Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38610270

RESUMEN

The robotic drilling of assembly holes is a crucial process in aerospace manufacturing, in which measuring the normal of the workpiece surface is a key step to guide the robot to the correct pose and guarantee the perpendicularity of the hole axis. Multiple laser displacement sensors can be used to satisfy the portable and in-site measurement requirements, but there is still a lack of accurate analysis and layout design. In this paper, a simplified parametric method is proposed for multi-sensor normal measurement devices with a symmetrical layout, using three parameters: the sensor number, the laser beam slant angle, and the laser spot distribution radius. A normal measurement error distribution simulation method considering the random sensor errors is proposed. The measurement error distribution laws at different sensor numbers, the laser beam slant angle, and the laser spot distribution radius are revealed as a pyramid-like region. The influential factors on normal measurement accuracy, such as sensor accuracy, quantity and installation position, are analyzed by a simulation and verified experimentally on a five-axis precision machine tool. The results show that increasing the laser beam slant angle and laser spot distribution radius significantly reduces the normal measurement errors. With the laser beam slant angle ≥15° and the laser spot distribution radius ≥19 mm, the normal measurement error falls below 0.05°, ensuring normal accuracy in robotic drilling.

2.
Sensors (Basel) ; 24(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38931573

RESUMEN

The visual measurement of deep holes in composite material workpieces constitutes a critical step in the robotic assembly of aerospace components. The positioning accuracy of assembly holes significantly impacts the assembly quality of components. However, the complex texture of the composite material surface and mutual interference between the imaging of the inlet and outlet edges of deep holes significantly challenge hole detection. A visual measurement method for deep holes in composite materials based on the radial penalty Laplacian operator is proposed to address the issues by suppressing visual noise and enhancing the features of hole edges. Coupled with a novel inflection-point-removal algorithm, this approach enables the accurate detection of holes with a diameter of 10 mm and a depth of 50 mm in composite material components, achieving a measurement precision of 0.03 mm.

3.
Am J Obstet Gynecol ; 219(2): 197.e1-197.e8, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29733843

RESUMEN

BACKGROUND: Diabetes mellitus in early pregnancy increases the risk of birth defects in infants. Maternal hyperglycemia stimulates the expression of nitric oxide synthase 2, which can be regulated by transcription factors of the nuclear factor-κB family. Increases in reactive nitrogen species generate intracellular stress conditions, including nitrosative, oxidative, and endoplasmic reticulum stresses, and trigger programmed cell death (or apoptosis) in the neural folds, resulting in neural tube defects in the embryo. Inhibiting nitric oxide synthase 2 can reduce neural tube defects; however, the underlying mechanisms require further delineation. Targeting nitric oxide synthase 2 and associated nitrosative stress using naturally occurring phytochemicals is a potential approach to preventing birth defects in diabetic pregnancies. OBJECTIVE: This study aims to investigate the effect of quercetin-3-glucoside, a naturally occurring polyphenol flavonoid, in reducing maternal diabetes-induced neural tube defects in an animal model, and to delineate the molecular mechanisms underlying quercetin-3-glucoside action in regulating nitric oxide synthase 2 expression. STUDY DESIGN: Female mice (C57BL/6) were induced to develop diabetes using streptozotocin before pregnancy. Diabetic pregnant mice were administered quercetin-3-glucoside (100 mg/kg) daily via gavage feeding, introduction of drug to the stomach directly via a feeding needle, during neurulation from embryonic day 6.5-9.5. After treatment at embryonic day 10.5, embryos were collected and examined for the presence of neural tube defects and apoptosis in the neural tube. Expression of nitric oxide synthase 2 and superoxide dismutase 1 (an antioxidative enzyme) was quantified using Western blot assay. Nitrosative, oxidative, and endoplasmic reticulum stress conditions were assessed using specific biomarkers. Expression and posttranslational modification of factors in the nuclear factor-κB system were investigated. RESULTS: Treatment with quercetin-3-glucoside (suspended in water) significantly decreased neural tube defect rate and apoptosis in the embryos of diabetic mice, compared with those in the water-treated diabetic group (3.1% vs. 24.7%; P < .001). Quercetin-3-glucoside decreased the expression of nitric oxide synthase 2 and nitrosative stress (P < .05). It also increased the levels of superoxide dismutase 1 (P < .05), further increasing the antioxidative capacity of the cells. Quercetin-3-glucoside treatment also alleviated of endoplasmic reticulum stress in the embryos of diabetic mice (P < .05). Quercetin-3-glucoside reduced the levels of p65 (P < .05), a member of the nuclear factor-κB transcription factor family, but augmented the levels of the inhibitor of κBα (P < .05), which suppresses p65 nuclear translocation. In association with these changes, the levels of inhibitor of κB kinase-α and inhibitor of κBα phosphorylation were elevated (P < .05). CONCLUSION: Quercetin-3-glucoside reduces the neural tube defects rate in the embryos of diabetic dams. Quercetin-3-glucoside suppresses nitric oxide synthase 2 and increases superoxide dismutase 1 expression, leading to alleviation of nitrosative, oxidative, and endoplasmic reticulum stress conditions. Quercetin-3-glucoside may regulate the expression of nitric oxide synthase 2 via modulating the nuclear factor-κB transcription regulation system. Quercetin-3-glucoside, a naturally occurring polyphenol that has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies.


Asunto(s)
Antioxidantes/farmacología , Diabetes Mellitus Experimental/metabolismo , Embrión de Mamíferos/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , FN-kappa B/efectos de los fármacos , Neurulación/efectos de los fármacos , Estrés Nitrosativo/efectos de los fármacos , Quercetina/análogos & derivados , Animales , Western Blotting , Femenino , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Defectos del Tubo Neural/embriología , Defectos del Tubo Neural/epidemiología , Defectos del Tubo Neural/metabolismo , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/efectos de los fármacos , Embarazo , Embarazo en Diabéticas/epidemiología , Embarazo en Diabéticas/metabolismo , Quercetina/farmacología , Superóxido Dismutasa-1/efectos de los fármacos , Superóxido Dismutasa-1/metabolismo , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/metabolismo
4.
Opt Lett ; 39(11): 3114-7, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24875990

RESUMEN

It is widely believed that laser-induced periodic surface structures (LIPSS) are independent of material crystal structures. This Letter reports an abnormal phenomenon of strong dependence of the anisotropic formation of periodic ripples on crystal orientation, when Si (100) is processed by a linearly polarized femtosecond laser (800 nm, 50 fs, 1 kHz). LIPSS formation sensitivity with a π/2 modulation is found along different crystal orientations with a quasi-cosinusoid function when the angle between the crystal orientation and polarization direction is changed from 0° to 180°. Our experiments indicate that it is much easier (or more difficult) to form ripple structures when the polarization direction is aligned with the lattice axis [011]/[011¯] (or [001]). The modulated nonlinear ionization rate along different crystal orientations, which arises from the direction dependence of the effective mass of the electron is proposed to interpret the unexpected anisotropic LIPSS formation phenomenon. Also, we demonstrate that the abnormal phenomenon can be applied to control the continuity of scanned ripple lines along different crystal orientations.


Asunto(s)
Silicio/química , Silicio/efectos de la radiación , Anisotropía , Cristalografía , Rayos Láser , Microscopía Electrónica de Rastreo , Fenómenos Ópticos , Propiedades de Superficie , Factores de Tiempo
5.
Materials (Basel) ; 17(2)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38255464

RESUMEN

CFRP/Ti stacks composed of carbon fiber-reinforced plastic composites (CFRP) and titanium alloys (Ti) are widely used in aerospace fields. However, in the integrated hole-making process of CFRP/Ti stacks, the machining characteristics of various materials are significantly different, and constant machining parameters cannot simultaneously meet the high-quality machining requirements of two materials. In addition, errors exist between the actual thickness of each material layer and the theoretical value, which causes an impediment to the monitoring of the machining interface and the corresponding adjustment of parameters. An adaptive machining method for the helical milling of CFRP/Ti stacks based on interface identification is proposed in this paper. The machining characteristics of the pneumatic spindle and the interface state in the helical milling of CFRP/Ti stacks are analyzed using self-developed portable helical milling equipment, and a new algorithm for the real-time monitoring of the machining interface position and adaptive adjustment of the machining parameters according to the interface identification result is proposed. Helical milling experiments were carried out, the results show that the proposed method can effectively identify the position of the machining interface with good identification accuracy. Moreover, the proposed parameter-adaptive optimized machining method for CFRP/Ti stacks can significantly improve hole diameter accuracy and machining quality.

6.
Int J Biol Macromol ; 262(Pt 1): 129875, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320638

RESUMEN

Long intergenic non-coding RNA(lincRNA) is transcribed from the intermediate regions of coding genes and plays a pivotal role in the regulation of lipid synthesis. N6-methyladenosine (m6A) modification is widely prevalent in eukaryotic mRNAs and serves as a regulatory factor in diverse biological processes. This study aims to delineate the mechanism by which Linc-smad7 mediates m6A methylation to regulate milk fat synthesis. Tissue expression analysis in this study revealed a high expression of Linc-smad7 in breast tissue during pregnancy. Cell proliferation assays, including CCK8 and EdU assays, demonstrated that Linc-smad7 had no significant impact on the proliferation of mammary epithelial cells. However, during mammary epithelial cell differentiation, the overexpression of Linc-smad7 led to reduced lipid formation, whereas interference with Linc-smad7 promoted lipogenesis. Mechanistically, Linc-smad7 was found to modulate RNA m6A levels, as evidenced by dot blot assays and methylated RNA immunoprecipitation sequencing (MeRIP-Seq). Subsequent validation through RT-qPCR corroborated these findings, aligning with the m6A sequencing outcomes. Furthermore, co-transfection experiments elucidated that Linc-smad7 regulates lipid synthesis in mammary epithelial cells by influencing the expression of METTL14. In summary, these findings underscore the regulatory role of Linc-smad7 in controlling METTL14 gene expression, thereby mediating m6A modifications to regulate lipid synthesis in mammary epithelial cells.


Asunto(s)
Células Epiteliales , Lipogénesis , ARN Largo no Codificante , Animales , Ratones , Diferenciación Celular , Lípidos , Lipogénesis/genética , ARN Mensajero , ARN Largo no Codificante/genética , Proteína smad7/genética , Metilación de ARN/genética , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo
7.
J Agric Food Chem ; 71(41): 15073-15086, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37805933

RESUMEN

Chlorogenic acid (CGA) is a naturally occurring plant component with the purpose of alleviating hepatic lipid deposition biological activities. However, the molecular mechanism behind this ability of CGA remains unelucidated. Consequently, we investigated the effect of CGA on hepatic lipid accumulation and elucidated its underlying mechanism. Our study used a high-fat diet (HFD)-induced mouse nonalcoholic fatty liver disease (NAFLD) model in mice to investigate the impact of CGA on hepatic lipid accumulation. The results revealed that the oral administration of CGA can ameliorate HFD-induced hepatic lipid deposition, reduce the NAFLD activity score (NAS), enhance liver autophagy, mitigate liver cell structural damage, and inhibit the MAPK/ERK signaling pathway. Meanwhile, CGA treatment increased the LC3B:LC3B ratio and decreased P62 expression. Cell experiments demonstrated that autophagy contributes to the ability of CGA to alleviate lipid deposition. Further analysis revealed that CGA specifically binds to ALKBH5 and inhibits its m6A methylase activity. The inhibition of ALKBH5 activity significantly reduces AXL mRNA stability in liver cells. The AXL downregulation resulted in suppressing ERK signaling pathway activation. Overall, this study demonstrates that CGA can alleviate hepatic steatosis by regulating autophagy through the inhibition of ALKBH5 activity inhibition.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Clorogénico/metabolismo , Hígado/metabolismo , Autofagia , Lípidos/farmacología , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
8.
Int J Biol Macromol ; 226: 397-409, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36464183

RESUMEN

tRNA-derived fragments (tRFs) are a class of regulatory non-coding RNAs that play essential biological functions in cancer and stress-induced diseases. Several lines of evidence suggest that 5'-tRF-GlyGCC participates in tumor progression; however, its molecular mechanisms remain unclear. In this study, we explored the function of 5'-tRF-GlyGCC in breast cancer (BC) progression and studied the related potential molecular mechanisms. 5'-tRF-GlyGCC expression increased in human BC, and it promoted the proliferation, migration, and invasion of BC cells in vitro and tumor growth and metastasis in vivo. 5'-tRF-GlyGCC was found for the first time to bind directly to fat mass and obesity-associated proteins, and increase the activity of FTO demethylase, reducing eIF4G1 methylation, inhibiting autophagy, and promoting BC proliferation and metastasis. These findings suggest that 5'-tRF-GlyGCC might be a therapeutic target for treating BC.


Asunto(s)
Neoplasias de la Mama , Melanoma , Neoplasias Cutáneas , Humanos , Femenino , Neoplasias de la Mama/patología , Obesidad/complicaciones , Obesidad/genética , ARN de Transferencia/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Melanoma Cutáneo Maligno
9.
Foods ; 12(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37959029

RESUMEN

Sweet potato vine tips are abundant in chlorogenic acid (CGA). In this study, CGA was extracted from vegetable and conventional sweet potato vine tips using ethanol, followed by subsequent purification of the extract through a series of sequential steps. Over 4 g of the purified product was obtained from 100 g of sweet potato vine tip powder, producing more than 85% of purified CGA. The LC-MS analysis of all samples indicated that 4-CQA was the predominant isomer in both sweet potato cultivars. Significant variations of p-coumaroyl quinic acids, feruloyl quinic acids, dicaffeoyl quinic acids, and tricaffeoyl quinic acid were identified, whereas the mono-caffeoyl quinic acids did not vary when the two sweet potato varieties were compared. Compared to conventional sweet potatoes, vegetable sweet potatoes exhibit a high negative correlation between 4-CQA and 5-pCoQA, while showing a high positive correlation between 3,5-CQA and 3-pCoQA. A series of principal component analyses (PCA) using CGA isomers enables a clear differentiation between vine tips derived from vegetable and conventional sweet potatoes. The model of linear discriminant analysis, based on the characteristic CGA, achieved a 100% accuracy rate in distinguishing between vegetable and conventional sweet potatoes. The high purity of sweet potato CGA (SCGA) exhibited potent anti-breast cancer activity. The results demonstrated that SCGA significantly suppressed the clonogenicity of MB231 and MCF7 cells, and impeded the migratory, invasive, and lung metastatic potential of MB231 cells.

10.
Food Sci Nutr ; 11(6): 2925-2941, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37324839

RESUMEN

Fermentation technology was used to prepare the acaí (Euterpe oleracea) fermentation liquid. The optimal fermentation parameters included a strain ratio of Lactobacillus paracasei: Leuconostoc mesenteroides: Lactobacillus plantarum = 0.5:1:1.5, a fermentation time of 6 days, and a nitrogen source supplemental level of 2.5%. In optimal conditions, the ORAC value of the fermentation liquid reached the highest value of 273.28 ± 6.55 µmol/L Trolox, which was 55.85% higher than the raw liquid. In addition, the FRAP value of the acaí, as well as its scavenging ability of DPPH, hydroxyl, and ABTS free radicals, increased after fermentation. Furthermore, after fermentation treatment, the microstructure, basic physicochemical composition, amino acid composition, γ-aminobutyric acid, a variety of volatile components, and so on have changed. Therefore, fermentation treatment can significantly improve the nutritional value and flavor of the acaí. This provides a theoretical basis for the comprehensive utilization of acaí.

11.
Animals (Basel) ; 11(10)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34680020

RESUMEN

Though miRNAs have been reported to regulate bovine myoblast proliferation, but many miRNAs still need to be further explored. Specifically, miR-152 is a highly expressed miRNA in cattle skeletal muscle tissues, but its function in skeletal muscle development is unknown. Herein, we aimed to investigate the role of miR-152 in regulating bovine myoblast proliferation. Functionally, RT-qPCR, Western blotting, EdU assay, and flow cytometry detection results showed that miR-152 inhibited bovine myoblast proliferation. Mechanistically, we demonstrated transcription factor KLF6 was a target gene of miR-152 by means of bioinformatics software prediction and dual-luciferase report analysis, which had been demonstrated to be favorable for myoblast proliferation. Collectively, our research suggested that miR-152 inhibits bovine myoblast proliferation via targeting KLF6.

13.
Sci Rep ; 6: 21491, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26887929

RESUMEN

Diabetes mellitus in early pregnancy causes birth defects, including neural tube defects (NTDs). Hyperglycemia increases production of nitric oxide (NO) through NO synthase 2 (Nos2) and reactive oxygen species (ROS), generating nitrosative and oxidative stress conditions in the embryo. The present study aimed to target nitrosative stress using a naturally occurring Nos2 inhibitor, quercetin, to prevent NTDs in the embryos of diabetic mice. Daily administration of quercetin to diabetic pregnant mice during the hyperglycemia-susceptible period of organogenesis significantly reduced NTDs and cell apoptosis in the embryos, compared with those of vehicle-treated diabetic pregnant mice. Using HPLC-coupled ESI-MS/MS, quercetin metabolites, including methylated and sulfonylated derivatives, were detected in the conceptuses. The methylated metabolite, 3-O-methylquercetin, was shown to reduce ROS level in embryonic stem cells cultured in high glucose. Quercetin treatment decreased the levels of Nos2 expression, protein nitrosylation, and protein nitration, alleviating nitrosative stress. Quercetin increased the expression of superoxide dismutase 1 and 2, and reduced the levels of oxidative stress markers. Expression of genes of redox regulating enzymes and DNA damage repair factors was upregulated. Our study demonstrates that quercetin ameliorates intracellular stresses, regulates gene expression, and reduces embryonic malformations in diabetic pregnancy.


Asunto(s)
Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Defectos del Tubo Neural/metabolismo , Estrés Oxidativo/efectos de los fármacos , Embarazo en Diabéticas/metabolismo , Quercetina/farmacología , Animales , Diabetes Mellitus Experimental/patología , Femenino , Ratones , Defectos del Tubo Neural/patología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Embarazo , Embarazo en Diabéticas/patología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA