Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 606(7913): 343-350, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650442

RESUMEN

Age-related change in human haematopoiesis causes reduced regenerative capacity1, cytopenias2, immune dysfunction3 and increased risk of blood cancer4-6, but the reason for such abrupt functional decline after 70 years of age remains unclear. Here we sequenced 3,579 genomes from single cell-derived colonies of haematopoietic cells across 10 human subjects from 0 to 81 years of age. Haematopoietic stem cells or multipotent progenitors (HSC/MPPs) accumulated a mean of 17 mutations per year after birth and lost 30 base pairs per year of telomere length. Haematopoiesis in adults less than 65 years of age was massively polyclonal, with high clonal diversity and a stable population of 20,000-200,000 HSC/MPPs contributing evenly to blood production. By contrast, haematopoiesis in individuals aged over 75 showed profoundly decreased clonal diversity. In each of the older subjects, 30-60% of haematopoiesis was accounted for by 12-18 independent clones, each contributing 1-34% of blood production. Most clones had begun their expansion before the subject was 40 years old, but only 22% had known driver mutations. Genome-wide selection analysis estimated that between 1 in 34 and 1 in 12 non-synonymous mutations were drivers, accruing at constant rates throughout life, affecting more genes than identified in blood cancers. Loss of the Y chromosome conferred selective benefits in males. Simulations of haematopoiesis, with constant stem cell population size and constant acquisition of driver mutations conferring moderate fitness benefits, entirely explained the abrupt change in clonal structure in the elderly. Rapidly decreasing clonal diversity is a universal feature of haematopoiesis in aged humans, underpinned by pervasive positive selection acting on many more genes than currently identified.


Asunto(s)
Envejecimiento , Hematopoyesis Clonal , Células Clonales , Longevidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Niño , Preescolar , Hematopoyesis Clonal/genética , Células Clonales/citología , Femenino , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Células Madre Hematopoyéticas/citología , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Células Madre Multipotentes/citología , Adulto Joven
2.
Nature ; 598(7880): 327-331, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34588693

RESUMEN

Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception1,2, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21).


Asunto(s)
Células de la Médula Ósea/citología , Médula Ósea , Síndrome de Down/sangre , Síndrome de Down/inmunología , Feto/citología , Hematopoyesis , Sistema Inmunológico/citología , Linfocitos B/citología , Células Dendríticas/citología , Síndrome de Down/metabolismo , Síndrome de Down/patología , Células Endoteliales/patología , Eosinófilos/citología , Células Eritroides/citología , Granulocitos/citología , Humanos , Inmunidad , Células Mieloides/citología , Células del Estroma/citología
3.
Blood ; 144(7): 729-741, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38805639

RESUMEN

ABSTRACT: Loss of long-term hematopoietic stem cell (LT-HSC) function ex vivo hampers the success of clinical protocols that rely on culture. However, the kinetics and mechanisms through which this occurs remain incompletely characterized. In this study, through time-resolved single-cell RNA sequencing, matched in vivo functional analysis, and the use of a reversible in vitro system of early G1 arrest, we defined the sequence of transcriptional and functional events that occur during the first ex vivo division of human LT-HSCs. We demonstrated that the sharpest loss in LT-HSC repopulation capacity happens early on, between 6 and 24 hours of culture, before LT-HSCs commit to cell cycle progression. During this time window, LT-HSCs adapt to the culture environment, limit the global variability in gene expression, and transiently upregulate gene networks involved in signaling and stress responses. From 24 hours, LT-HSC progression past early G1 contributes to the establishment of differentiation programs in culture. However, contrary to the current assumptions, we demonstrated that the loss of HSC function ex vivo is independent of cell cycle progression. Finally, we showed that targeting LT-HSC adaptation to culture by inhibiting the early activation of JAK/STAT signaling improves HSC long-term repopulating function ex vivo. Collectively, our study demonstrated that controlling early LT-HSC adaptation to ex vivo culture, for example, via JAK inhibition, is critically important to improve HSC gene therapy and expansion protocols.


Asunto(s)
Ciclo Celular , Células Madre Hematopoyéticas , Humanos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Cultivadas , Transducción de Señal , Diferenciación Celular , Técnicas de Cultivo de Célula/métodos , Adaptación Fisiológica
4.
Blood ; 139(23): 3387-3401, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35073399

RESUMEN

Rare hematopoietic stem and progenitor cell (HSPC) pools outside the bone marrow (BM) contribute to blood production in stress and disease but remain ill-defined. Although nonmobilized peripheral blood (PB) is routinely sampled for clinical management, the diagnosis and monitoring potential of PB HSPCs remain untapped, as no healthy PB HSPC baseline has been reported. Here we comprehensively delineate human extramedullary HSPC compartments comparing spleen, PB, and mobilized PB to BM using single-cell RNA-sequencing and/or functional assays. We uncovered HSPC features shared by extramedullary tissues and others unique to PB. First, in contrast to actively dividing BM HSPCs, we found no evidence of substantial ongoing hematopoiesis in extramedullary tissues at steady state but report increased splenic HSPC proliferative output during stress erythropoiesis. Second, extramedullary hematopoietic stem cells/multipotent progenitors (HSCs/MPPs) from spleen, PB, and mobilized PB share a common transcriptional signature and increased abundance of lineage-primed subsets compared with BM. Third, healthy PB HSPCs display a unique bias toward erythroid-megakaryocytic differentiation. At the HSC/MPP level, this is functionally imparted by a subset of phenotypic CD71+ HSCs/MPPs, exclusively producing erythrocytes and megakaryocytes, highly abundant in PB but rare in other adult tissues. Finally, the unique erythroid-megakaryocytic-skewing of PB is perturbed with age in essential thrombocythemia and ß-thalassemia. Collectively, we identify extramedullary lineage-primed HSPC reservoirs that are nonproliferative in situ and report involvement of splenic HSPCs during demand-adapted hematopoiesis. Our data also establish aberrant composition and function of circulating HSPCs as potential clinical indicators of BM dysfunction.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Adulto , Médula Ósea , Células de la Médula Ósea/fisiología , Eritropoyesis , Humanos , Megacariocitos
5.
Blood ; 134(15): 1214-1226, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31366622

RESUMEN

A major limitation preventing in vivo modulation of hematopoietic stem cells (HSCs) is the incomplete understanding of the cellular and molecular support of the microenvironment in regulating HSC fate decisions. Consequently, murine HSCs cannot be generated, maintained, or expanded in culture over extended periods of time. A significantly improved understanding of the bone marrow niche environment and its molecular interactions with HSCs is pivotal to overcoming this challenge. We here prospectively isolated all major nonhematopoietic cellular niche components and cross-correlate them in detail with niche cells defined by lineage marking or tracing. Compiling an extensive database of soluble and membrane-bound ligand-receptor interactions, we developed a computational method to infer potential cell-to-cell interactions based on transcriptome data of sorter-purified niche cells and hematopoietic stem and progenitor cell subpopulations. Thus, we establish a compendium of the molecular communication between defined niche components and HSCs. Our analysis suggests an important role for cytokine antagonists in the regulation of HSC functions.


Asunto(s)
Células de la Médula Ósea/citología , Comunicación Celular , Células Madre Hematopoyéticas/citología , Nicho de Células Madre , Animales , Diferenciación Celular , Separación Celular , Ratones Endogámicos C57BL
6.
Proc Natl Acad Sci U S A ; 110(14): 5582-7, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23509298

RESUMEN

Pentatransmembrane glycoprotein prominin-1 (CD133) is expressed at the cell surface of multiple somatic stem cells, and it is widely used as a cell surface marker for the isolation and characterization of human hematopoietic stem cells (HSCs) and cancer stem cells. CD133 has been linked on a cell biological basis to stem cell-fate decisions in human HSCs and emerges as an important physiological regulator of stem cell maintenance and expansion. Its expression and physiological relevance in the murine hematopoietic system is nevertheless elusive. We show here that CD133 is expressed by bone marrow-resident murine HSCs and myeloid precursor cells with the developmental propensity to give rise to granulocytes and monocytes. However, CD133 is dispensable for the pool size and function of HSCs during steady-state hematopoiesis and after transplantation, demonstrating a substantial species difference between mouse and man. Blood cell numbers in the periphery are normal; however, CD133 appears to be a modifier for the development of growth-factor responsive myeloerythroid precursor cells in the bone marrow under steady state and mature red blood cells after hematopoietic stress. Taken together, these studies show that CD133 is not a critical regulator of hematopoietic stem cell function in mouse but that it modifies frequencies of growth-factor responsive hematopoietic progenitor cells during steady state and after myelotoxic stress in vivo.


Asunto(s)
Antígenos CD/metabolismo , Células de la Médula Ósea/metabolismo , Glicoproteínas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Progenitoras Mieloides/metabolismo , Péptidos/metabolismo , Antígeno AC133 , Animales , Células de la Médula Ósea/citología , Cartilla de ADN/genética , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Fluorouracilo , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Humanos , Immunoblotting , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Especificidad de la Especie , Imagen de Lapso de Tiempo
7.
Res Sq ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38077002

RESUMEN

The bone marrow is the main site of blood cell production in adults, however, rare pools of hematopoietic stem and progenitor cells with self-renewal and differentiation potential have been found in extramedullary organs. The lung is primarily known for its role in gas exchange but has recently been described as a site of blood production in mice. Here, we show that functional hematopoietic precursors reside in the extravascular spaces of the human lung, at a frequency similar to the bone marrow, and are capable of proliferation and engraftment. The organ-specific gene signature of pulmonary and medullary CD34+ hematopoietic progenitors indicates greater baseline activation of immune, megakaryocyte/platelet and erythroid-related pathways in lung progenitors. Spatial transcriptomics mapped blood progenitors in the lung to a vascular-rich alveolar interstitium niche. These results identify the lung as a pool for uniquely programmed blood stem and progenitor cells with the potential to support hematopoiesis in humans.

8.
Blood Adv ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39374575

RESUMEN

Adult haematopoietic stem cells (HSCs) are responsible for the lifelong production of blood and immune cells, a process regulated by extracellular cues including cytokines. Many cytokines signal through the conserved JAK/STAT pathway, in which tyrosine-phosphorylated STATs (pSTATs) function as transcription factors. STAT5 is a pivotal downstream mediator of several cytokines known to regulate haematopoiesis but its function in the HSC compartment remains poorly understood. Here, we show that STAT5-deficient HSCs exhibit an unusual phenotype: reduced multi-lineage repopulation and self-renewal, combined with reduced exit from quiescence and increased differentiation. This was driven not only by loss of canonical pSTAT5 signalling, but also by loss of distinct transcriptional functions mediated by STAT5 lacking canonical tyrosine phosphorylation (uSTAT5). Consistent with this concept, expression of an unphosphorylatable STAT5 mutant constrained wild-type HSC differentiation, promoted their maintenance and upregulated transcriptional programs associated with quiescence and stemness. The JAK1/2 inhibitor, ruxolitinib, which increased the uSTAT5:pSTAT5 ratio, had similar effects on murine HSC function: it constrained HSC differentiation and proliferation, promoted HSC maintenance and upregulated transcriptional programs associated with stemness. Ruxolitinib also enhanced serial replating of normal human HSPCs, CALR-mutant murine HSCs and HSPCs obtained from patients with myelofibrosis. Our results therefore reveal a previously unrecognized interplay between pSTAT5 and uSTAT5 in the control of HSC function and highlight JAK inhibition as a potential strategy for enhancing HSC function during ex vivo culture. Increased levels of uSTAT5 may also contribute to the failure of JAK inhibitors to eradicate myeloproliferative neoplasms.

9.
Nat Commun ; 14(1): 5092, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608017

RESUMEN

Clonal tracking of cells using somatic mutations permits exploration of clonal dynamics in human disease. Here, we perform whole genome sequencing of 323 haematopoietic colonies from 10 individuals with the inherited ribosomopathy Shwachman-Diamond syndrome to reconstruct haematopoietic phylogenies. In ~30% of colonies, we identify mutually exclusive mutations in TP53, EIF6, RPL5, RPL22, PRPF8, plus chromosome 7 and 15 aberrations that increase SBDS and EFL1 gene dosage, respectively. Target gene mutations commence in utero, resulting in a profusion of clonal expansions, with only a few haematopoietic stem cell lineages (mean 8, range 1-24) contributing ~50% of haematopoietic colonies across 8 individuals (range 4-100% clonality) by young adulthood. Rapid clonal expansion during disease transformation is associated with biallelic TP53 mutations and increased mutation burden. Our study highlights how convergent somatic mutation of the p53-dependent nucleolar surveillance pathway offsets the deleterious effects of germline ribosomopathy but increases opportunity for TP53-mutated cancer evolution.


Asunto(s)
Cromosomas Humanos Par 7 , Células Germinativas , Humanos , Adulto Joven , Adulto , Dosificación de Gen , Células Madre Hematopoyéticas , Mutación
10.
Science ; 381(6659): eadd7564, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37590359

RESUMEN

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.


Asunto(s)
Desarrollo Embrionario , Saco Vitelino , Femenino , Humanos , Embarazo , Coagulación Sanguínea/genética , Macrófagos , Saco Vitelino/citología , Saco Vitelino/metabolismo , Desarrollo Embrionario/genética , Atlas como Asunto , Expresión Génica , Perfilación de la Expresión Génica , Hematopoyesis/genética , Hígado/embriología
11.
Methods Mol Biol ; 2386: 189-201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34766273

RESUMEN

The CITE-seq workflow combines conventional single-cell transcriptomic analysis with simultaneous analysis of cell surface protein expression using oligonucleotide-conjugated antibodies. This addition of immunophenotyping to mRNA data allows for a more detailed characterization of single-cell heterogeneity and can help to identify markers for the prospective isolation of transcriptionally defined novel cell subsets. Here, we describe the workflow for the preparation of human cord blood mononuclear cells and CD34+-enriched hematopoietic progenitors for the simultaneous characterization of protein and RNA using the commercially available TotalSeq™ antibodies from BioLegend and the droplet-based single-cell RNA-seq commercial platform from 10x Genomics.


Asunto(s)
Transcriptoma , Antígenos CD34 , Genómica , Células Madre Hematopoyéticas , Humanos , Inmunofenotipificación , Proteínas de la Membrana , Análisis de la Célula Individual
12.
iScience ; 25(3): 103971, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35224470

RESUMEN

Clotting Factor V (FV) is primarily synthesized in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells, we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes, and T regulatory cells as sources of increased FV in hospitalized patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T-cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T-cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system.

13.
Exp Hematol ; 104: 9-16, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34687807

RESUMEN

Bone marrow (BM) is the primary site of adult blood production, hosting the majority of all hematopoietic stem and progenitor cells (HSPCs). Rare HSPCs are also found outside of the BM at steady state. In times of large hematopoietic demand or BM failure, substantial production of mature blood cells from HSPCs can occur in a number of tissues, in a process termed extramedullary hematopoiesis (EMH). Over the past decades, our understanding of BM hematopoiesis has advanced drastically. In contrast there has been very little focus on the study of extramedullary HSPC pools and their contributions to blood production. Here we summarize what is currently known about extramedullary HSPCs and EMH in mice and humans. We describe the evidence of existing extramedullary HSPC pools at steady state, then discuss their role in the hematopoietic stress response. We highlight that although EMH in humans is much less pronounced and likely physiologically distinct to that in mice, it can be informative about premalignant and malignant changes. Finally, we reflect on the open questions in the field and on whether a better understanding of EMH, particularly in humans, may have relevant clinical implications for hematological and nonhematological disorders.


Asunto(s)
Hematopoyesis Extramedular , Células Madre Hematopoyéticas/citología , Células Madre/citología , Animales , Humanos , Hígado/citología , Pulmón/citología , Bazo/citología
14.
Nat Med ; 27(5): 904-916, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33879890

RESUMEN

Analysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts (CD16+C1QA/B/C+) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34+ hematopoietic stem/progenitor cells were primed toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. Clonally expanded CD8+ T cells and an increased ratio of CD8+ effector T cells to effector memory T cells characterized severe disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy.


Asunto(s)
COVID-19/inmunología , Proteoma , SARS-CoV-2/inmunología , Análisis de la Célula Individual/métodos , Transcriptoma , Estudios Transversales , Humanos , Monocitos/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología
15.
Nat Commun ; 9(1): 4100, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30291229

RESUMEN

Capturing where and how multipotency is lost is crucial to understand how blood formation is controlled. Blood lineage specification is currently thought to occur downstream of multipotent haematopoietic stem cells (HSC). Here we show that, in human, the first lineage restriction events occur within the CD19-CD34+CD38-CD45RA-CD49f+CD90+ (49f+) HSC compartment to generate myelo-lymphoid committed cells with no erythroid differentiation capacity. At single-cell resolution, we observe a continuous but polarised organisation of the 49f+ compartment, where transcriptional programmes and lineage potential progressively change along a gradient of opposing cell surface expression of CLEC9A and CD34. CLEC9AhiCD34lo cells contain long-term repopulating multipotent HSCs with slow quiescence exit kinetics, whereas CLEC9AloCD34hi cells are restricted to myelo-lymphoid differentiation and display infrequent but durable repopulation capacity. We thus propose that human HSCs gradually transition to a discrete lymphoid-primed state, distinct from lymphoid-primed multipotent progenitors, representing the earliest entry point into lymphoid commitment.


Asunto(s)
Diferenciación Celular , Células Madre Hematopoyéticas/fisiología , Linaje de la Célula , Humanos , Células Madre Multipotentes/fisiología
16.
J Exp Med ; 214(1): 165-181, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27998927

RESUMEN

Here, we show that the Wnt5a-haploinsufficient niche regenerates dysfunctional HSCs, which do not successfully engraft in secondary recipients. RNA sequencing of the regenerated donor Lin- SCA-1+ KIT+ (LSK) cells shows dysregulated expression of ZEB1-associated genes involved in the small GTPase-dependent actin polymerization pathway. Misexpression of DOCK2, WAVE2, and activation of CDC42 results in apolar F-actin localization, leading to defects in adhesion, migration and homing of HSCs regenerated in a Wnt5a-haploinsufficient microenvironment. Moreover, these cells show increased differentiation in vitro, with rapid loss of HSC-enriched LSK cells. Our study further shows that the Wnt5a-haploinsufficient environment similarly affects BCR-ABLp185 leukemia-initiating cells, which fail to generate leukemia in 42% of the studied recipients, or to transfer leukemia to secondary hosts. Thus, we show that WNT5A in the bone marrow niche is required to regenerate HSCs and leukemic cells with functional ability to rearrange the actin cytoskeleton and engraft successfully.


Asunto(s)
Citoesqueleto de Actina/fisiología , Células Madre Hematopoyéticas/fisiología , Proteína Wnt-5a/fisiología , Animales , Proteínas de Fusión bcr-abl/fisiología , Haploinsuficiencia/fisiología , Leucemia/etiología , Ratones , Ratones Endogámicos C57BL , Regeneración , Proteína Wnt-5a/genética
17.
J Exp Med ; 212(8): 1171-83, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26150472

RESUMEN

Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1-CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1-CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1-CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis.


Asunto(s)
Ciclo Celular/fisiología , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Células Madre Hematopoyéticas/fisiología , Modelos Biológicos , Animales , Western Blotting , Proliferación Celular , Cartilla de ADN/genética , Citometría de Flujo , Técnicas de Transferencia de Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa
18.
J Exp Med ; 211(2): 209-15, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24446490

RESUMEN

Long-term hematopoietic stem cells (HSCs [LT-HSCs]) are well known to display unpredictable differences in their clonal expansion capacities after transplantation. Here, by analyzing the cellular output after transplantation of stem cells differing in surface expression levels of the Kit receptor, we show that LT-HSCs can be systematically subdivided into two subtypes with distinct reconstitution behavior. LT-HSCs expressing intermediate levels of Kit receptor (Kit(int)) are quiescent in situ but proliferate extensively after transplantation and therefore repopulate large parts of the recipient's hematopoietic system. In contrast, metabolically active Kit(hi) LT-HSCs display more limited expansion capacities and show reduced but robust levels of repopulation after transfer. Transplantation into secondary and tertiary recipient mice show maintenance of efficient repopulation capacities of Kit(int) but not of Kit(hi) LT-HSCs. Initiation of differentiation is marked by the transit from Kit(int) to Kit(hi) HSCs, both of which precede any other known stem cell population.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Animales , Separación Celular , Ensayo de Unidades Formadoras de Colonias , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/clasificación , Células Madre Hematopoyéticas/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transducción de Señal
19.
Cell Stem Cell ; 15(2): 227-38, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25017720

RESUMEN

In-depth analysis of the cellular and molecular mechanisms regulating human HSC function will require a surrogate host that supports robust maintenance of transplanted human HSCs in vivo, but the currently available options are problematic. Previously we showed that mutations in the Kit receptor enhance engraftment of transplanted HSCs in the mouse. To generate an improved model for human HSC transplantation and analysis, we developed immune-deficient mouse strains containing Kit mutations. We found that mutation of the Kit receptor enables robust, uniform, sustained, and serially transplantable engraftment of human HSCs in adult mice without a requirement for irradiation conditioning. Using this model, we also showed that differential KIT expression identifies two functionally distinct subpopulations of human HSCs. Thus, we have found that the capacity of this Kit mutation to open up stem cell niches across species barriers has significant potential and broad applicability in human HSC research.


Asunto(s)
Regulación de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/citología , Mutación , Factor de Células Madre/metabolismo , Animales , Linaje de la Célula , Cruzamientos Genéticos , Ensayo de Inmunoadsorción Enzimática , Sangre Fetal/citología , Humanos , Linfocitos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/metabolismo , Especificidad de la Especie , Timocitos/citología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA