Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 186: 109397, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32315824

RESUMEN

Elevated walking speed is an indicator of increased pace of life in cities, caused by environmental pressures inherent to urban environments, which lead to short- and long-term consequences for health and well-being. In this paper we investigate the effect of walking speed on heat stress. We define the heat-stress-optimal walking speed and estimate its values for a wide range of air temperatures with the use of computational modelling of metabolic heat production and thermal regulation. The heat-stress-optimal walking speed shows three distinct phases in relation to air temperature, determined by different modes of interaction between the environment and physiology. Simulation results suggest that different temperature regimes require walking speed adaptation to preserve heat balance. Empirical data collected for Singapore reveals elevated average walking speed, which is not responsive to slight changes in microclimate (4-5 °C). The proposed computational model predicts the amount of additional heat produced by an individual due to the high pace of life. We conclude that there are direct implications of the high pace of life in cities on the immediate heat stress of people, and we show how a lower walking speed significantly reduces self-overheating and improves thermal comfort.


Asunto(s)
Peatones , Ciudades , Respuesta al Choque Térmico , Humanos , Microclima , Caminata
2.
Sci Rep ; 12(1): 2441, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165328

RESUMEN

Due to phenomena such as urban heat islands, outdoor thermal comfort of the cities' residents emerges as a growing concern. A major challenge for mega-cities in changing climate is the design of urban spaces that ensure and promote pedestrian thermal comfort. Understanding pedestrian behavioural adaptation to urban thermal environments is critically important to attain this goal. Current research in pedestrian behaviour lacks controlled experimentation, which limits the quantitative modelling of such complex behaviour. Combining well-controlled experiments with human participants and computational methods inspired by behavioural ecology and decision theory, we examine the effect of sun exposure on route choice in a tropical city. We find that the distance walked in the shade is discounted by a factor of 0.86 compared to the distance walked in the sun, and that shadows cast by buildings have a stronger effect than trees. The discounting effect is mathematically formalised and thus allows quantification of the behaviour that can be used in understanding pedestrian behaviour in changing urban climates. The results highlight the importance of assessment of climate through human responses to it and point the way forward to explore scenarios to mitigate pedestrian heat stress.


Asunto(s)
Adaptación Psicológica , Conducta de Elección , Respuesta al Choque Térmico , Calor , Peatones/psicología , Clima Tropical , Población Urbana , Adulto , Teorema de Bayes , Ciudades , Biología Computacional/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Árboles , Adulto Joven
3.
Sci Rep ; 11(1): 16688, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404876

RESUMEN

Public health is threatened by climate change and extreme temperature events worldwide. Differences in health predispositions, access to cooling infrastructure and occupation raises an issue of heat-related health inequality in those vulnerable and disadvantaged demographic groups. To address these issues, a comprehensive understanding of the effect of elevated body temperatures on human biological systems and overall health is urgently needed. In this paper we look at the inner workings of the human innate immunity under exposure to heat stress induced through exposure to environment and physical exertion. We couple two experimentally validated computational models: the innate immune system and thermal regulation of the human body. We first study the dynamics of critical indicators of innate immunity as a function of human core temperature. Next, we identify environmental and physical activity regimes that lead to core temperature levels that can potentially compromise the performance of the human innate immunity. Finally, to take into account the response of innate immunity to various intensities of physical activities, we utilise the dynamic core temperatures generated by a thermal regulation model. We compare the dynamics of all key players of the innate immunity for a variety of stresses like running a marathon, doing construction work, and leisure walking at speed of 4 km/h, all in the setting of a hot and humid tropical climate such as present in Singapore. We find that exposure to moderate heat stress leading to core temperatures within the mild febrile range (37, 38][Formula: see text], nudges the innate immune system into activation and improves the efficiency of its response. Overheating corresponding to core temperatures beyond 38[Formula: see text], however, has detrimental effects on the performance of the innate immune system, as it further induces inflammation, which causes a series of reactions that may lead to the non-resolution of the ongoing inflammation. Among the three physical activities considered in our simulated scenarios (marathon, construction work, and walking), marathon induces the highest level of inflammation that challenges the innate immune response with its resolution. Our study advances the current state of research towards understanding the implications of heat exposure for such an essential physiological system as the innate immunity. Although we find that among considered physical activities, a marathon of 2 h and 46 min induces the highest level of inflammation, it must be noted that construction work done on a daily basis under the hot and humid tropical climate, can produce a continuous level of inflammation triggering moieties stretched at a longer timeline beating the negative effects of running a marathon. Our study demonstrates that the performance of the innate immune system can be severely compromised by the exposure to heat stress and physical exertion. This poses significant risks to health especially to those with limited access to cooling infrastructures. This is due in part to having low income, or having to work on outdoor settings, which is the case for construction workers. These risks to public health should be addressed through individual and population-level measures via behavioural adaptation and provision of the cooling infrastructure in outdoor environments.


Asunto(s)
Ejercicio Físico , Respuesta al Choque Térmico , Inmunidad Innata , Temperatura Corporal , Regulación de la Temperatura Corporal , Trastornos de Estrés por Calor/inmunología , Humanos , Inflamación/inmunología , Carrera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA