Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nature ; 534(7606): 267-71, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27279226

RESUMEN

Zika virus (ZIKV) is an arbovirus belonging to the genus Flavivirus (family Flaviviridae) and was first described in 1947 in Uganda following blood analyses of sentinel Rhesus monkeys. Until the twentieth century, the African and Asian lineages of the virus did not cause meaningful infections in humans. However, in 2007, vectored by Aedes aegypti mosquitoes, ZIKV caused the first noteworthy epidemic on the Yap Island in Micronesia. Patients experienced fever, skin rash, arthralgia and conjunctivitis. From 2013 to 2015, the Asian lineage of the virus caused further massive outbreaks in New Caledonia and French Polynesia. In 2013, ZIKV reached Brazil, later spreading to other countries in South and Central America. In Brazil, the virus has been linked to congenital malformations, including microcephaly and other severe neurological diseases, such as Guillain-Barré syndrome. Despite clinical evidence, direct experimental proof showing that the Brazilian ZIKV (ZIKV(BR)) strain causes birth defects remains absent. Here we demonstrate that ZIKV(BR) infects fetuses, causing intrauterine growth restriction, including signs of microcephaly, in mice. Moreover, the virus infects human cortical progenitor cells, leading to an increase in cell death. We also report that the infection of human brain organoids results in a reduction of proliferative zones and disrupted cortical layers. These results indicate that ZIKV(BR) crosses the placenta and causes microcephaly by targeting cortical progenitor cells, inducing cell death by apoptosis and autophagy, and impairing neurodevelopment. Our data reinforce the growing body of evidence linking the ZIKV(BR) outbreak to the alarming number of cases of congenital brain malformations. Our model can be used to determine the efficiency of therapeutic approaches to counteracting the harmful impact of ZIKV(BR) in human neurodevelopment.


Asunto(s)
Modelos Animales de Enfermedad , Microcefalia/virología , Virus Zika/patogenicidad , Animales , Apoptosis , Autofagia , Encéfalo/patología , Encéfalo/virología , Brasil/epidemiología , Proliferación Celular , Femenino , Retardo del Crecimiento Fetal/patología , Retardo del Crecimiento Fetal/virología , Feto/virología , Ratones , Microcefalia/epidemiología , Microcefalia/etiología , Microcefalia/patología , Células-Madre Neurales/patología , Células-Madre Neurales/virología , Organoides/patología , Organoides/virología , Placenta/virología , Embarazo , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología
2.
Transgenic Res ; 28(2): 213-224, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30888592

RESUMEN

The bone morphogenetic protein BMP2 plays a crucial role in the formation and regeneration of bone and cartilage, which is critical for maintaining skeletal integrity and bone fracture repair. Because of its important role in osteogenic properties it has been commercially produced for clinical use. Here we report attempts to express human BMP2 using two plant systems (lettuce chloroplast and soybean seeds). The rhBMP2 gene (coding for the 13 kDa active polypeptide) was introduced in two regions of the lettuce chloroplast genome. Two homoplasmic events were achieved and RT-PCR demonstrated that the BMP2 gene was transcribed. However, it was not possible to detect accumulation of rhBMP2 in leaves. Two soybean events were achieved to express a full-length hBMP2 gene (coding for the 45 kDa pro-BMP2) fused with the α-coixin signal peptide, under control of the ß-conglycinin promoter. Pro-BMP2 was expressed in the transgenic seeds at levels of up to 9.28% of the total soluble seed protein as determined by ELISA. It was demonstrated that this recombinant form was biologically active upon administration to C2C12 cell cultures, because it was able to induce an osteogenic cascade, as observed by the enhanced expression of SP7 (osterix) and ALPI (alkaline phosphatase) genes. Collectively, these results corroborated our previous observation that soybean seeds provide an effective strategy for achieving stable accumulation of functional therapeutic proteins, such as BMP2.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Cotiledón/metabolismo , Glycine max/metabolismo , Lactuca/metabolismo , Proteínas Recombinantes/metabolismo , Semillas/metabolismo , Animales , Proteína Morfogenética Ósea 2/genética , Células Cultivadas , Cotiledón/genética , Humanos , Lactuca/genética , Ratones , Mioblastos/citología , Mioblastos/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Semillas/genética , Glycine max/genética
3.
Ann Hepatol ; 18(6): 816-824, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31594756

RESUMEN

INTRODUCTION AND OBJECTIVES: Direct antiviral agents (DAAs) are very efficient in inhibiting hepatitis C virus and might be used to treat infections caused by other flaviviruses whose worldwide detection has recently increased. The aim of this study was to verify the efficacy of DAAs in inhibiting yellow fever virus (YFV) by using drug repositioning (a methodology applied in the pharmaceutical industry to identify new uses for approved drugs). MATERIALS AND METHODS: Three DAAs were evaluated: daclatasvir, sofosbuvir and ledipasvir or their combinations. For in vitro assays, the drugs were diluted in 100% dimethyl sulfoxide. Vaccine strain 17D and a 17D strain expressing the reporter fluorescent protein were used in the assays. A fast and reliable cell-based screening assay using Vero cells or Huh-7 cells (a hepatocyte-derived carcinoma ell line) was carried out. Two patients who acquired yellow fever virus with acute liver failure were treated with sofosbuvir for one week as a compassionate use. RESULTS: Using a high-content screening assay, we verified that sofosbuvir presented the best antiviral activity against YFV. Moreover, after an off-label treatment with sofosbuvir, the two female patients diagnosed with yellow fever infection displayed a reduction in blood viremia and an improvement in the course of the disease, which was observed in the laboratory medical parameters related to disease evolution. CONCLUSIONS: Sofosbuvir may be used as an option for treatment against YFV until other drugs are identified and approved for human use. These results offer insights into the role of nonstructural protein 5 (NS5) in YFV inhibition and suggest that nonstructural proteins may be explored as drug targets for YFV treatment.


Asunto(s)
Antivirales/farmacología , Bencimidazoles/farmacología , Fluorenos/farmacología , Imidazoles/farmacología , Sofosbuvir/farmacología , Fiebre Amarilla/tratamiento farmacológico , Virus de la Fiebre Amarilla/efectos de los fármacos , Animales , Antivirales/uso terapéutico , Carbamatos , Línea Celular Tumoral , Chlorocebus aethiops , Ensayos de Uso Compasivo , Reposicionamiento de Medicamentos , Femenino , Humanos , Técnicas In Vitro , Fallo Hepático Agudo/etiología , Pirrolidinas , Sofosbuvir/uso terapéutico , Valina/análogos & derivados , Células Vero , Carga Viral/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Fiebre Amarilla/complicaciones
4.
Exp Parasitol ; 207: 107770, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31586454

RESUMEN

Neutrophils respond differently to violations of the body's physiological barriers during infections. Extracellular traps comprise one of the mechanisms used by these cells to reduce the spread of pathogens to neighboring tissues, as well as ensure a high concentration of antimicrobial agents at the site of infection. To date, this innate defense mechanism has not been previously demonstrated in neutrophils of cats exposed to Toxoplasma gondii. The aim of this study was to characterize the in vitro release of neutrophil extracellular traps (NETs) when neutrophils isolated from cats were exposed to T. gondii. First, cellular viability was tested at different time points after parasite exposure. The production of reactive oxygen species (ROS) and lactate dehydrogenase and the amount of extracellular DNA were quantified. In addition, the number of parasites associated with neutrophils was determined, and the observed NETs formed were microscopically characterized. Results showed that (i) in culture, neutrophils isolated from cats presented diminished cellular viability after 4 h of incubation, and when neutrophils were incubated with T. gondii, they displayed cytotoxic effects after 3 h of interaction; (ii) neutrophils were able to release structures composed of DNA and histones, characterized as NETs under optical, immunofluorescence, and electron scanning microscopy, when stimulated with T. gondii; (iii) only 11.4% of neutrophils were able to discharge NETs during 3 h of incubation; however, it was observed through extracellular quantification of DNA that this small number of cells were able to display different behavior compared to a negative control (no parasite) group; (iv) significant differences in ROS production were observed in neutrophils exposed to T. gondii. In conclusion, our results showed that neutrophils isolated from cats exposed to T. gondii release structures composed of DNA and histones, similar to what has already been described in other neutrophil species infected with the parasite.


Asunto(s)
Trampas Extracelulares/metabolismo , Neutrófilos/parasitología , Toxoplasma/inmunología , Animales , Gatos , Supervivencia Celular , Chlorocebus aethiops , ADN/análisis , Formazáns/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Neutrófilos/inmunología , Neutrófilos/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/análisis , Sales de Tetrazolio/metabolismo , Células Vero
5.
PLoS Pathog ; 11(7): e1005066, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26225771

RESUMEN

Although anti-retroviral therapy (ART) is highly effective in suppressing HIV replication, it fails to eradicate the virus from HIV-infected individuals. Stable latent HIV reservoirs are rapidly established early after HIV infection. Therefore, effective strategies for eradication of the HIV reservoirs are urgently needed. We report that ingenol-3-angelate (PEP005), the only active component in a previously FDA approved drug (PICATO) for the topical treatment of precancerous actinic keratosis, can effectively reactivate latent HIV in vitro and ex vivo with relatively low cellular toxicity. Biochemical analysis showed that PEP005 reactivated latent HIV through the induction of the pS643/S676-PKCδ/θ-IκBα/ε-NF-κB signaling pathway. Importantly, PEP005 alone was sufficient to induce expression of fully elongated and processed HIV RNAs in primary CD4+ T cells from HIV infected individuals receiving suppressive ART. Furthermore, PEP005 and the P-TEFb agonist, JQ1, exhibited synergism in reactivation of latent HIV with a combined effect that is 7.5-fold higher than the effect of PEP005 alone. Conversely, PEP005 suppressed HIV infection of primary CD4+ T cells through down-modulation of cell surface expression of HIV co-receptors. This anti-cancer compound is a potential candidate for advancing HIV eradication strategies.


Asunto(s)
Azepinas/farmacología , Diterpenos/farmacología , Infecciones por VIH/tratamiento farmacológico , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Triazoles/farmacología , Latencia del Virus/efectos de los fármacos , Azepinas/administración & dosificación , Diterpenos/administración & dosificación , VIH-1/efectos de los fármacos , Humanos , Proteínas I-kappa B/farmacología , Inhibidor NF-kappaB alfa , Factor B de Elongación Transcripcional Positiva/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Triazoles/administración & dosificación , Activación Viral/efectos de los fármacos
6.
Eur J Immunol ; 44(10): 2949-54, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25091816

RESUMEN

During oral infection, mucosal immunity assumes a predominant role. Here, we addressed the role of mast cells (MCs), which are mainly located in mucosa during oral infection with Toxoplasma gondii, using MC-deficient (W/W(v) ) mice. We show that in the absence of MCs the resistance of W/W(v) mice to oral infection was considerably reduced. W/W(v) mice uniformly succumbed within 15 days of infection after administration of cysts of the ME49 strain of T. gondii. The rapid lethality of T. gondii in W/W(v) mice correlated with a delayed Th1-cell response, since IFN-γ and IL-12 levels peaked in the later phase of the infection. In vitro, BM-derived MCs were able to recognize parasite lysate in a MyD88-dependent way, reaffirming the role of this TLR adapter in immune responses to T. gondii. The importance of MCs in vivo was confirmed when W/W(v) mice reconstituted with BM-derived MCs from control mice retrieved an early strong Th1-cell response and specially a significant IL-12 production. In conclusion, MCs play an important role for the development of a protective immune response during oral infection with T. gondii.


Asunto(s)
Inmunidad Mucosa/inmunología , Mastocitos/inmunología , Toxoplasmosis Animal/inmunología , Animales , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células TH1/inmunología , Toxoplasma/inmunología
8.
iScience ; 26(12): 108418, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38058309

RESUMEN

Human immunodeficiency virus-1 (HIV) infection is a chronic disease under antiretroviral therapy (ART), during which active HIV replication is effectively suppressed. Stable viral reservoirs are established early in infection and cannot be eradicated in people with HIV (PWH) by ART alone, which features residual immune inflammation with disease-associated secondary comorbidities. Mammalian cells are equipped with integrated stress response (ISR) machinery to detect intrinsic and extrinsic stresses such as heme deficiency, nutrient fluctuation, the accumulation of unfolded proteins, and viral infection. ISR is the part of the innate immunity that defends against pathogen infection or environmental alteration, thereby maintaining homeostasis to avoid diseases. Here, we describe how this machinery responds to the off-target effects of ART and persistent HIV infection in both the peripheral compartments and the brain. The latter may be important for us to better understand the mechanisms of stable HIV reservoirs and HIV-associated neurocognitive disorders.

9.
Cell Rep ; 42(8): 112942, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37561630

RESUMEN

Zika virus (ZIKV) is an emerging pathogen that causes devastating congenital defects. The overlapping epidemiology and immunologic cross-reactivity between ZIKV and dengue virus (DENV) pose complex challenges to vaccine design, given the potential for antibody-dependent enhancement of disease. Therefore, classification of ZIKV-specific antibody targets is of notable value. From a ZIKV-infected rhesus macaque, we identify ZIKV-reactive B cells and isolate potent neutralizing monoclonal antibodies (mAbs) with no cross-reactivity to DENV. We group these mAbs into four distinct antigenic groups targeting ZIKV-specific cross-protomer epitopes on the envelope glycoprotein. Co-crystal structures of representative mAbs in complex with ZIKV envelope glycoprotein reveal envelope-dimer epitope and unique dimer-dimer epitope targeting. All four specificities are serologically identified in convalescent humans following ZIKV infection, and representative mAbs from all four groups protect against ZIKV replication in mice. These results provide key insights into ZIKV-specific antigenicity and have implications for ZIKV vaccine, diagnostic, and therapeutic development.


Asunto(s)
Virus del Dengue , Dengue , Vacunas Virales , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Ratones , Anticuerpos Neutralizantes , Epítopos , Macaca mulatta , Anticuerpos Antivirales , Anticuerpos Monoclonales , Vacunas Virales/uso terapéutico , Proteínas del Envoltorio Viral/química
10.
Mol Immunol ; 141: 43-52, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798497

RESUMEN

Although the genus Trichoderma is widely used as a biocontrol agent in crops, little is known about its potential impact on the human immune system. In mice, our group has shown that exposition to T. asperelloides spores lead to reduced neutrophil counts in the peripheral blood and in the peritoneal cavity. In addition, T. stromaticum spores produced an inflammatory infiltrate on mice lungs, reducing the levels of IFN-γ and IL-10 cytokines, reactive oxygen species, and receptors of microbial patterns. Here we demonstrate that the interaction of human peripheral neutrophils with T. stromaticum spores also leads to a reduced release of neutrophil extracellular traps (NETs) after induction with the NET-inducer agent phorbol 12-myristate 13-acetate. This interaction also reduced the expression levels of multiple microRNAs, such as miR-221, miR-222, miR-223 and miR-27a, as well as genes related to NETs, such as ELANE, MPO and PADI4. Furthermore, T. stromaticum spores affected the expression of the genes SOCS3, TLR4, CSNK2A1, GSDMD, and NFFKBIA, related to the activation of inflammatory immune responses in neutrophils. Overall, our results suggest T. stromaticum as a potential NET inhibitor and as an immunomodulatory agent. Since this fungus is used as biocontrol in crops, our findings point to the importance of advancing our knowledge on the effects of this bioagent on the human immune system. Finally, the study of the active compounds produced by the fungus is also important for the prospection of new drugs that could be used to block the exacerbation of inflammatory immune responses present in several human diseases.


Asunto(s)
Trampas Extracelulares/inmunología , Hypocreales/inmunología , Leucocitos Mononucleares/inmunología , Neutrófilos/inmunología , Esporas/inmunología , Células Cultivadas , Citocinas/inmunología , Humanos , Inmunidad/inmunología , Factores Inmunológicos/inmunología , Inflamación/inmunología , MicroARNs/inmunología
11.
Curr Res Microb Sci ; 3: 100145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909603

RESUMEN

Trichoderma spp. are usually considered safe and normally used as biocontrol and biofertilization. Safety for human health is evaluated by several tests that detect various effects such as allergenicity, toxicity, infectivity, and pathogenicity. However, they do not evaluate the effects of the agent upon the immune system. The aim of this study was to investigate the interaction between T. stromaticum spores and mammalian cells to assess the immunomodulatory potential of the spores of this fungus. First, mouse macrophage cell line J774 and human macrophages were exposed to fungal spores and analyzed for structural features, through scanning and transmission electron microscopy. Then, various analysis were performed in human macrophages as to their effect in some functional and molecular aspects of the immune system through immunocytochemistry, flow cytometry and gene expression assays. We demonstrated that T. stromaticum spores induces autophagy and autophagy-related genes (ATGs) and downmodulate inflammatory mediators, including ROS, NLRP3, the cytokines IL-1ß, IL-18, IL-12 and IL-10, as well as TLR2, TLR4, miR-146b and miR-155, which may lead to an augmented susceptibility to pathogens. Our study shows the extension of damages the biofungicide Tricovab® can cause in the innate immune response. Further studies are necessary to elucidate other innate and adaptive immune responses and, consequently, the safety of this fungus when in contact with humans.

12.
PLoS One ; 16(9): e0256444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34525107

RESUMEN

OBJECTIVE: To describe the neurological and neurodevelopmental outcomes of children with Congenital Zika Syndrome (CZS) associated microcephaly beyond 2 years of age. METHOD: We followed children with CZS-associated microcephaly in an outpatient clinic in Salvador, Brazil. Neurological and neurodevelopmental assessments were performed using the Hammersmith Infant Neurological Examination (HINE) and Bayley Scales of Infant and Toddler Neurodevelopment (Bayley-III) respectively. RESULTS: Of the 42 children included, 19 were male (45.2%); median (interquartile range) age at neurological evaluation was 28 (25-32) months, and 36 (85.7%) had severe microcephaly. HINE and Bayley-III results were completed for 35/42 (83.3%) and 33/42 (78.5%) children respectively. Bayley-III identified a severe developmental delay in 32/33 (97.0%) children while 1/33 (3.0%) had only a mild delay. In the multivariable analysis, we found that Bayley-III and HINE scores were correlated. Better HINE scores were associated with higher Bayley-III cognitive raw scores (ß = 0.29; CI 95% = 0.02-0.57) and motor raw scores (ß = 0.43; CI 95% = 0.04-0.82) after adjusting for head circumference, prematurity, and age at neurodevelopmental evaluation. Furthermore, we found that greater head circumference at follow up was associated with higher cognitive (ß = 1.27; CI 95% = 0.01-2.53) and motor raw scores (ß = 2.03; CI 95% = 0.25-3.81). CONCLUSION: Children with CZS-associated microcephaly demonstrate severe neurodevelopmental delays and slower growth rates than their peers over time. Still, they have remarkably heterogeneous neurodevelopmental profiles according to neurological exam scores which correlate with their long-term outcomes. We found that HINE scores effectively captured the heterogeneity of neurological capabilities among these children and could be predictive of cognitive and motor development progress.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Microcefalia/diagnóstico , Microcefalia/epidemiología , Infección por el Virus Zika/diagnóstico , Brasil/epidemiología , Cefalometría , Preescolar , Discapacidades del Desarrollo/fisiopatología , Discapacidades del Desarrollo/virología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Microcefalia/etiología , Microcefalia/virología , Examen Neurológico , Embarazo , Complicaciones Infecciosas del Embarazo/diagnóstico , Complicaciones Infecciosas del Embarazo/epidemiología , Complicaciones Infecciosas del Embarazo/fisiopatología , Complicaciones Infecciosas del Embarazo/virología , Virus Zika/patogenicidad , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/virología
13.
Cell Host Microbe ; 26(5): 591-600.e4, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31668877

RESUMEN

Maternal infection with Zika virus (ZIKV) can lead to microcephaly and other congenital abnormalities of the fetus. Although ZIKV vaccines that prevent or reduce viremia in non-pregnant mice have been described, a maternal vaccine that provides complete fetal protection would be desirable. Here, we show that adenovirus (Ad) vector-based ZIKV vaccines induce potent neutralizing antibodies that confer robust maternal and fetal protection against ZIKV challenge in pregnant, highly susceptible IFN-αßR-/- mice. Moreover, passive transfer of maternal antibodies from vaccinated dams protected pups against post-natal ZIKV challenge. These data suggest that Ad-based ZIKV vaccines may be able to provide protection in pregnant females against fetal ZIKV transmission in utero as well as in infants against ZIKV infection after birth.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Inmunidad Materno-Adquirida/inmunología , Receptor de Interferón alfa y beta/genética , Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/inmunología , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Línea Celular , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Vacunación , Células Vero , Infección por el Virus Zika/inmunología
14.
Biotechnol Lett ; 30(12): 2063-9, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18688573

RESUMEN

Human factor IX is synthesized in the liver and secreted in the blood, where it participates in a group of reactions involving coagulation factors and proteins that permit sanguinary coagulation. In this work two lines of transgenic mice were developed to express the FIX gene in the mammalian glands under control of milk beta-casein promoter. The founding females secreted the FIX in their milk (3% total soluble protein). The stable integration of transgene was confirmed by southern blot analysis. The presence of the FIX recombinant protein in the milk of transgenic females was confirmed by western blot and the clotting activity was revealed in blood-clotting assays. The coagulation activity in human blood treated with recombinant FIX increased while the time of coagulation decreased. Our results confirm the production of a large amount of recombinant biologically active FIX in the mammary gland of transgenic mice.


Asunto(s)
Factor IX/biosíntesis , Glándulas Mamarias Animales/metabolismo , Proteínas de la Leche/biosíntesis , Animales , Southern Blotting , Western Blotting , Factor IX/metabolismo , Factor IX/fisiología , Femenino , Lactancia , Masculino , Ratones , Ratones Transgénicos , Proteínas de la Leche/genética , Proteínas de la Leche/metabolismo , Tiempo de Tromboplastina Parcial , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo
15.
Viruses ; 10(11)2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405055

RESUMEN

We followed the presence of Zika virus (ZIKV) in four healthy adults (two men and two women), for periods ranging from 78 to 298 days post symptom onset. The patients were evaluated regarding the presence of the virus in different body fluids (blood, saliva, urine and semen), development of immune responses (including antibodies, cytokines and chemokines), and virus genetic variation within samples collected from semen and urine during the infection course. The analysis was focused primarily on the two male patients who shed the virus for up to 158 days after the initial symptoms. ZIKV particles were detected in the spermatozoa cytoplasm and flagella, in immature sperm cells and could also be isolated from semen in cell culture, confirming that the virus is able to preserve integrity and infectivity during replication in the male reproductive system (MRS). Despite the damage caused by ZIKV infection within the MRS, our data showed that ZIKV infection did not result in infertility at least in one of the male patients. This patient was able to conceive a child after the infection. We also detected alterations in the male genital cytokine milieu, which could play an important role in the replication and transmission of the virus which could considerably increase the risk of ZIKV sexual spread. In addition, full genome ZIKV sequences were obtained from several samples (mainly semen), which allowed us to monitor the evolution of the virus within a patient during the infection course. We observed genetic changes over time in consensus sequences and lower frequency intra-host single nucleotide variants (iSNV), that suggested independent compartmentalization of ZIKV populations in the reproductive and urinary systems. Altogether, the present observations confirm the risks associated with the long-term replication and shedding of ZIKV in the MRS and help to elucidate patterns of intra-host genetic evolution during long term replication of the virus.


Asunto(s)
Evolución Molecular , Interacciones Huésped-Patógeno , Infección por el Virus Zika/virología , Virus Zika/fisiología , Brasil/epidemiología , Citocinas/metabolismo , Femenino , Genitales Masculinos/virología , Interacciones Huésped-Patógeno/inmunología , Humanos , Masculino , Semen/metabolismo , Semen/virología , Virus Zika/clasificación , Virus Zika/ultraestructura , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/transmisión
16.
Mol Plant Microbe Interact ; 20(6): 717-26, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17555279

RESUMEN

Bean golden mosaic virus (BGMV) is transmitted by the whitefly Bemisia tabaci in a persistent, circulative manner, causing the golden mosaic of common bean (Phaseolus vulgaris L.). The characteristic symptoms are yellow-green mosaic of leaves, stunted growth, or distorted pods. The disease is the largest constraint to bean production in Latin America and causes severe yield losses (40 to 100%). Here, we explored the concept of using an RNA interference construct to silence the sequence region of the AC1 viral gene and generate highly resistant transgenic common bean plants. Eighteen transgenic common bean lines were obtained with an intron-hairpin construction to induce post-transcriptional gene silencing against the AC1 gene. One line (named 5.1) presented high resistance (approximately 93% of the plants were free of symptoms) upon inoculation at high pressure (more than 300 viruliferous whiteflies per plant during the whole plant life cycle) and at a very early stage of plant development. Transgene-specific small interfering RNAs were detected in both inoculated and non-inoculated transgenic plants. A semiquantitative polymerase chain reaction analysis revealed the presence of viral DNA in transgenic plants exposed to viruliferous whiteflies for a period of 6 days. However, when insects were removed, no virus DNA could be detected after an additional period of 6 days.


Asunto(s)
Begomovirus/fisiología , Ingeniería Genética , Phaseolus/inmunología , Phaseolus/virología , Interferencia de ARN , Regulación de la Expresión Génica de las Plantas , Vectores Genéticos , Genoma de Planta/genética , Genoma Viral/genética , Inmunidad Innata , Proteínas Mutantes/metabolismo , Phaseolus/genética , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transformación Genética
17.
mBio ; 8(3)2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28465428

RESUMEN

Antiviral innate host defenses against acute viral infections include suppression of host protein synthesis to restrict viral protein production. Less is known about mechanisms by which viral pathogens subvert host antiviral innate responses for establishing their replication and dissemination. We investigated early innate defense against human immunodeficiency virus (HIV) infection and viral evasion by utilizing human CD4+ T cell cultures in vitro and a simian immunodeficiency virus (SIV) model of AIDS in vivo Our data showed that early host innate defense against the viral infection involves GCN2-ATF4 signaling-mediated suppression of global protein synthesis, which is exploited by the virus for supporting its own replication during early viral infection and dissemination in the gut mucosa. Suppression of protein synthesis and induction of protein kinase GCN2-ATF4 signaling were detected in the gut during acute SIV infection. These changes diminished during chronic viral infection. HIV replication induced by serum deprivation in CD4+ T cells was linked to the induction of ATF4 that was recruited to the HIV long terminal repeat (LTR) to promote viral transcription. Experimental inhibition of GCN2-ATF4 signaling either by a specific inhibitor or by amino acid supplementation suppressed the induction of HIV expression. Enhancing ATF4 expression through selenium administration resulted in reactivation of latent HIV in vitro as well as ex vivo in the primary CD4+ T cells isolated from patients receiving suppressive antiretroviral therapy (ART). In summary, HIV/SIV exploits the early host antiviral response through GCN2-ATF4 signaling by utilizing ATF4 for activating the viral LTR transcription to establish initial viral replication and is a potential target for HIV prevention and therapy.IMPORTANCE Understanding how HIV overcomes host antiviral innate defense response in order to establish infection and dissemination is critical for developing prevention and treatment strategies. Most investigations focused on the viral pathogenic mechanisms leading to immune dysfunction following robust viral infection and dissemination. Less is known about mechanisms that enable HIV to establish its presence despite rapid onset of host antiviral innate response. Our novel findings provide insights into the viral strategy that hijacks the host innate response of the suppression of protein biosynthesis to restrict the virus production. The virus leverages transcription factor ATF4 expression during the GCN2-ATF4 signaling response and utilizes it to activate viral transcription through the LTR to support viral transcription and production in both HIV and SIV infections. This unique viral strategy is exploiting the innate response and is distinct from the mechanisms of immune dysfunction after the critical mass of viral loads is generated.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Linfocitos T CD4-Positivos/virología , VIH-1/fisiología , Interacciones Huésped-Patógeno , Inmunidad Innata , Proteínas Serina-Treonina Quinasas/metabolismo , Replicación Viral , Factor de Transcripción Activador 4/genética , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Tracto Gastrointestinal/virología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/patogenicidad , Humanos , Evasión Inmune , Macaca mulatta , Proteínas Serina-Treonina Quinasas/genética , Selenio/farmacología , Transducción de Señal , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios , Carga Viral , Latencia del Virus
18.
Front Microbiol ; 8: 1681, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28936201

RESUMEN

The intensive use of pesticides to control pests in agriculture has promoted several issues relating to environment. As chemical pesticides remain controversial, biocontrol agents originating from fungi could be an alternative. Among them, we highlight biocontrol agents derived from the fungi genus Trichoderma, which have been documented in limiting the growth of other phytopathogenic fungus in the roots and leaves of several plant species. An important member of this genus is Trichoderma asperelloides, whose biocontrol agents have been used to promote plant growth while also treating soil diseases caused by microorganisms in both greenhouses and outdoor crops. To evaluate the safety of fungal biological agents for human health, tests to detect potentially adverse effects, such as allergenicity, toxicity, infectivity and pathogenicity, are crucial. In addition, identifying possible immunomodulating properties of fungal biocontrol agents merits further investigation. Thus, the aim of this study was to evaluate the effects of T. asperelloides spores in the internalization of Candida parapsilosis yeast by mice phagocytes, in order to elucidate the cellular and molecular mechanism of this interaction, as a model to understand possible in vivo effects of this fungus. For this, mice were exposed to a fungal spore suspension through-intraperitoneal injection, euthanized and cells from the peripheral blood and peritoneal cavity were collected for functional, quantitative and phenotypic analysis, throughout analysis of membrane receptors gene expression, phagocytosis ability and cells immunophenotyping M1 (CCR7 and CD86) and M2 (CCR2 and CD206). Our analyses showed that phagocytes exposed to fungal spores had reduced phagocytic capacity, as well as a decrease in the quantity of neutrophils and monocytes in the peripheral blood and peritoneal cavity. Moreover, macrophages exposed to T. asperelloides spores did not display the phenotypic profile M1/M2, and had reduced expression of pattern recognition receptors, such as TLR2, dectin-1 and dectin-2, all involved in the first line of defense against clinically important yeasts. Our data could infer that T. asperelloides spores may confer susceptibility to infection by C. parapsilosis.

