Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1011, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875535

RESUMEN

Understanding the genetic basis of convergence at broad phylogenetic scales remains a key challenge in biology. Kingfishers (Aves: Alcedinidae) are a cosmopolitan avian radiation with diverse colors, diets, and feeding behaviors-including the archetypal plunge-dive into water. Given the sensory and locomotor challenges associated with air-water transitions, kingfishers offer a powerful opportunity to explore the effects of convergent behaviors on the evolution of genomes and phenotypes, as well as direct comparisons between continental and island lineages. Here, we use whole-genome sequencing of 30 diverse kingfisher species to identify the genomic signatures associated with convergent feeding behaviors. We show that species with smaller ranges (i.e., on islands) have experienced stronger demographic fluctuations than those on continents, and that these differences have influenced the dynamics of molecular evolution. Comparative genomic analyses reveal positive selection and genomic convergence in brain and dietary genes in plunge-divers. These findings enhance our understanding of the connections between genotype and phenotype in a diverse avian radiation.


Asunto(s)
Buceo , Animales , Filogenia , Aves/genética , Genómica , Agua
2.
J R Soc Interface ; 19(195): 20220476, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36259170

RESUMEN

Sponges are animals that inhabit many aquatic environments while filtering small particles and ejecting metabolic wastes. They are composed of cells in a bulk extracellular matrix, often with an embedded scaffolding of stiff, siliceous spicules. We hypothesize that the mechanical response of this heterogeneous tissue to hydrodynamic flow influences cell proliferation in a manner that generates the body of a sponge. Towards a more complete picture of the emergence of sponge morphology, we dissected a set of species and subjected discs of living tissue to physiological shear and uniaxial deformations on a rheometer. Various species exhibited rheological properties such as anisotropic elasticity, shear softening and compression stiffening, negative normal stress, and non-monotonic dissipation as a function of both shear strain and frequency. Erect sponges possessed aligned, spicule-reinforced fibres which endowed three times greater stiffness axially compared with orthogonally. By contrast, tissue taken from shorter sponges was more isotropic but time-dependent, suggesting higher flow sensitivity in these compared with erect forms. We explore ecological and physiological implications of our results and speculate about flow-induced mechanical signalling in sponge cells.


Asunto(s)
Poríferos , Animales , Reología , Elasticidad , Anisotropía , Matriz Extracelular , Estrés Mecánico
3.
PLoS One ; 16(8): e0255393, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34407101

RESUMEN

Identifying the historical processes that drive microhabitat transitions across deep time is of great interest to evolutionary biologists. Morphological variation can often reveal such mechanisms, but in clades with high microhabitat diversity and no concomitant morphological specialization, the factors influencing animal transitions across microhabitats are more difficult to identify. Lungless salamanders (family: Plethodontidae) have transitioned into and out of the arboreal microhabitat many times throughout their evolutionary history without substantial morphological specialization. In this study, we explore the relationship between microhabitat use and broad-scale climatic patterns across species' ranges to test the role of climate in determining the availability of the arboreal microhabitat. Using phylogenetic comparative methods, we reveal that arboreal species live in warmer, lower elevation regions than terrestrial species. We also employ ecological niche modeling as a complementary approach, quantifying species-level pairwise comparisons of niche overlap. The results of this approach demonstrate that arboreal species on average display more niche overlap with other arboreal species than with terrestrial species after accounting for non-independence of niche model pairs caused by geographic and phylogenetic distances. Our results suggest that occupation of the arboreal microhabitat by salamanders may only be possible in sufficiently warm, low elevation conditions. More broadly, this study indicates that the impact of micro-environmental conditions on temporary microhabitat use, as demonstrated by small-scale ecological studies, may scale up dramatically to shape macroevolutionary patterns.


Asunto(s)
Filogenia , Urodelos , Animales , Evolución Biológica , Ecosistema
4.
Evolution ; 74(2): 476-486, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31849047

RESUMEN

Evolutionary biologists have long been interested in the macroevolutionary consequences of various selection pressures, yet physiological responses to selection across deep time are not well understood. In this paper, we investigate how a physiologically relevant morphological trait, surface area to volume ratio (SA:V) of lungless salamanders, has evolved across broad regional and climatic variation. SA:V directly impacts an organisms' ability to retain water, leading to the expectation that smaller SA:Vs would be advantageous in arid, water-limited environments. To explore the macroevolutionary patterns of SA:V, we first develop an accurate method for estimating SA:V from linear measurements. Next, we investigate the macroevolutionary patterns of SA:V across 257 salamander species, revealing that higher SA:Vs phylogenetically correlate with warmer, wetter climates. We also observe higher SA:V disparity and rate of evolution in tropical species, mirrored by higher climatic disparity in available and occupied tropical habitats. Taken together, these results suggest that the tropics have provided a wider range of warmer, wetter climates for salamanders to exploit, thereby relaxing desiccation pressures on SA:V. Overall, this paper provides an accurate, efficient method for quantifying salamander SA:V, allowing us to demonstrate the power of physiological selection pressures in influencing the macroevolution of morphology.


Asunto(s)
Evolución Biológica , Desecación , Urodelos/anatomía & histología , Animales , Superficie Corporal , Ecosistema , Filogenia , Urodelos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA