Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Matrix Biol ; 70: 84-101, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29572155

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly population. Variants in the HTRA1-ARMS2 locus have been linked to increased AMD risk. In the present study we investigated the impact of elevated HtrA1 levels on the retina pigment epithelial (RPE) secretome using a polarized culture system. Upregulation of HtrA1 alters the abundance of key proteins involved in angiogenesis and extracellular matrix remodeling. Thrombospondin-1, an angiogenesis modulator, was identified as a substrate for HtrA1 using terminal amine isotope labeling of substrates in conjunction with HtrA1 specificity profiling. HtrA1 cleavage of thrombospondin-1 was further corroborated by in vitro cleavage assays and targeted proteomics together with small molecule inhibition of HtrA1. While thrombospondin-1 is anti-angiogenic, the proteolytically released N-terminal fragment promotes the formation of tube-like structure by endothelial cells. Taken together, our findings suggest a mechanism by which increased levels of HtrA1 may contribute to AMD pathogenesis. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier. For quantitative secretome analysis, project accession: PXD007691, username: reviewer45093@ebi.ac.uk, password: 1FUpS6Yq. For TAILS analysis, project accession: PXD007139, username: reviewer76731@ebi.ac.uk, password: sNbMp7xK.


Asunto(s)
Inductores de la Angiogénesis/química , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Degeneración Macular/metabolismo , Fragmentos de Péptidos/química , Pigmentos Retinianos/metabolismo , Trombospondina 1/química , Anciano , Secuencia de Aminoácidos , Inductores de la Angiogénesis/aislamiento & purificación , Inductores de la Angiogénesis/farmacología , Medios de Cultivo Condicionados/química , Cámaras de Difusión de Cultivos , Impedancia Eléctrica , Células Epiteliales/metabolismo , Células Epiteliales/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Modelos Moleculares , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/farmacología , Cultivo Primario de Células , Proteolisis , Proteoma/genética , Proteoma/metabolismo , Pigmentos Retinianos/genética , Trombospondina 1/genética , Trombospondina 1/metabolismo
2.
EBioMedicine ; 27: 258-274, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29269042

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss. The protein HtrA1 is enriched in retinal pigment epithelial (RPE) cells isolated from AMD patients and in drusen deposits. However, it is poorly understood how increased levels of HtrA1 affect the physiological function of the RPE at the intracellular level. Here, we developed hfRPE (human fetal retinal pigment epithelial) cell culture model where cells fully differentiated into a polarized functional monolayer. In this model, we fine-tuned the cellular levels of HtrA1 by targeted overexpression. Our data show that HtrA1 enzymatic activity leads to intracellular degradation of tubulin with a corresponding reduction in the number of microtubules, and consequently to an altered mechanical cell phenotype. HtrA1 overexpression further leads to impaired apical processes and decreased phagocytosis, an essential function for photoreceptor survival. These cellular alterations correlate with the AMD phenotype and thus highlight HtrA1 as an intracellular target for therapeutic interventions towards AMD treatment.


Asunto(s)
Polaridad Celular , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Degeneración Macular/metabolismo , Degeneración Macular/patología , Modelos Biológicos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Tubulina (Proteína)/metabolismo , Uniones Adherentes/metabolismo , Adulto , Feto/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Humanos , Microtúbulos/metabolismo , Mutación/genética , Nanopartículas/química , Fagocitosis , Polimerizacion , Agregado de Proteínas , Unión Proteica , Transcripción Genética
3.
Respir Physiol Neurobiol ; 155(2): 156-66, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16824808

RESUMEN

Hyperthermia was shown to induce oxidative stress by uncoupling mitochondrial respiratory chain and to reduce superoxide dismutase (SOD) activity in muscles. Reactive carbonyl groups, malondialdehyde (MDA)-protein adducts, 3-nitrotyrosine immunoreactivity, Mn-SOD, and catalase were detected using immunoblotting in rat diaphragm specimens and homogenates thawed at room temperature (after previous storage at -80 degrees C) for 5, 15, 30, and 60 min, and 3, 6, and 24h to be subsequently and immediately stored at -80 degrees C. Mn-SOD activity was also measured in all muscles. Both total protein carbonylation (reactive carbonyl groups and MDA-protein adducts) and nitration were significantly increased over time, reaching their peaks in the diaphragms of the 60- and 15-min groups, respectively. Mn-SOD expression and activity were significantly reduced over time, while catalase expression showed no significant variation. Protein oxidation was significantly increased in the rat diaphragms exposed to freezing-thawing cycles of different time lengths, while Mn-SOD was substantially reduced in all muscles.