19.
Hum Gene Ther ; 17(4): 415-26, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16610929

RESUMEN

We have generated recombinant adenoviruses encoding three genetically modified surface antigens (SAGs) of the parasite Toxoplasma gondii, that is, AdSAG1, AdSAG2, and AdSAG3. Modifications included the removal of their glycosylphosphatidylinositol (GPI) anchoring motifs and, in some cases, the exchange of the native signal peptide for influenza virus hemagglutinin signal sequence. Adenovirus immunization of BALB/c mice elicited potent antibody responses against each protein, displaying a significant bias toward a helper T cell type 1 (Th1) profile in animals vaccinated with AdSAG1. Furthermore, the presence of parasite-specific IFN-gamma-producing T cells was analyzed by proliferation assays and enzyme-linked immunospot assays in the same animals. Splenocytes from immunized mice secreted IFN-gamma after in vitro stimulation with tachyzoite lysate antigen or with a fraction enriched for membrane-purified GPI-anchored proteins (F3) from the T. gondii tachyzoite surface. Epitopes recognized by CD8+ T cells were identified in SAG1 and SAG3, but not SAG2, sequences, although this protein also induced a specific response. We also tested the capacity of the immune responses detected to protect mice against a challenge with live T. gondii parasites. Although no protection was observed against tachyzoites of the highly virulent RH strain, a significant reduction in cyst loads in the brain was observed in animals challenged with the P-Br strain. Thus, up to 80% of the cysts were eliminated from animals vaccinated with a mixture of the three recombinant viruses. Because adenoviruses seemed capable of inducing Th1-biased protective immune responses against T. gondii antigens, other parasite antigens should be tested alone or in combination with those described here to further develop a protective vaccine against toxoplasmosis.


Asunto(s)
Adenoviridae , Antígenos de Protozoos/genética , Glicoproteínas de Membrana/genética , Proteínas Protozoarias/genética , Vacunas Antiprotozoos/genética , Toxoplasma/inmunología , Toxoplasmosis Animal/inmunología , Animales , Antígenos de Protozoos/inmunología , Femenino , Eliminación de Gen , Inmunidad Activa , Inmunidad Celular , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/inmunología , Vacunas Antiprotozoos/inmunología , Recombinación Genética , Toxoplasmosis Animal/prevención & control , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Replicación Viral/genética
20.
Microbes Infect ; 8(2): 390-400, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16242371

RESUMEN

The immune mechanisms that underlie resistance and susceptibility to leishmaniasis are not completely understood for all species of Leishmania. It is becoming clear that the immune response, the parasite elimination by the host and, as a result, the outcome of the disease depend both on the host and on the species of the infecting Leishmania. Here, we analyzed the outcome of the infection of BALB/c mice with L. guyanensis in vivo and in vitro. We showed that BALB/c mice, which are a prototype of susceptible host for most species of Leishmania, dying from these infections, develop insignificant or no cutaneous lesions and eliminate the parasite when infected with promastigotes of L. guyanensis. In vitro, we found that thioglycollate-elicited BALB/c peritoneal macrophages, which are unable to eliminate L. amazonensis without previous activation with cytokines or lipopolysaccharide, can kill L. guyanensis amastigotes. This is the first report showing that infection of peritoneal macrophages with stationary phase promastigotes efficiently triggers innate microbicidal mechanisms that are effective in eliminating the amastigotes, without exogenous activation. We demonstrated that L. guyanensis amastigotes die inside the macrophages through an apoptotic process that is independent of nitric oxide and is mediated by reactive oxygen intermediates generated in the host cell during infection. This innate killing mechanism of macrophages may account for the resistance of BALB/c mice to infection by L. guyanensis.


Asunto(s)
Apoptosis , Leishmania guyanensis/patogenicidad , Leishmaniasis Cutánea/inmunología , Macrófagos/inmunología , Macrófagos/parasitología , Estallido Respiratorio , Animales , Células Cultivadas , Leishmania guyanensis/crecimiento & desarrollo , Leishmaniasis Cutánea/fisiopatología , Activación de Macrófagos/inmunología , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/parasitología , Ratones , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA