on long-term follow-up (PD - low risk to dementia (LDR); n = 28), PD who developed dementia on clinical follow-up (PD - high risk of dementia (HDR); n = 16), Dementia with Lewy Bodies (DLB; n = 67), and Multiple System Atrophy (MSA; n = 11). We also included [18F]FDG-PET scans of isolated REM sleep behaviour disorder (iRBD; n = 51) subjects with a high risk of developing a manifest α-synucleinopathy. Each [18F]FDG-PET scan was compared with 112 healthy controls using SPM procedures. In the SSM/PCA approach, we computed the individual scores of previously identified patterns for PD, DLB, and MSA: PD-related patterns (PDRP), DLBRP, and MSARP. We used ROC curves to compare the diagnostic performances of SPM t-maps (visual rating) and SSM/PCA individual pattern scores in identifying each clinical condition across the spectrum. Specifically, we used the clinical diagnoses ("gold standard") as our reference in ROC curves to evaluate the accuracy of the two methods. Experts in movement disorders and dementia made all the diagnoses according to the current clinical criteria of each disease (PD, DLB and MSA). RESULTS: The visual rating of SPM t-maps showed higher performance (AUC: 0.995, specificity: 0.989, sensitivity 1.000) than PDRP z-scores (AUC: 0.818, specificity: 0.734, sensitivity 1.000) in differentiating PD-LDR from other α-synucleinopathies (PD-HDR, DLB and MSA). This result was mainly driven by the ability of SPM t-maps to reveal the limited or absent brain hypometabolism characteristics of PD-LDR. Both SPM t-maps visual rating and SSM/PCA z-scores showed high performance in identifying DLB (DLBRP = AUC: 0.909, specificity: 0.873, sensitivity 0.866; SPM t-maps = AUC: 0.892, specificity: 0.872, sensitivity 0.910) and MSA (MSARP: AUC: 0.921, specificity: 0.811, sensitivity 1.000; SPM t-maps: AUC: 1.000, specificity: 1.000, sensitivity 1.000) from other α-synucleinopathies. PD-HDR and DLB were comparable for the brain hypo and hypermetabolism patterns, thus not allowing differentiation by SPM t-maps or SSM/PCA. Of note, we found a gradual increase of PDRP and DLBRP expression in the continuum from iRBD to PD-HDR and DLB, where the DLB patients had the highest scores. SSM/PCA could differentiate iRBD from DLB, reflecting specifically the differences in disease staging and severity (AUC: 0.938, specificity: 0.821, sensitivity 0.941). CONCLUSIONS: SPM-single subject maps and SSM/PCA are both valid methods in supporting diagnosis within the α-synucleinopathy spectrum, with different strengths and pitfalls. The former reveals dysfunctional brain topographies at the individual level with high accuracy for all the specific subtype patterns, and particularly also the normal maps; the latter provides a reliable quantification, independent from the rater experience, particularly in tracking the disease severity and staging. Thus, our findings suggest that differences in data analysis approaches exist and should be considered in clinical settings. However, combining both methods might offer the best diagnostic performance.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Sinucleinopatías , Humanos , Sinucleinopatías/diagnóstico por imagen , Sinucleinopatías/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Alzheimer/metabolismo , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Análisis Multivariante , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Enfermedad por Cuerpos de Lewy/metabolismo
15.
Comput Methods Programs Biomed ; 225: 107042, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35970056

RESUMEN

BACKGROUND AND OBJECTIVES: 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with principal component analysis (PCA) has been applied to identify disease-related brain patterns in neurodegenerative disorders such as Parkinson's disease (PD), Dementia with Lewy Bodies (DLB) and Alzheimer's disease (AD). These patterns are used to quantify functional brain changes at the single subject level. This is especially relevant in determining disease progression in idiopathic REM sleep behavior disorder (iRBD), a prodromal stage of PD and DLB. However, the PCA method is limited in discriminating between neurodegenerative conditions. More advanced machine learning algorithms may provide a solution. In this study, we apply Generalized Matrix Learning Vector Quantization (GMLVQ) to FDG-PET scans of healthy controls, and patients with AD, PD and DLB. Scans of iRBD patients, scanned twice with an approximate 4 year interval, were projected into GMLVQ space to visualize their trajectory. METHODS: We applied a combination of SSM/PCA and GMLVQ as a classifier on FDG-PET data of healthy controls, AD, DLB, and PD patients. We determined the diagnostic performance by performing a ten times repeated ten fold cross validation. We analyzed the validity of the classification system by inspecting the GMLVQ space. First by the projection of the patients into this space. Second by representing the axis, that span this decision space, into a voxel map. Furthermore, we projected a cohort of RBD patients, whom have been scanned twice (approximately 4 years apart), into the same decision space and visualized their trajectories. RESULTS: The GMLVQ prototypes, relevance diagonal, and decision space voxel maps showed metabolic patterns that agree with previously identified disease-related brain patterns. The GMLVQ decision space showed a plausible quantification of FDG-PET data. Distance traveled by iRBD subjects through GMLVQ space per year (i.e. velocity) was correlated with the change in motor symptoms per year (Spearman's rho =0.62, P=0.004). CONCLUSION: In this proof-of-concept study, we show that GMLVQ provides a classification of patients with neurodegenerative disorders, and may be useful in future studies investigating speed of progression in prodromal disease stages.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Fluorodesoxiglucosa F18 , Humanos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Trastorno de la Conducta del Sueño REM/metabolismo
16.
Neuroimage Clin ; 34: 103023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35489193

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a rare genetic neurodegenerative disease. The neurobiological basis of SCA3 is still poorly understood, and up until now resting-state fMRI (rs-fMRI) has not been used to study this disease. In the current study we investigated (multi-echo) rs-fMRI data from patients with genetically confirmed SCA3 (n = 17) and matched healthy subjects (n = 16). Using independent component analysis (ICA) and subsequent regression with bootstrap resampling, we identified a pattern of differences between patients and healthy subjects, which we coined the fMRI SCA3 related pattern (fSCA3-RP) comprising cerebellum, anterior striatum and various cortical regions. Individual fSCA3-RP scores were highly correlated with a previously published 18F-FDG PET pattern found in the same sample (rho = 0.78, P = 0.0003). Also, a high correlation was found with the Scale for Assessment and Rating of Ataxia scores (r = 0.63, P = 0.007). No correlations were found with neuropsychological test scores, nor with levels of grey matter atrophy. Compared with the 18F-FDG PET pattern, the fSCA3-RP included a more extensive contribution of the mediofrontal cortex, putatively representing changes in default network activity. This rs-fMRI identification of additional regions is proposed to reflect a consequence of the nature of the BOLD technique, enabling measurement of dynamic network activity, compared to the more static 18F-FDG PET methodology. Altogether, our findings shed new light on the neural substrate of SCA3, and encourage further validation of the fSCA3-RP to assess its potential contribution as imaging biomarker for future research and clinical use.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Fluorodesoxiglucosa F18 , Humanos , Enfermedad de Machado-Joseph/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos
17.
Comput Methods Programs Biomed ; 197: 105708, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32977181

RESUMEN

BACKGROUND AND OBJECTIVE: Neurodegenerative diseases like Parkinson's disease often take several years before they can be diagnosed reliably based on clinical grounds. Imaging techniques such as MRI are used to detect anatomical (structural) pathological changes. However, these kinds of changes are usually seen only late in the development. The measurement of functional brain activity by means of [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) can provide useful information, but its interpretation is more difficult. The scaled sub-profile model principal component analysis (SSM/PCA) was shown to provide more useful information than other statistical techniques. Our objective is to improve the performance further by combining SSM/PCA and prototype-based generalized matrix learning vector quantization (GMLVQ). METHODS: We apply a combination of SSM/PCA and GMLVQ as a classifier. In order to demonstrate the combination's validity, we analyze FDG-PET data of Parkinson's disease (PD) patients collected at three different neuroimaging centers in Europe. We determine the diagnostic performance by performing a ten times repeated ten fold cross validation. Additionally, discriminant visualizations of the data are included. The prototypes and relevance of GMLVQ are transformed back to the original voxel space by exploiting the linearity of SSM/PCA. The resulting prototypes and relevance profiles have then been assessed by three neurologists. RESULTS: One important finding is that discriminative visualization can help to identify disease-related properties as well as differences which are due to center-specific factors. Secondly, the neurologist assessed the interpretability of the method and confirmed that prototypes are similar to known activity profiles of PD patients. CONCLUSION: We have shown that the presented combination of SSM/PCA and GMLVQ can provide useful means to assess and better understand characteristic differences in FDG-PET data from PD patients and HCs. Based on the assessments by medical experts and the results of our computational analysis we conclude that the first steps towards a diagnostic support system have been taken successfully.


Asunto(s)
Neuroimagen , Enfermedad de Parkinson , Europa (Continente) , Fluorodesoxiglucosa F18 , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Tomografía de Emisión de Positrones , Análisis de Componente Principal
18.
Alzheimers Dement (Amst) ; 11: 472-482, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31294076

RESUMEN

INTRODUCTION: The implementation of spatial-covariance [18F]fluorodeoxyglucose positron emission tomography-based disease-related metabolic brain patterns as biomarkers has been hampered by intercenter imaging differences. Within the scope of the JPND-PETMETPAT working group, we illustrate the impact of these differences on Parkinson's disease-related pattern (PDRP) expression scores. METHODS: Five healthy controls, 5 patients with idiopathic rapid eye movement sleep behavior disorder, and 5 patients with Parkinson's disease were scanned on one positron emission tomography/computed tomography system with multiple image reconstructions. In addition, one Hoffman 3D Brain Phantom was scanned on several positron emission tomography/computed tomography systems using various reconstructions. Effects of image contrast on PDRP scores were also examined. RESULTS: Human and phantom raw PDRP scores were systematically influenced by scanner and reconstruction effects. PDRP scores correlated inversely to image contrast. A Gaussian spatial filter reduced contrast while decreasing intercenter score differences. DISCUSSION: Image contrast should be considered in harmonization efforts. A Gaussian filter may reduce noise and intercenter effects without sacrificing sensitivity. Phantom measurements will be important for correcting PDRP score offsets.

19.
J Parkinsons Dis ; 9(1): 229-239, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30741687

RESUMEN

BACKGROUND/OBJECTIVE: Idiopathic REM sleep behavior disorder (iRBD) often precedes Parkinson's disease (PD) and other alpha-synucleinopathies. The aim of the study is to investigate brain glucose metabolism of patients with RBD and PD by means of a multidimensional scaling approach, using18F-FDG-PET as a biomarker of synaptic function. METHODS: Thirty-six iRBD patients (64.1±6.5 y, 32 M), 72 PD patients, and 79 controls (65.6±9.4 y, 53 M) underwent brain 18F-FDG-PET. PD patients were divided according to the absence (PD, 32 subjects; 68.4±8.5 y, 15 M) or presence (PDRBD, 40 subjects; 71.8±6.6 y, 29 M) of RBD. 18F-FDG-PET scans were used to independently discriminate subjects belonging to four categories: controls (RBD no, PD no), iRBD (RBD yes, PD no), PD (RBD no, PD yes) and PDRBD (RBD yes, PD yes). RESULTS: The discriminant analysis was moderately accurate in identifying the correct category. This is because the model mostly confounds iRBD and PD, thus the intermediate classes. Indeed, iRBD, PD and PDRBD were progressively located at increasing distance from controls and are ordered along a single dimension (principal coordinate analysis) indicating the presence of a single flux of variation encompassing both RBD and PD conditions. CONCLUSION: Data-driven approach to brain 18F-FDG-PET showed only moderate discrimination between iRBD and PD patients, highlighting brain glucose metabolism heterogeneity among such patients. iRBD should be considered as a marker of an ongoing condition that may be picked-up in different stages across patients and thus express different brain imaging features and likely different clinical trajectories.


Asunto(s)
Encéfalo/metabolismo , Glucosa/metabolismo , Enfermedad de Parkinson/metabolismo , Trastorno de la Conducta del Sueño REM/metabolismo , Anciano , Encéfalo/diagnóstico por imagen , Femenino , Fluorodesoxiglucosa F18 , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico por imagen , Tomografía de Emisión de Positrones , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen
20.
Int J Neural Syst ; 29(9): 1950010, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31046514

RESUMEN

Over the last years convolutional neural networks (CNNs) have shown remarkable results in different image classification tasks, including medical imaging. One area that has been less explored with CNNs is Positron Emission Tomography (PET). Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) is a PET technique employed to obtain a representation of brain metabolic function. In this study we employed 3D CNNs in FDG-PET brain images with the purpose of discriminating patients diagnosed with Parkinson's disease (PD) from controls. We employed Scaled Subprofile Modeling using Principal Component Analysis as a preprocessing step to focus on specific brain regions and limit the number of voxels that are used as input for the CNNs, thereby increasing the signal-to-noise ratio in our data. We performed hyperparameter optimization on three CNN architectures to estimate the classification accuracy of the networks on new data. The best performance that we obtained was accuracy = 0.86 and area under the receiver operating characteristic curve (AUC ROC) = 0.94 on the test set. We believe that, with larger datasets, PD patients could be reliably distinguished from controls by FDG-PET scans alone and that this technique could be applied to more clinically challenging tasks, like the differential diagnosis of neurological disorders with similar symptoms, such as PD, Progressive Supranuclear Palsy (PSP) and Multiple System Atrophy (MSA).


Asunto(s)
Imagenología Tridimensional/métodos , Redes Neurales de la Computación , Enfermedad de Parkinson/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Anciano , Encéfalo/metabolismo , Estudios de Casos y Controles , Femenino , Fluorodesoxiglucosa F18/metabolismo , Neuroimagen Funcional , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA