Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chembiochem ; 11(12): 1738-47, 2010 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-20623571

RESUMEN

Lanthanides have interesting chemical properties; these include luminescent, magnetic, and catalytic functions. Toward the development of proteins incorporating novel functions, we have designed a new lanthanide-binding motif, lanthanide fingers. These were designed based on the Zif268 zinc finger, which exhibits a beta beta alpha structural motif. Lanthanide fingers utilize an Asp(2)Glu(2) metal-coordination environment to bind lanthanides through a tetracarboxylate peptide ligand. The iterative design of a general lanthanide-binding peptide incorporated the following key elements: 1) residues with high alpha-helix and beta-sheet propensities in the respective secondary structures; 2) an optimized big box alpha-helix N-cap; 3) a Schellman alpha-helix C-cap motif; and 4) an optional D-Pro-Ser type II' beta-turn in the beta-hairpin. The peptides were characterized for lanthanide binding by circular dichroism (CD), NMR, and fluorescence spectroscopy. In all instances, stabilization of the peptide secondary structures resulted in an increase in metal affinity. The optimized protein design was a 25-residue peptide that was a general lanthanide-binding motif; this binds all lanthanides examined in a competitive aqueous environment, with a dissociation constant of 9.3 microM for binding Er(3+). CD spectra of the peptide-lanthanide complexes are similar to those of zinc fingers and other beta beta alpha proteins. Metal binding involves residues from the N-terminal beta-hairpin and the C terminal alpha-helical segments of the peptide. NMR data indicated that metal binding induced a global change in the peptide structure. The D-Pro-Ser type II' beta-turn motif could be replaced by Thr-Ile to generate genetically encodable lanthanide fingers. Replacement of the central Phe with Trp generated genetically encodable lanthanide fingers that exhibited terbium luminescence greater than that of an EF-hand peptide.


Asunto(s)
Elementos de la Serie de los Lantanoides/química , Metaloproteínas/química , Péptidos/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dicroismo Circular , Cinética , Espectroscopía de Resonancia Magnética , Metaloproteínas/síntesis química , Datos de Secuencia Molecular , Péptidos/síntesis química , Estructura Secundaria de Proteína , Espectrometría de Masa por Ionización de Electrospray
2.
EBioMedicine ; 49: 354-363, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31685443

RESUMEN

BACKGROUND: Mothers are the primary source of bacteria for newborns, but it is unclear whether mother-to-newborn transmission occurs prior to, during or after birth. Similarly, the effect of the delivery mode on neonatal microorganisms has been the focus of controversy. METHODS: Healthy maternal and neonatal pairs that underwent vaginal birth and caesarean section were enrolled in this study. Meconium, placenta, membrane and amniotic fluid samples for newborns and vaginal, rectal and oral samples for mothers were collected. All samples were amplified and sequenced by a 16S rRNA gene primer set targeting bacteria and archaea. FINDINGS: A total of 550 samples from 36 mother-neonate pairs with vaginal births and 42 mother-neonate pairs with caesarean sections were included in this study. The negative controls showed that the data analysis in this study was not affected by contamination. There was a high diversity of microbial communities in the pregnancy environment of the foetus. Meconium samples could be divided into three distinct types that were not influenced by the delivery method. INTERPRETATION: The distribution patterns of bacterial communities in the meconium, placenta, and foetal membranes were highly similar and had nothing to do with the mode of delivery. For approximately half of the placental microorganisms, the same sequence could be found in the vaginal, rectal, and oral samples of the mother.


Asunto(s)
Parto Obstétrico , Meconio/microbiología , Microbiota , Adulto , Líquido Amniótico/microbiología , Archaea/fisiología , Femenino , Humanos , Recién Nacido , Filogenia , Placenta/microbiología , Embarazo
3.
Biopolymers ; 84(2): 192-204, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16208767

RESUMEN

Cis-trans isomerization of amide bonds plays critical roles in protein molecular recognition, protein folding, protein misfolding, and disease. Aromatic-proline sequences are particularly prone to exhibit cis amide bonds. The roles of residues adjacent to a tyrosine-proline residue pair on cis-trans isomerism were examined. A short series of peptides XYPZ was synthesized and cis-trans isomerism was analyzed. Based on these initial studies, a series of peptides XYPN, X = all 20 canonical amino acids, was synthesized and analyzed by NMR for i residue effects on cis-trans isomerization. The following effects were observed: (a) aromatic residues immediately preceding Tyr-Pro disfavor cis amide bonds, with K(trans/cis)= 5.7-8.0, W > Y > F; (b) proline residues preceding Tyr-Pro lead to multiple species, exhibiting cis-trans isomerization of either or both X-Pro amide bonds; and (c) other residues exhibit similar values of K(trans/cis) (= 2.9-4.2), with Thr and protonated His exhibiting the highest fraction cis. beta-Branched and short polar residues were somewhat more favorable in stabilizing the cis conformation. Phosphorylation of serine at the i position modestly increases the stability of the cis conformer. In addition, the effect of the i+3 residue was examined in a limited series of peptides TYPZ. NMR data indicated that aromatic residues, Pro, Asn, Ala, and Val at the i+3 residue all favor cis amide bonds, with aromatic residues and Asn favoring more compact phi at Tyr(cis) and Ala and Pro favoring more extended phi at Tyr(cis). D-Alanine at the i+3 position particularly disfavors cis amide bonds.


Asunto(s)
Amidas/química , Péptidos/química , Prolina/química , Amidas/análisis , Dipéptidos/análisis , Dipéptidos/química , Dipéptidos/metabolismo , Isomerismo , Resonancia Magnética Nuclear Biomolecular , Péptidos/análisis , Péptidos/síntesis química , Péptidos/metabolismo , Fosforilación , Prolina/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA