RESUMEN
OBJECTIVE: To observe the effect of acupotomy on heat shock protein A family member 5 (HSPA5)/glutathione peroxidase 4 (GPX4) signaling pathway in the chondrocytes of the rabbits with knee osteoarthritis (KOA) and explore the mechanism of acupotomy on chondrocyte ferroptosis in KOA. METHODS: Twenty-seven New Zealand rabbits were randomly divided into a normal group, a model group and an acupotomy group, with 9 rabbits in each group. The left hind limb was fixed by the modified Videman method for 6 weeks to establish KOA model. After modeling, acupotomy was given in the acupotomy group, once a week and for consecutive 3 weeks. Using Lequesne MG score, the local symptoms, physical signs and functions of knee joint were evaluated. With HE staining and saffrane-solid green staining adopted, the morphology of chondrocytes and cartilage tissue was observed. Under transmission electron microscope, the mitochondrial structure of chondrocytes was observed. The iron content of cartilage tissue was detected by iron ion kit. The mitochondrial membrane potential (Δψm) and the reactive oxygen species (ROS) level in cartilage tissue were determined by flow cytometry, and the mitochondrial damage rate was calculated. The mRNA expression of HSPA5, GPX4, type â ¡ collagen α1 chain (COL2A1), matrix metalloproteinases (MMP) 3 and MMP13 was detected by the real-time quantitative PCR; and the protein expression of HSPA5, GPX4, type â ¡ collagen (COL-â ¡), MMP3 and MMP13 was detected by Western blot. The mean flourscence intensity of HSPA5 and GPX4 in cartilage tissue was determined by immunofluorescence. RESULTS: Before intervention, compared with the normal group, the Lequesne MG scores were increased in the model group and the acupotomy group (P<0.01). After intervention, the Lequesne MG score in the acupotomy group was decreased when compared with that in the model group. In comparison with that in the normal group, the number of chondrocytes was reduced and the cells were disarranged; the layers of cartilage structure were unclear, the tide lines disordered and blurred; the mitochondria were wrinkled and the mitochondrial crista decreased or even disappeared in the model group. Compared with the model group, the number of chondrocytes was increased, the layers of cartilage structure were clear, the tide lines recovered, the number of mitochondria elevated, with normal structure and more crista in the acupotomy group. The iron content of cartilage tissue was increased (P<0.01), the Δψm of chondrocytes was declined, the mitochondrial damage rate was increased (P<0.01), the average fluorescence intensity of ROS was increased (P<0.01); the mRNA and corresponding protein expression of HSPA5, GPX4 and COL2A1 was decreased (P<0.01), the mRNA and protein expression of MMP3 and MMP13 was increased (P<0.01) and the average fluorescence intensity of HSPA5, GPX4 was decreased (P<0.01) in the model group when compared with those in the normal group. Compared with the model group, the iron content in cartilage tissue was reduced (P<0.01), the Δψm of chondrocytes was increased, the mitochondrial damage rate was decreased (P<0.01), and the average fluorescence intensity of ROS was decreased (P<0.01); the mRNA and corresponding protein expression of HSPA5, GPX4 and COL2A1 was higher (P<0.01), and the mRNA and protein expression of MMP3 and MMP13 was lower, and the average fluorescence intensity of HSPA5, GPX4 was increased (P<0.01) in the acupotomy group. CONCLUSION: Acupotomy can alleviate cartilage injury of KOA rabbits, and its mechanism may be related to the regulation of HSPA5/GPX4 signaling pathway to maintain iron homeostasis in articular cartilage, thus inhibiting chondrocyte ferroptosis and relieving extracellular matrix degradation.
Asunto(s)
Terapia por Acupuntura , Condrocitos , Ferroptosis , Proteínas de Choque Térmico , Osteoartritis de la Rodilla , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Transducción de Señal , Animales , Conejos , Osteoartritis de la Rodilla/terapia , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/fisiopatología , Condrocitos/metabolismo , Masculino , Humanos , Terapia por Acupuntura/instrumentación , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/genética , Chaperón BiP del Retículo Endoplásmico , FemeninoRESUMEN
OBJECTIVE: To explore the effect of acupotomy intervention on autophagy of chondrocytes in rabbits with knee osteoarthritis (KOA), and to determine the possible mechanisms of acupotomy to alleviate cartilage degeneration. METHODS: The modified Videman method was used to construct a KOA rabbit model. After modeling, 40 rabbits were randomly divided into 4 groups by a random number table: control; KOA (model); KOA + acupotomy (acupotomy), and KOA + sham acupotomy (sham), 10 in each group. After a 3-week treatment course, the knee joint activity was determined by the modified Lequesne MG index. Hematoxylin-eosin staining staining was used to examine the morphological changes of chondrocytes. Autophagy of chondrocytes was observed by transmission electron microscopy. The surface morphology of cartilage tissue was observed by scanning electron microscope. The mRNA and protein levels of AMP kinase/mammalian target of rapamycin/Unc-51 (AMPK/mTOR/ULK1) signal pathway key proteins, autophagy-related factor Beclin-1 and microtubule-associated protein 1A/1B light chain 3 (LC3) in rabbit knee cartilage were assessed by real-time fluorescence quantitative polymerase chain reaction and Western blot, respectively. RESULTS: The modified Lequesne MG score of acupotomy group was significantly lower than that of model group (P<0.05). Pathological results showed that chondrocyte autophagy decreased and cartilage surface was rough in the model group, which recovered after acupotomy treatment. The mRNA expressions of AMPK, ULK1, Beclin-1 and the protein levels of p-AMPK, p-ULK1, Beclin-1, and LC3 II/LC3 I were decreased in the model group, while the mRNA and protein expressions of mTOR were increased (P<0.01). However, acupotomy treatment reversed these abnormal changes (P<0.05). CONCLUSIONS: Acupotomy could effectively up-regulate the expressions of AMPK, ULK1 and Beclin1, reduce the expression of mTOR, promote autophagy, and alleviate joint degeneration. Acupotomy is a promising complementary and alternative therapy for KOA.
Asunto(s)
Terapia por Acupuntura , Autofagia , Condrocitos , Osteoartritis de la Rodilla , Animales , Conejos , Condrocitos/patología , Condrocitos/metabolismo , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/terapia , Osteoartritis de la Rodilla/metabolismo , Terapia por Acupuntura/métodos , Transducción de Señal , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Modelos Animales de Enfermedad , Masculino , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
OBJECTIVE: To observe the effect of needle knife on chondrocyte autophagy and expressions of autophagy-related protein and mammalian target of rapamycin (mTOR) in rats with knee osteoarthritis (KOA), and to explore the possible mechanism of needle knife for KOA. METHODS: A total of 42 SD rats were randomly divided into a normal group, a model group and a needle knife group, 14 rats in each group. Except for the normal group, the other two groups were injected with the mixture of papain and L-cysteine into the left hind knee joint to establish the KOA model. After modeling, the rats in the needle knife group were treated with needle knife at strip or nodule around the quadriceps femoris and medial and lateral collateral ligament on the affected side, once a week for 3 times (3 weeks). The changes of left knee circumference in each group were observed; the chondrocytes and ultrastructure of left knee joint were observed by HE staining and electron microscope; the mRNA and protein expressions of autophagy-related genes (Atg5, Atg12, Atg4a), Unc-51 like autophagy activated kinase 1 (ULK1), autophagy gene Beclin-1 and mTOR in left knee cartilage were detected by real-time fluorescence quantitative PCR and Western blot. RESULTS: After modeling, the left knee circumferences in the model group and the needle knife group were increased compared with those before modeling and in the normal group (P<0.05); after intervention, the left knee circumference in the needle knife group was smaller than that in the model group and after modeling (P<0.05). Compared with the normal group, the number of chondrocytes was decreased, and a few cells swelled, nuclei shrank, mitochondria swelled and autophagosomes decreased in the model group; compared with the model group, the number of chondrocytes was increased , and most cell structures returned to normal, and autophagosomes was increased. Compared with the normal group, the mRNA and protein expressions of Atg5, Atg12, Atg4a, Beclin-1 and ULK1 in the knee cartilage in the model group were decreased (P<0.05); compared with the model group, the expressions of the above indexes in the needle knife group were increased (P<0.05). Compared with the normal group, the mRNA and protein expressions of mTOR in the knee cartilage in the model group were increased (P<0.05); compared with the model group, the expressions of the above indexes in the needle knife group were decreased (P<0.05). CONCLUSION: The needle knife intervention could improve knee cartilage injury in rats with KOA, and its mechanism may be related to reducing the expression of mTOR and up-regulating the expressions of Atg5, Atg12, Atg4a, ULK1 and Beclin-1, so as to promote chondrocyte autophagy and delay the aging and degeneration of chondrocytes.