Asunto(s)
Diafragma/fisiología , Congelación , Estrés Oxidativo/fisiología , Animales , Western Blotting/métodos , Catalasa/metabolismo , Regulación de la Expresión Génica/fisiología , Hipotermia/metabolismo , Hipotermia/fisiopatología , Inmunohistoquímica/métodos , Técnicas In Vitro , Masculino , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo , Factores de Tiempo , Tirosina/análogos & derivados , Tirosina/metabolismo
4.
Sci Rep ; 7(1): 14804, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29093542

RESUMEN

The human protease family HtrA is responsible for preventing protein misfolding and mislocalization, and a key player in several cellular processes. Among these, HtrA1 is implicated in several cancers, cerebrovascular disease and age-related macular degeneration. Currently, HtrA1 activation is not fully characterized and relevant for drug-targeting this protease. Our work provides a mechanistic step-by-step description of HtrA1 activation and regulation. We report that the HtrA1 trimer is regulated by an allosteric mechanism by which monomers relay the activation signal to each other, in a PDZ-domain independent fashion. Notably, we show that inhibitor binding is precluded if HtrA1 monomers cannot communicate with each other. Our study establishes how HtrA1 trimerization plays a fundamental role in proteolytic activity. Moreover, it offers a structural explanation for HtrA1-defective pathologies as well as mechanistic insights into the degradation of complex extracellular fibrils such as tubulin, amyloid beta and tau that belong to the repertoire of HtrA1.


Asunto(s)
Serina Peptidasa A1 que Requiere Temperaturas Altas/química , Multimerización de Proteína , Proteolisis , Regulación Alostérica , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Humanos , Dominios Proteicos , Relación Estructura-Actividad , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Tissue Eng Part C Methods ; 21(9): 909-21, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25782021

RESUMEN

In vitro coculture models mimicking the bronchial barrier are a significant step forward in investigating the behavior and function of the upper respiratory tract mucosa. To date, mostly synthetic materials have been used as substrates to culture the cells. However, decellularized tissues provide a more in vivo-like environment based on the native extracellular matrix. In this study, an in vitro, bronchial wall coculture model has been established using a decellularized, porcine luminal trachea membrane and employing three relevant human cell types. The tissue was decellularized and placed in plastic transwell supports. The human bronchial epithelial cell line, 16HBE14o-, was seeded on the apical side of the membrane with the human lung fibroblast cell line, Wi-38, and/or the microvascular endothelial cell line, ISO-HAS-1, seeded on the basolateral side. Transepithelial electrical resistance (TER) was measured over 10 days and tight/adherens junctions (ZO-1, occludin/ß-catenin) were studied through immunofluorescence. Scanning electron microscopy (SEM) was performed to evaluate microvilli and cilia formation. All cultures grew successfully on the membrane. TER values of 555 Ω·cm(2) (±21, SEM) were achieved in the monoculture. Cocultures with fibroblasts reached 565 Ω·cm(2) (±41, SEM), with endothelial cells at 638 Ω·cm(2) (±37, SEM), and the triple culture achieved 552 Ω·cm(2) (±38, SEM). ZO-1, occludin, and ß-catenin were expressed in 16HBE14o- under all culture conditions. Using SEM, a dense microvilli population was found. Prominent cell-cell contacts and clusters of emerging cilia could be identified. Fibroblasts and endothelial cells strengthened the formation of a tight barrier by the 16HBE14o-. Thus, the coculture of three relevant cell types in combination with native decellularized scaffolds as a substrate approaches more closely the in vivo situation and could be used to study mechanisms of upper respiratory damage and regeneration.


Asunto(s)
Bronquios/fisiología , Modelos Biológicos , Técnicas de Cultivo de Tejidos/métodos , Tráquea/fisiología , Animales , Biomarcadores/metabolismo , Comunicación Celular , Línea Celular , Impedancia Eléctrica , Células Epiteliales/citología , Células Epiteliales/ultraestructura , Matriz Extracelular/metabolismo , Humanos , Membranas , Microvellosidades/metabolismo , Sus scrofa , Factores de Tiempo
6.
Physiol Rep ; 2(7)2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25347858

RESUMEN

Whole-organ decellularization technology has emerged as a new alternative for the fabrication of bioartificial lungs. Embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) are potentially useful for recellularization since they can be directed to express phenotypic marker genes of lung epithelial cells. Normal pulmonary development takes place in a low oxygen environment ranging from 1 to 5%. By contrast, in vitro ESC and iPSC differentiation protocols are usually carried out at room-air oxygen tension. Here, we sought to determine the role played by oxygen tension on the derivation of Nkx2.1+ lung/thyroid progenitor cells from mouse ESC and iPSC. A step-wise differentiation protocol was used to generate Nkx2.1+ lung/thyroid progenitors under 20% and 5% oxygen tension. On day 12, gene expression analysis revealed that Nkx2.1 and Foxa2 (endodermal and early lung epithelial cell marker) were significantly upregulated at 5% oxygen tension in ESC and iPSC differentiated cultures compared to 20% oxygen conditions. In addition, quantification of Foxa2+Nkx2.1+Pax8- cells corresponding to the lung field, with exclusion of the potential thyroid fate identified by Pax8 expression, confirmed that the low physiologic oxygen tension exerted a significant positive effect on early pulmonary differentiation of ESC and iPSC. In conclusion, we found that 5% oxygen tension enhanced the derivation of lung progenitors from mouse ESC and iPSC compared to 20% room-air oxygen tension.

7.
Tissue Eng Part C Methods ; 20(5): 412-22, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24083889

RESUMEN

Lung bioengineering, a novel approach to obtain organs potentially available for transplantation, is based on decellularizing donor lungs and seeding natural scaffolds with stem cells. Various physicochemical protocols have been used to decellularize lungs, and their performance has been evaluated in terms of efficient decellularization and matrix preservation. No data are available, however, on the effect of different decellularization procedures on the local stiffness of the acellular lung. This information is important since stem cells directly sense the rigidity of the local site they are engrafting to during recellularization, and it has been shown that substrate stiffness modulates cell fate into different phenotypes. The aim of this study was to assess the effects of the decellularization procedure on the inhomogeneous local stiffness of the acellular lung on five different sites: alveolar septa, alveolar junctions, pleura, and vessels' tunica intima and tunica adventitia. Local matrix stiffness was measured by computing Young's modulus with atomic force microscopy after decellularizing the lungs of 36 healthy rats (Sprague-Dawley, male, 250-300 g) with four different protocols with/without perfusion through the lung circulatory system and using two different detergents (sodium dodecyl sulfate [SDS] and 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate [CHAPS]). The local stiffness of the acellular lung matrix significantly depended on the site within the matrix (p<0.001), ranging from ∼ 15 kPa at the alveolar septum to ∼ 60 kPa at the tunica intima. Acellular lung stiffness (p=0.003) depended significantly, albeit modestly, on the decellularization process. Whereas perfusion did not induce any significant differences in stiffness, the use of CHAPS resulted in a ∼ 35% reduction compared with SDS, the influence of the detergent being more important in the tunica intima. In conclusion, lung matrix stiffness is considerably inhomogeneous, and conventional decellularization procedures do not result in substantially different local stiffness in the acellular lung.


Asunto(s)
Pulmón/citología , Pulmón/fisiología , Ingeniería de Tejidos/métodos , Animales , Fenómenos Biomecánicos , Colágeno/metabolismo , Módulo de Elasticidad , Elastina/metabolismo , Glicosaminoglicanos/metabolismo , Laminina/metabolismo , Pulmón/irrigación sanguínea , Masculino , Microscopía de Fuerza Atómica , Ratas Sprague-Dawley
8.
J Mech Behav Biomed Mater ; 37: 186-95, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24946269

RESUMEN

Lung disease models are useful to study how cell engraftment, proliferation and differentiation are modulated in lung bioengineering. The aim of this work was to characterize the local stiffness of decellularized lungs in aged and fibrotic mice. Mice (2- and 24-month old; 14 of each) with lung fibrosis (N=20) and healthy controls (N=8) were euthanized after 11 days of intratracheal bleomycin (fibrosis) or saline (controls) infusion. The lungs were excised, decellularized by a conventional detergent-based (sodium-dodecyl sulfate) procedure and slices of the acellular lungs were prepared to measure the local stiffness by means of atomic force microscopy. The local stiffness of the different sites in acellular fibrotic lungs was very inhomogeneous within the lung and increased according to the degree of the structural fibrotic lesion. Local stiffness of the acellular lungs did not show statistically significant differences caused by age. The group of mice most affected by fibrosis exhibited local stiffness that were ~2-fold higher than in the control mice: from 27.2±1.64 to 64.8±7.1kPa in the alveolar septa, from 56.6±4.6 to 99.9±11.7kPa in the visceral pleura, from 41.1±8.0 to 105.2±13.6kPa in the tunica adventitia, and from 79.3±7.2 to 146.6±28.8kPa in the tunica intima. Since acellular lungs from mice with bleomycin-induced fibrosis present considerable micromechanical inhomogeneity, this model can be a useful tool to better investigate how different degrees of extracellular matrix lesion modulate cell fate in the process of organ bioengineering from decellularized lungs.


Asunto(s)
Matriz Extracelular/metabolismo , Pulmón/patología , Fenómenos Mecánicos , Andamios del Tejido , Envejecimiento/patología , Animales , Fenómenos Biomecánicos , Bleomicina/efectos adversos , Colágeno/metabolismo , Matriz Extracelular/efectos de los fármacos , Femenino , Fibrosis , Pulmón/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL
9.
J Mech Behav Biomed Mater ; 40: 168-177, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25241281

RESUMEN

Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering.


Asunto(s)
Rayos gamma , Pulmón/citología , Fenómenos Mecánicos , Esterilización , Animales , Fenómenos Biomecánicos , Relación Dosis-Respuesta en la Radiación , Pulmón/efectos de la radiación , Masculino , Ratones
10.
J Biomed Mater Res A ; 102(2): 413-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23533110

RESUMEN

Lung bioengineering based on decellularized organ scaffolds is a potential alternative for transplantation. Freezing/thawing, a usual procedure in organ decellularization and storage could modify the mechanical properties of the lung scaffold and reduce the performance of the bioengineered lung when subjected to the physiological inflation-deflation breathing cycles. The aim of this study was to determine the effects of repeated freezing/thawing on the mechanical properties of decellularized lungs in the physiological pressure-volume regime associated with normal ventilation. Fifteen mice lungs (C57BL/6) were decellularized using a conventional protocol not involving organ freezing and based on sodium dodecyl sulfate detergent. Subsequently, the mechanical properties of the acellular lungs were measured before and after subjecting them to three consecutive cycles of freezing/thawing. The resistance (RL ) and elastance (EL ) of the decellularized lungs were computed by linear regression fitting of the recorded signals (tracheal pressure, flow, and volume) during mechanical ventilation. RL was not significantly modified by freezing-thawing: from 0.88 ± 0.37 to 0.90 ± 0.38 cmH2 O·s·mL(-1) (mean ± SE). EL slightly increased from 64.4 ± 11.1 to 73.0 ± 16.3 cmH2 O·mL(-1) after the three freeze-thaw cycles (p = 0.0013). In conclusion, the freezing/thawing process that is commonly used for both organ decellularization and storage induces only minor changes in the ventilation mechanical properties of the organ scaffold.


Asunto(s)
Congelación , Pulmón/química , Dodecil Sulfato de Sodio/química , Andamios del Tejido/química , Animales , Femenino , Ratones
11.
Acta Biomater ; 10(7): 3235-42, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24717359

RESUMEN

Infarcted hearts are macroscopically stiffer than healthy organs. Nevertheless, although cell behavior is mediated by the physical features of the cell niche, the intrinsic micromechanical properties of healthy and infarcted heart extracellular matrix (ECM) remain poorly characterized. Using atomic force microscopy, we studied ECM micromechanics of different histological regions of the left ventricle wall of healthy and infarcted mice. Hearts excised from healthy (n=8) and infarcted mice (n=8) were decellularized with sodium dodecyl sulfate and cut into 12 µm thick slices. Healthy ventricular ECM revealed marked mechanical heterogeneity across histological regions of the ventricular wall with the effective Young's modulus ranging from 30.2 ± 2.8 to 74.5 ± 8.7 kPa in collagen- and elastin-rich regions of the myocardium, respectively. Infarcted ECM showed a predominant collagen composition and was 3-fold stiffer than collagen-rich regions of the healthy myocardium. ECM of both healthy and infarcted hearts exhibited a solid-like viscoelastic behavior that conforms to two power-law rheology. Knowledge of intrinsic micromechanical properties of the ECM at the length scale at which cells sense their environment will provide further insight into the cell-scaffold interplay in healthy and infarcted hearts.


Asunto(s)
Matriz Extracelular/fisiología , Infarto del Miocardio/fisiopatología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica , Reología
12.
Respir Physiol Neurobiol ; 200: 1-5, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24837837

RESUMEN

Lung decellularization is based on the use of physical, chemical, or enzymatic methods to break down the integrity of the cells followed by a treatment to extract the cellular material from the lung scaffold. The aim of this study was to characterize the mechanical changes throughout the different steps of lung decellularization process. Four lungs from mice (C57BL/6) were decellularized by using a conventional protocol based on sodium dodecyl sulfate. Lungs resistance (R(L)) and elastance (E(L)) were measured along decellularization steps and were computed by linear regression fitting of tracheal pressure, flow, and volume during mechanical ventilation. Transients differences found were more distinct in an intermediate step after the lungs were rinsed with deionized water and treated with 1% SDS, whereupon the percentage of variation reached approximately 80% for resistance values and 30% for elastance values. In conclusion, although a variation in extracellular matrix stiffness was observed during the decellularization process, this variation can be considered negligible overall because the resistance and elastance returned to basal values at the final decellularization step.


Asunto(s)
Detergentes , Matriz Extracelular/fisiología , Pulmón/citología , Pulmón/fisiología , Mecánica Respiratoria , Dodecil Sulfato de Sodio , Resistencia de las Vías Respiratorias , Animales , Elasticidad , Femenino , Congelación , Indoles , Modelos Lineales , Ratones Endogámicos C57BL , Tamaño de los Órganos , Presión , Respiración Artificial , Tráquea/fisiología
13.
Respir Physiol Neurobiol ; 188(1): 1-8, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23643709

RESUMEN

INTRODUCTION: Alveolar epithelial cells undergo stretching during mechanical ventilation. Stretch can modify the oxidative balance in the alveolar epithelium. The aim of the present study was to evaluate the antioxidant role of human adult adipose tissue-derived stromal cells (hADSCs) when human alveolar epithelial cells were subjected to injurious cyclic overstretching. METHODS: A549 cells were subjected to biaxial stretch (0-15% change in surface area for 24h, 0.2Hz) with and without hADSCs. At the end of the experiments, oxidative stress was measured as superoxide generation using positive nuclear dihydroethidium (DHE) staining, superoxide dismutase (SOD) activity in cell lysates, 8-isoprostane concentrations in supernatant, and 3-nitrotyrosine by indirect immunofluorescence in fixed cells. RESULTS: Cyclically stretching of AECs induced a significant decrease in SOD activity, and an increase in 8-isoprostane concentrations, DHE staining and 3-nitrotyrosine staining compared with non-stretched cells. Treatment with hADSCs significantly attenuated stretch-induced changes in SOD activity, 8-isoprostane concentrations, DHE and 3-nitrotyrosine staining. CONCLUSION: These data suggest that hADSCs have an anti-oxidative effect in human alveolar epithelial cells undergoing cyclic stretch.


Asunto(s)
Tejido Adiposo/metabolismo , Células Madre Adultas/metabolismo , Estrés Oxidativo/fisiología , Alveolos Pulmonares/metabolismo , Mucosa Respiratoria/metabolismo , Estrés Mecánico , Tejido Adiposo/citología , Adulto , Células Cultivadas , Humanos , Persona de Mediana Edad , Alveolos Pulmonares/citología , Mucosa Respiratoria/citología , Células del Estroma/metabolismo , Adulto Joven
14.
Tissue Eng Part A ; 19(17-18): 2045-62, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23638920

RESUMEN

The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production.


Asunto(s)
Pulmón , Andamios del Tejido/química , Animales , Colágeno/química , Humanos , Inmunohistoquímica , Laminina/química , Porcinos , Ingeniería de Tejidos/métodos
15.
Respir Physiol Neurobiol ; 182(1): 47-52, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22246085

RESUMEN

High frequency intermittent hypoxia is one of the most relevant injurious stimuli experienced by patients with obstructive sleep apnea (OSA). Given that the conventional setting for culturing cells under intermittent hypoxia conditions is limited by long equilibration times, we designed a simple bioreactor capable of effectively subjecting cultured cells to controlled high-frequency hypoxic/normoxic stimuli. The bioreactor's operation is based on exposing cells to a medium that is bubbled with the appropriate mixture of gases into two separate containers, and from there it is directed to the cell culture dish with the aid of two bidirectional peristaltic pumps. The device was tested on human alveolar epithelial cells (A549) and mouse melanoma cells (B16-F10), subjecting them to patterns of intermittent hypoxia (20s at 5% O(2) and 50s at 20% O(2)), which realistically mimic OSA of up to severe intensity as defined by the apnea hypopnea index. The proposed bioreactor can be easily and inexpensively assembled and is of practical use for investigating the effects of high-rate changes in oxygen concentration in the cell culture medium.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/instrumentación , Células Epiteliales/fisiología , Oxígeno/administración & dosificación , Apnea Obstructiva del Sueño/fisiopatología , Animales , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Células Cultivadas , Diseño de Equipo , Estudios de Factibilidad , Humanos , Ratones , Alveolos Pulmonares/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA