Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(8): 2229-2238.e13, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33691138

RESUMEN

The biosafety level 3 (BSL-3) requirement to culture severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a bottleneck for research. Here, we report a trans-complementation system that produces single-round infectious SARS-CoV-2 that recapitulates authentic viral replication. We demonstrate that the single-round infectious SARS-CoV-2 can be used at BSL-2 laboratories for high-throughput neutralization and antiviral testing. The trans-complementation system consists of two components: a genomic viral RNA containing ORF3 and envelope gene deletions, as well as mutated transcriptional regulator sequences, and a producer cell line expressing the two deleted genes. Trans-complementation of the two components generates virions that can infect naive cells for only one round but does not produce wild-type SARS-CoV-2. Hamsters and K18-hACE2 transgenic mice inoculated with the complementation-derived virions exhibited no detectable disease, even after intracranial inoculation with the highest possible dose. Thus, the trans-complementation platform can be safely used at BSL-2 laboratories for research and countermeasure development.


Asunto(s)
COVID-19/virología , Contención de Riesgos Biológicos/métodos , SARS-CoV-2 , Células A549 , Animales , Chlorocebus aethiops , Cricetinae , Prueba de Complementación Genética/métodos , Genoma Viral , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , ARN Viral , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Células Vero , Virulencia , Replicación Viral
2.
Immunity ; 54(3): 542-556.e9, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33631118

RESUMEN

A combination of vaccination approaches will likely be necessary to fully control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane-anchored pre-fusion stabilized spike (MVA/S) but not secreted S1 induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8+ T cell responses, and conferred protection from SARS-CoV-2 infection and virus replication in the lungs as early as day 2 following intranasal and intratracheal challenge. Single-cell RNA sequencing analysis of lung cells on day 4 after infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities and lowered induction of interferon-stimulated genes. These results demonstrate that MVA/S vaccination induces neutralizing antibodies and CD8+ T cells in the blood and lungs and is a potential vaccine candidate for SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Vectores Genéticos/genética , SARS-CoV-2/inmunología , Vacunas de ADN/inmunología , Virus Vaccinia/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Vacunas contra la COVID-19/genética , Modelos Animales de Enfermedad , Expresión Génica , Orden Génico , Inmunofenotipificación , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Macaca , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Ratones , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vacunación/métodos , Vacunas de ADN/genética
3.
Nature ; 602(7896): 294-299, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34818667

RESUMEN

The B.1.1.7 variant (also known as Alpha) of SARS-CoV-2, the cause of the COVID-19 pandemic, emerged in the UK in the summer of 2020. The prevalence of this variant increased rapidly owing to an increase in infection and/or transmission efficiency1. The Alpha variant contains 19 nonsynonymous mutations across its viral genome, including 8 substitutions or deletions in the spike protein that interacts with cellular receptors to mediate infection and tropism. Here, using a reverse genetics approach, we show that of the 8 individual spike protein substitutions, only N501Y resulted in consistent fitness gains for replication in the upper airway in a hamster model as well as in primary human airway epithelial cells. The N501Y substitution recapitulated the enhanced viral transmission phenotype of the eight mutations in the Alpha spike protein, suggesting that it is a major determinant of the increased transmission of the Alpha variant. Mechanistically, the N501Y substitution increased the affinity of the viral spike protein for cellular receptors. As suggested by its convergent evolution in Brazil, South Africa and elsewhere2,3, our results indicate that N501Y substitution is an adaptive spike mutation of major concern.


Asunto(s)
Sustitución de Aminoácidos , COVID-19/transmisión , COVID-19/virología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Unión Competitiva , Bronquios/citología , Células Cultivadas , Cricetinae , Humanos , Masculino , Mesocricetus , Modelos Moleculares , Mutación , Unión Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Replicación Viral
4.
Nature ; 595(7869): 718-723, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34082438

RESUMEN

Resistance represents a major challenge for antibody-based therapy for COVID-191-4. Here we engineered an immunoglobulin M (IgM) neutralizing antibody (IgM-14) to overcome the resistance encountered by immunoglobulin G (IgG)-based therapeutics. IgM-14 is over 230-fold more potent than its parental IgG-14 in neutralizing SARS-CoV-2. IgM-14 potently neutralizes the resistant virus raised by its corresponding IgG-14, three variants of concern-B.1.1.7 (Alpha, which first emerged in the UK), P.1 (Gamma, which first emerged in Brazil) and B.1.351 (Beta, which first emerged in South Africa)-and 21 other receptor-binding domain mutants, many of which are resistant to the IgG antibodies that have been authorized for emergency use. Although engineering IgG into IgM enhances antibody potency in general, selection of an optimal epitope is critical for identifying the most effective IgM that can overcome resistance. In mice, a single intranasal dose of IgM-14 at 0.044 mg per kg body weight confers prophylactic efficacy and a single dose at 0.4 mg per kg confers therapeutic efficacy against SARS-CoV-2. IgM-14, but not IgG-14, also confers potent therapeutic protection against the P.1 and B.1.351 variants. IgM-14 exhibits desirable pharmacokinetics and safety profiles when administered intranasally in rodents. Our results show that intranasal administration of an engineered IgM can improve efficacy, reduce resistance and simplify the prophylactic and therapeutic treatment of COVID-19.


Asunto(s)
COVID-19/prevención & control , COVID-19/virología , Inmunoglobulina M/administración & dosificación , Inmunoglobulina M/inmunología , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Administración Intranasal , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/efectos adversos , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas Reguladoras de la Apoptosis/metabolismo , COVID-19/inmunología , Relación Dosis-Respuesta Inmunológica , Femenino , Humanos , Inmunoglobulina A/genética , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/efectos adversos , Inmunoglobulina M/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Ingeniería de Proteínas , Receptores Virales/antagonistas & inhibidores , Receptores Virales/metabolismo , SARS-CoV-2/genética , Tratamiento Farmacológico de COVID-19
5.
Nature ; 592(7852): 116-121, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33106671

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein substitution D614G became dominant during the coronavirus disease 2019 (COVID-19) pandemic1,2. However, the effect of this variant on viral spread and vaccine efficacy remains to be defined. Here we engineered the spike D614G substitution in the USA-WA1/2020 SARS-CoV-2 strain, and found that it enhances viral replication in human lung epithelial cells and primary human airway tissues by increasing the infectivity and stability of virions. Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission. Sera from hamsters infected with D614 virus exhibit modestly higher neutralization titres against G614 virus than against D614 virus, suggesting that the mutation is unlikely to reduce the ability of vaccines in clinical trials to protect against COVID-19, and that therapeutic antibodies should be tested against the circulating G614 virus. Together with clinical findings, our work underscores the importance of this variant in viral spread and its implications for vaccine efficacy and antibody therapy.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , Aptitud Genética , Mutación , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Cricetinae , Modelos Animales de Enfermedad , Humanos , Pulmón/virología , Masculino , Mesocricetus/virología , Modelos Biológicos , Mucosa Nasal/virología , Pruebas de Neutralización , Estabilidad Proteica , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Técnicas de Cultivo de Tejidos , Tráquea/virología , Carga Viral , Virión/química , Virión/patogenicidad , Virión/fisiología , Replicación Viral/genética
6.
Nature ; 591(7849): 293-299, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33494095

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-a new coronavirus that has led to a worldwide pandemic1-has a furin cleavage site (PRRAR) in its spike protein that is absent in other group-2B coronaviruses2. To explore whether the furin cleavage site contributes to infection and pathogenesis in this virus, we generated a mutant SARS-CoV-2 that lacks the furin cleavage site (ΔPRRA). Here we report that replicates of ΔPRRA SARS-CoV-2 had faster kinetics, improved fitness in Vero E6 cells and reduced spike protein processing, as compared to parental SARS-CoV-2. However, the ΔPRRA mutant had reduced replication in a human respiratory cell line and was attenuated in both hamster and K18-hACE2 transgenic mouse models of SARS-CoV-2 pathogenesis. Despite reduced disease, the ΔPRRA mutant conferred protection against rechallenge with the parental SARS-CoV-2. Importantly, the neutralization values of sera from patients with coronavirus disease 2019 (COVID-19) and monoclonal antibodies against the receptor-binding domain of SARS-CoV-2 were lower against the ΔPRRA mutant than against parental SARS-CoV-2, probably owing to an increased ratio of particles to plaque-forming units in infections with the former. Together, our results demonstrate a critical role for the furin cleavage site in infection with SARS-CoV-2 and highlight the importance of this site for evaluating the neutralization activities of antibodies.


Asunto(s)
COVID-19/virología , Furina/metabolismo , Mutación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19/patología , COVID-19/fisiopatología , Línea Celular , Chlorocebus aethiops , Cricetinae , Femenino , Humanos , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/fisiopatología , Enfermedades Pulmonares/virología , Masculino , Ratones , Ratones Transgénicos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteolisis , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Replicación Viral/genética
7.
EMBO Rep ; 25(2): 902-926, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177924

RESUMEN

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.


Asunto(s)
COVID-19 , Síndrome del Cromosoma X Frágil , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Péptidos/metabolismo , Proteínas de Unión al ARN/genética , SARS-CoV-2
8.
Proc Natl Acad Sci U S A ; 119(32): e2205690119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35881779

RESUMEN

The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here, we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated, and disruption of its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site-the FCS, loop length, and glycosylation-are required for efficient SARS-CoV-2 replication and pathogenesis.


Asunto(s)
COVID-19 , Furina , Proteolisis , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Secuencias de Aminoácidos/genética , Animales , COVID-19/virología , Chlorocebus aethiops , Furina/química , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Eliminación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Replicación Viral/genética
9.
J Virol ; 97(2): e0153222, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36722972

RESUMEN

Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'-O-methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'-O-MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both in vitro and in vivo, using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive than wild-type SARS-CoV-2 to type I interferon (IFN-I) in vitro. Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'-O-methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, an MTase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment and attenuates viral replication. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a target for future antiviral therapies. IMPORTANCE Similar to other coronaviruses, disruption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP16 function attenuates viral replication in a type I interferon-dependent manner. In vivo, our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1 but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'-O-methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Péptidos y Proteínas de Señalización Intracelular , SARS-CoV-2 , Proteínas no Estructurales Virales , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , COVID-19/virología , Interferón Tipo I/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metiltransferasas/metabolismo , Proteínas de Unión al ARN/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/metabolismo , Animales , Cricetinae
10.
PLoS Pathog ; 18(6): e1010627, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35728038

RESUMEN

While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo. Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral 'RG' motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2's continued adaptation to human infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/genética , Glucógeno Sintasa Quinasa 3 , Humanos , Mutación , Nucleocápside , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
11.
PLoS Biol ; 19(11): e3001284, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34735434

RESUMEN

The emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of Coronavirus Disease 2019 (COVID-19) have been hampered by the lack of robust mouse models. To overcome this barrier, we used a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2. Incorporating key mutations found in SARS-CoV-2 variants, this model recapitulates critical elements of human infection including viral replication in the lung, immune cell infiltration, and significant in vivo disease. Importantly, mouse adaptation of SARS-CoV-2 does not impair replication in human airway cells and maintains antigenicity similar to human SARS-CoV-2 strains. Coupled with the incorporation of mutations found in variants of concern, CMA3p20 offers several advantages over other mouse-adapted SARS-CoV-2 strains. Using this model, we demonstrate that SARS-CoV-2-infected mice are protected from lethal challenge with the original Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), suggesting immunity from heterologous Coronavirus (CoV) strains. Together, the results highlight the use of this mouse model for further study of SARS-CoV-2 infection and disease.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Animales , COVID-19/patología , Vacunas contra la COVID-19/uso terapéutico , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Genética Inversa , Pase Seriado , Replicación Viral
12.
PLoS Pathog ; 17(8): e1009857, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460863

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged as a virus with a pathogenicity closer to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and a transmissibility similar to common cold coronaviruses (CoVs). In this review, we briefly discuss the features of the receptor-binding domain (RBD) and protease cleavage of the SARS-CoV-2 spike protein that enable SARS-CoV-2 to be a pandemic virus.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/metabolismo , Humanos , SARS-CoV-2/patogenicidad , Internalización del Virus
13.
PLoS Pathog ; 17(5): e1009599, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34043740

RESUMEN

Antiviral therapeutics are a front-line defense against virally induced diseases. Because viruses frequently mutate to escape direct inhibition of viral proteins, there is interest in targeting the host proteins that the virus must co-opt to complete its replication cycle. However, a detailed understanding of the interactions between the virus and the host cell is necessary in order to facilitate development of host-directed therapeutics. As a first step, we performed a genome-wide loss of function screen using the alphacoronavirus HCoV-229E to better define the interactions between coronaviruses and host factors. We report the identification and validation of an ER-resident host protein, TMEM41B, as an essential host factor for not only HCoV-229E but also genetically distinct coronaviruses including the pandemic betacoronavirus SARS-CoV-2. We show that the protein is required at an early, but post-receptor engagement, stage of the viral lifecycle. Further, mechanistic studies revealed that although the protein was not enriched at replication complexes, it likely contributes to viral replication complex formation via mobilization of cholesterol and other lipids to facilitate host membrane expansion and curvature. Continued study of TMEM41B and the development of approaches to prevent its function may lead to broad spectrum anti-coronavirus therapeutics.


Asunto(s)
Coronavirus Humano 229E/efectos de los fármacos , Interacciones Microbiota-Huesped/fisiología , Proteínas de la Membrana/metabolismo , Animales , Antivirales/farmacología , COVID-19/metabolismo , Línea Celular , Chlorocebus aethiops , Coronavirus Humano 229E/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Interacciones Microbiota-Huesped/genética , Humanos , Proteínas de la Membrana/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Células Vero , Replicación Viral/efectos de los fármacos
14.
PLoS Pathog ; 17(1): e1009292, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507952

RESUMEN

The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/fisiología , Tropismo Viral , Adenosina Monofosfato/farmacología , Alanina/farmacología , COVID-19/genética , Epitelio/inmunología , Epitelio/virología , Humanos , Interferones/genética , Interferones/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Pulmón/inmunología , Pulmón/virología , SARS-CoV-2/efectos de los fármacos , Tropismo Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
15.
PLoS Pathog ; 17(1): e1009287, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33513210

RESUMEN

The COVID-19 pandemic has revealed that infection with SARS-CoV-2 can result in a wide range of clinical outcomes in humans. An incomplete understanding of immune correlates of protection represents a major barrier to the design of vaccines and therapeutic approaches to prevent infection or limit disease. This deficit is largely due to the lack of prospectively collected, pre-infection samples from individuals that go on to become infected with SARS-CoV-2. Here, we utilized data from genetically diverse Collaborative Cross (CC) mice infected with SARS-CoV to determine whether baseline T cell signatures are associated with a lack of viral control and severe disease upon infection. SARS-CoV infection of CC mice results in a variety of viral load trajectories and disease outcomes. Overall, a dysregulated, pro-inflammatory signature of circulating T cells at baseline was associated with severe disease upon infection. Our study serves as proof of concept that circulating T cell signatures at baseline can predict clinical and virologic outcomes upon SARS-CoV infection. Identification of basal immune predictors in humans could allow for identification of individuals at highest risk of severe clinical and virologic outcomes upon infection, who may thus most benefit from available clinical interventions to restrict infection and disease.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/fisiología , Linfocitos T/inmunología , Animales , COVID-19/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Carga Viral
16.
J Immunol ; 206(11): 2605-2613, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33952616

RESUMEN

The factors that control the development of an effective immune response to the recently emerged SARS-CoV-2 virus are poorly understood. In this study, we provide a cross-sectional analysis of the dynamics of B cell responses to SARS-CoV-2 infection in hospitalized COVID-19 patients. We observe changes in B cell subsets consistent with a robust humoral immune response, including significant expansion of plasmablasts and activated receptor-binding domain (RBD)-specific memory B cell populations. We observe elevated titers of Abs to SARS-CoV-2 RBD, full-length Spike, and nucleoprotein over the course of infection, with higher levels of RBD-specific IgG correlating with increased serum neutralization. Depletion of RBD-specific Abs from serum removed a major portion of neutralizing activity in most individuals. Some donors did retain significant residual neutralization activity, suggesting a potential Ab subset targeting non-RBD epitopes. Taken together, these findings are instructive for future vaccine design and mAb strategies.


Asunto(s)
Linfocitos B/inmunología , COVID-19/inmunología , Inmunidad Celular , Memoria Inmunológica , Proteínas de la Nucleocápside/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enfermedad Aguda , Línea Celular , Femenino , Humanos , Masculino , Dominios Proteicos
17.
J Immunol ; 207(2): 376-379, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34193597

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Neutralizing Abs target the receptor binding domain of the spike (S) protein, a focus of successful vaccine efforts. Concerns have arisen that S-specific vaccine immunity may fail to neutralize emerging variants. We show that vaccination with a human adenovirus type 5 vector expressing the SARS-CoV-2 nucleocapsid (N) protein can establish protective immunity, defined by reduced weight loss and viral load, in both Syrian hamsters and K18-hACE2 mice. Challenge of vaccinated mice was associated with rapid N-specific T cell recall responses in the respiratory mucosa. This study supports the rationale for including additional viral Ags in SARS-CoV-2 vaccines, even if they are not a target of neutralizing Abs, to broaden epitope coverage and immune effector mechanisms.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , Línea Celular , Chlorocebus aethiops , Cricetinae , Femenino , Memoria Inmunológica/inmunología , Recuento de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas/inmunología , Vacunación , Células Vero
19.
J Infect Dis ; 223(8): 1339-1344, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33476387

RESUMEN

Coronavirus disease 2019 (COVID-19) outcomes are linked to host immune responses and may be affected by antiviral therapy. We investigated antibody and cytokine responses in ACTT-1 study participants enrolled at our center. We studied serum specimens from 19 hospitalized adults with COVID-19 randomized to treatment with remdesivir or placebo. We assessed severe acute respiratory syndrome coronavirus 2 antibody responses and identified cytokine signatures, using hierarchical clustering. We identified no clear immunologic trends attributable to remdesivir treatment. Seven participants were initially seronegative at study enrollment, and all 4 deaths occurred in this group with more recent symptom onset. We identified 3 dominant cytokine signatures, demonstrating different disease trajectories.


Asunto(s)
COVID-19/inmunología , COVID-19/mortalidad , Inmunidad/inmunología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/inmunología , Adenosina Monofosfato/uso terapéutico , Adulto , Alanina/análogos & derivados , Alanina/inmunología , Alanina/uso terapéutico , Anticuerpos Antivirales/inmunología , Antivirales/inmunología , Antivirales/uso terapéutico , COVID-19/virología , Citocinas/inmunología , Femenino , Humanos , Inmunidad/efectos de los fármacos , Masculino , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Tratamiento Farmacológico de COVID-19
20.
BMC Bioinformatics ; 22(1): 287, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051754

RESUMEN

BACKGROUND: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. RESULTS: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. CONCLUSIONS: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses.


Asunto(s)
Algoritmos , Modelos Biológicos , Genómica , Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA