Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(8): e18276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38546629

RESUMEN

Histidine triad nucleotide-binding protein 2 (HINT2) is an enzyme found in mitochondria that functions as a nucleotide hydrolase and transferase. Prior studies have demonstrated that HINT2 plays a crucial role in ischemic heart disease, but its importance in cardiac remodelling remains unknown. Therefore, the current study intends to determine the role of HINT2 in cardiac remodelling. HINT2 expression levels were found to be lower in failing hearts and hypertrophy cardiomyocytes. The mice that overexpressed HINT2 exhibited reduced myocyte hypertrophy and cardiac dysfunction in response to stress. In contrast, the deficiency of HINT2 in the heart of mice resulted in a worsening hypertrophic phenotype. Further analysis indicated that upregulated genes were predominantly associated with the oxidative phosphorylation and mitochondrial complex I pathways in HINT2-overexpressed mice after aortic banding (AB) treatment. This suggests that HINT2 increases the expression of NADH dehydrogenase (ubiquinone) flavoprotein (NDUF) genes. In cellular studies, rotenone was used to disrupt mitochondrial complex I, and the protective effect of HINT2 overexpression was nullified. Lastly, we predicted that thyroid hormone receptor beta might regulate HINT2 transcriptional activity. To conclusion, the current study showcased that HINT2 alleviates pressure overload-induced cardiac remodelling by influencing the activity and assembly of mitochondrial complex I. Thus, targeting HINT2 could be a novel therapeutic strategy for reducing cardiac remodelling.


Asunto(s)
Corazón , Remodelación Ventricular , Animales , Ratones , Remodelación Ventricular/genética , Mitocondrias , Hipertrofia , Complejo I de Transporte de Electrón/genética , Nucleótidos , Hidrolasas , Proteínas Mitocondriales/genética
2.
Small ; 20(9): e2307148, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37840441

RESUMEN

From a material design perspective, the incorporation of Fe3 O4 @carbon nanotube (Fe3 O4 @CNT) hybrids is an effective approach for reconciling the contradictions of high shielding and low reflection coefficients, enabling the fabrication of green shielding materials and reducing the secondary electromagnetic wave pollution. However, the installation of Fe3 O4 nanoparticles on nonmodified and nondestructive CNT walls remains a formidable challenge. Herein, a novel strategy for fabricating the above-mentioned Fe3 O4 @CNTs and subsequently assembling segregated Fe3 O4 @CNT networks in natural rubber (NR) matrices is proposed. The advanced and unique structure, magnetism, and lossless conductivity endow the as-obtained Fe3 O4 @CNT/NR with a shielding effectiveness (SE) of 63.8 dB and a low reflection coefficient of 0.24, which indicates a prominent green-shielding capability that surpasses those of previously reported green-shielding materials. Moreover, the specific SE reaches 531 dB cm-1 , exceeding that of those of previously reported carbon/polymer composites. Meanwhile, the outstanding conductivity enables the composite to reach a saturation temperature of ≈95 °C at a driving voltage of 1.5 V with long-term stability. Therefore, the as-fabricated Fe3 O4 @CNT/rubber composites represent an important development in green-shielding materials that are applied in cold environment.

3.
Mol Pharm ; 21(7): 3218-3232, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885477

RESUMEN

Squamous cell carcinoma (SCC) is a common nonmelanoma skin cancer. Radiotherapy plays an integral role in treating SCC due to its characteristics, such as diminished intercellular adhesion, heightened cell migration and invasion capabilities, and immune evasion. These problems lead to inaccurate tumor boundary positioning and radiotherapy tolerance in SCC treatment. Thus, accurate localization and enhanced radiotherapy sensitivity are imperative for effective SCC treatment. To address the existing limitations in SCC therapy, we developed monoglyceride solid lipid nanoparticles (MG SLNs) and enveloped them with the A431 cell membrane (A431 CM) to create A431@MG. The characterization results showed that A431@MG was spherical. Furthermore, A431@MG had specific targeting for A431 cells. In A431 tumor-bearing mice, A431@MG demonstrated prolonged accumulation within tumors, ensuring precise boundary localization of SCC. We further advanced the approach by preparing MG SLNs encapsulating 5-aminolevulinic acid methyl ester (MLA) and desferrioxamine (DFO) with an A431 CM coating to yield A431@MG-MLA/DFO. Several studies have revealed that DFO effectively reduced iron content, impeding protoporphyrin IX (PpIX) biotransformation and promoting PpIX accumulation. Simultaneously, MLA was metabolized into PpIX upon cellular entry. During radiotherapy, the heightened PpIX levels enhanced reactive oxygen species (ROS) generation, inducing DNA and mitochondrial damage and leading to cell apoptosis. In A431 tumor-bearing mice, the A431@MG-MLA/DFO group exhibited notable radiotherapy sensitization, displaying superior tumor growth inhibition. Combining A431@MG-MLA/DFO with radiotherapy significantly improved anticancer efficacy, highlighting its potential to serve as an integrated diagnostic and therapeutic strategy for SCC.


Asunto(s)
Carcinoma de Células Escamosas , Membrana Celular , Nanopartículas , Fármacos Sensibilizantes a Radiaciones , Neoplasias Cutáneas , Animales , Ratones , Nanopartículas/química , Humanos , Línea Celular Tumoral , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/radioterapia , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Membrana Celular/metabolismo , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/administración & dosificación , Lípidos/química , Ensayos Antitumor por Modelo de Xenoinjerto , Deferoxamina/química , Deferoxamina/farmacología , Ratones Desnudos , Femenino , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Liposomas
4.
BMC Cardiovasc Disord ; 24(1): 20, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172674

RESUMEN

OBJECTIVE: This study explored the association between hypertension(HTN) in non-obese children body mass index (BMI) in adulthood. METHODS: A retrospective analysis of 1111 participants from the Bogalusa Heart Study was conducted, in which data on hypertension history during childhood in non-obese children, anthropometric and cardiovascular risk factors and other indicators from cross-sectional examinations in adulthood were collected. BMI was used as both a continuous and a categorical variable, and multivariate linear regression modelling and logistic regression modelling were used. RESULTS: Of the 1111 participants finally enrolled, 40 (3.60%) had HTN during childhood. After adjusting for demographic characteristics, lipid, glucose and insulin levels in childhood, and smoking status, alcohol intake, and disease history as adults, HTN among non-obese children was positively associated with BMI in adulthood (ß = 2.64 kg/m2, 95% CI: 0.88-4.40, P = 0.0033), and the odds of being overweight or obese was 3.71 times higher in the group with a history of hypertension in childhood than those without a history of HTN(95% CI: 1.11-12.46, P = 0.0337). CONCLUSION: Among non-obese children, hypertension is at risk for higher levels of BMI in adulthood. Identifying and controlling blood pressure and childhood may aid in the prevention of adult obesity.


Asunto(s)
Hipertensión , Obesidad , Niño , Adulto , Humanos , Índice de Masa Corporal , Estudios Retrospectivos , Estudios Transversales , Obesidad/diagnóstico , Obesidad/epidemiología , Obesidad/complicaciones , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hipertensión/etiología , Estudios Longitudinales , Factores de Riesgo
5.
Int Orthop ; 47(10): 2585-2589, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37421425

RESUMEN

PURPOSE: To discuss a static and permanent spacer in the treatment of chronic periprosthetic knee infection. Methods In this study, patients who were diagonised with chronic periprosthetic knee infection and not appropriate to undergo revision operations were included and were treated with static and permanent spacers. Infection recurrence rate was recorded, Visual Analogue Scale (VAS) score and Knee Society Score (KSS) were used to record patients' pain and knee function before the operation and at the final follow-up (minimum 24 months). RESULTS: Fifteen patients were identified for this study. Pain and function were significantly improved at the latest follow-up evaluation. One patient had a recurrent infection and underwent amputation. No patients had signs of residual instability at the final follow-up evaluation, and no breakage or subsidence of the antibiotic spacer were identified at the final radiographic follow-up evaluation. CONCLUSION: Our study provided evidence that the static and permanent spacer was a reliable salvage procedure to treat periprosthetic knee infection in compromised patients.

6.
J Exp Bot ; 73(20): 7041-7054, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35781569

RESUMEN

To survive and sustain growth, sessile plants have developed sophisticated internal signalling networks that respond to various external and internal cues. Despite the central roles of nutrient and hormone signaling in plant growth and development, how hormone-driven processes coordinate with metabolic status remains largely enigmatic. Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, hormones, and stress signals to promote growth in all eukaryotes. Inspired by recent comprehensive systems, chemical, genetic, and genomic studies on TOR in plants, this review discusses a potential role of TOR as a 'global positioning system' that directs plant growth and developmental programs both temporally and spatially by integrating dynamic information in the complex nutrient and hormonal signaling networks. We further evaluate and depict the possible functional and mechanistic models for how a single protein kinase, TOR, is able to recognize, integrate, and even distinguish a plethora of positive and negative input signals to execute appropriate and distinct downstream biological processes via multiple partners and effectors.


Asunto(s)
Fenómenos Biológicos , Sirolimus , Sirolimus/metabolismo , Desarrollo de la Planta/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Nutrientes , Hormonas/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(51): 25395-25397, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31792194

RESUMEN

Circadian clocks usually run with a period close to 24 h, but are also plastic and can be entrained by external environmental conditions and internal physiological cues. Two key nutrient metabolites, glucose and vitamin B3 (nicotinamide), can influence the circadian period in both mammals and plants; however, the underlying molecular mechanism is still largely unclear. We reveal that the target of rapamycin (TOR) kinase, a conserved central growth regulator, is essential for glucose- and nicotinamide-mediated control of the circadian period in Arabidopsis Nicotinamide affects the cytosolic adenosine triphosphate concentration, and blocks the effect of glucose-TOR energy signaling on period length adjustment, meristem activation, and root growth. Together, our results uncover a missing link between cellular metabolites, energy status, and circadian period adjustment, and identify TOR kinase as an essential energy sensor to coordinate circadian clock and plant growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos/fisiología , Fosfatidilinositol 3-Quinasas , Transducción de Señal/fisiología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Glucosa/metabolismo , Niacinamida/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología
8.
Phytother Res ; 36(6): 2495-2510, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35445769

RESUMEN

The activation of thermogenic programs in brown adipose tissue (BAT) and white adipose tissue (WAT) provides a promising approach to increasing energy expenditure during obesity and diabetes treatment. Although evidence has been found that rutin activates BAT against obesity and type 2 diabetes mellitus (T2DM), its potential mechanism is not completely understood. In this study, we focused on the potential modulating effect of rutin on short-chain fatty acids (SCFAs) and the thermogenesis of BAT and WAT, aiming to elucidate the molecular mechanism of rutin in the treatment of obesity and T2DM. The results showed that rutin could significantly reduce the body weight and fasting blood glucose, inhibit fat accumulation, relieve hepatic steatosis and ameliorate the disorder of glycolipid metabolism in db/db mice. Moreover, rutin also increased the expression of uncoupling protein 1 (Ucp1) and other thermogenic genes and proteins in BAT and inguinal WAT (IWAT), indicating that rutin activated BAT and induced browning of IWAT. Importantly, rutin markedly enhanced the concentration of SCFAs (acetate, propionate and butyrate) and SCFA-producing enzymes (acetate kinase (ACK), methylmalonyl-CoA decarboxylase (MMD) and butyryl-CoA (BUT)) in feces of db/db mice. In addition, rutin significantly increased the mRNA expression of monocarboxylate transporter 1 (Mct1), catabolic enzyme acyl-CoA medium-chain synthetase 3 (Acsm3), carnitine palmitoyl transferase 1α (Cpt-1α) and Cpt-1ß genes in BAT and IWAT of db/db mice, which is conducive to inducing adipocyte thermogenesis. In summary, our findings revealed that rutin played a variety of regulatory roles in improving glucose and lipid metabolism disorders, reducing hepatic steatosis, inducing browning of IWAT and activating BAT, which has potential therapeutic significance for the treatment of obesity and T2DM. Mechanistically, rutin activates the thermogenesis of BAT and IWAT, which may be associated with increasing the concentration of SCFAs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Tejido Adiposo Pardo , Tejido Adiposo Blanco , Animales , Diabetes Mellitus Tipo 2/complicaciones , Metabolismo Energético , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Rutina/farmacología , Rutina/uso terapéutico , Termogénesis
9.
Can J Physiol Pharmacol ; 96(2): 120-127, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28854341

RESUMEN

Oxidized low-density lipoprotein (ox-LDL)-induced endothelial dysfunction in human vascular endothelial cells contributes to the development of atherosclerosis. E64d, a cysteine protease inhibitor, blocks the elastolytic activity of cathepsin essential for vascular matrix remodeling and reduces neurovascular endothelial apoptosis. The objective of this study was to investigate the effects and the underling mechanisms of E64d on ox-LDL-induced endothelial dysfunction in human aortic endothelial cells (HAECs). HAECs were treated with various concentrations of ox-LDL (0-200 mg/L) for 24 h with or without E64d. The results showed that E64d attenuated ox-LDL-induced increase in soluble intercellular adhesion molecule-1 (sICAM-1) concentration and reduction in endothelial nitric oxide synthase (eNOS) expression, prevented ox-LDL-induced reduction in cell viability and migration ability of HAECs. E64d decreased the protein expression of cathepsin B (CTSB), Beclin 1, and microtubule-associated protein light chain 3 (LC3)-II, but not p62. LC3 puncta and autophagosome formation were also reduced by E64d in HAECs. Moreover, E64d decreased the production of MDA and increased the activity of SOD. The results showed that E64d ameliorated ox-LDL-induced endothelial dysfunction in HAECs.


Asunto(s)
Aorta/patología , Células Endoteliales/patología , Leucina/análogos & derivados , Lipoproteínas LDL/efectos adversos , Autofagia/efectos de los fármacos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Humanos , Leucina/farmacología , Estrés Oxidativo/efectos de los fármacos
10.
BMC Plant Biol ; 14: 390, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25547499

RESUMEN

BACKGROUND: Male sterility is a common phenomenon in flowering plant species, and it has been successfully developed in several crops by taking advantage of heterosis. Using space mutation breeding of upland cotton, a novel photosensitive genetic male sterile (PGMS) mutant was isolated. To take advantage of the PGMS lines in cotton hybrid breeding, it is of great importance to study the molecular mechanisms of its male sterility. RESULTS: Delayed degradation of the PGMS anther tapetum occurred at different developmental stages as shown by analysis of anther cross-sections. To gain detailed insights into the cellular defects that occurred during PGMS pollen development, we used a differential proteomic approach to investigate the protein profiles of mutant and wild-type anthers at the tetrad, uninucleate and binucleate pollen stages. This approach identified 62 differentially expressed protein spots, including 19 associated with energy and metabolic pathways, 7 involved with pollen tube growth, 5 involved with protein metabolism, and 4 involved with pollen wall development. The remaining 27 protein spots were classified into other functional processes, such as protein folding and assembly (5 spots), and stress defense (4 spots). These differentially expressed proteins strikingly affected pollen development in the PGMS mutant anther and resulted in abnormal pollen grain formation, which may be the key reason for its male sterility. CONCLUSIONS: This work represents the first study using comparative proteomics between fertile and PGMS cotton plants to identify PGMS-related proteins. The results demonstrate the presence of a complicated metabolic network in anther development and advance our understanding of the molecular mechanisms of microgamete formation, providing insights into the molecular mechanisms of male sterility.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Gossypium/metabolismo , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Proteómica
11.
Technol Cancer Res Treat ; 23: 15330338241250244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38693842

RESUMEN

Single biofilm biomimetic nanodrug delivery systems based on single cell membranes, such as erythrocytes and cancer cells, have immune evasion ability, good biocompatibility, prolonged blood circulation, and high tumor targeting. Because of the different characteristics and functions of each single cell membrane, more researchers are using various hybrid cell membranes according to their specific needs. This review focuses on several different types of biomimetic nanodrug-delivery systems based on composite biofilms and looks forward to the challenges and possible development directions of biomimetic nanodrug-delivery systems based on composite biofilms to provide reference and ideas for future research.


Asunto(s)
Antineoplásicos , Biopelículas , Biomimética , Sistemas de Liberación de Medicamentos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Biopelículas/efectos de los fármacos , Biomimética/métodos , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Materiales Biomiméticos/química , Animales , Portadores de Fármacos/química
12.
J Microbiol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940992

RESUMEN

Several coprinoid fungi have been identified as promotors of Cremastra appendiculata seed germination, while others appear ineffective. This study aimed to discern which genera within the Psathyrellaceae family exhibit this capability and to identify the most effective coprinoid fungi for the cultivation of C. appendiculata. We collected 21 coprinoid fungi from diverse sources and symbiotically cultured them with C. appendiculata seeds. 9 fungi were found to induce seed germination and support seed development, specifically within the genera Coprinellus, Tulosesus, and Candolleomyces. In contrast, fungi that failed to promote germination predominantly belonged to the genera Coprinopsis and Parasola. Notably, four fungi-Coprinellus xanthothrix, Coprinellus pseudodisseminatus, Psathyrella singeri, and Psathyrella candolleana-were documented for the first time as capable of enhancing C. appendiculata seed germination. Strain 218LXJ-10, identified as Coprinellus radians, demonstrated the most significant effect and has been implemented in large-scale production, underscoring its considerable practical value. These findings contribute vital scientific insights for the conservation and sustainable use of C. appendiculata resources.

13.
Sci Rep ; 14(1): 13145, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849430

RESUMEN

Airway remodelling in lung diseases can be treated by inhibiting excessive smooth muscle cell proliferation. Zedoarondiol (Zed) is a natural compound isolated from the Chinese herb Curcuma longa. The caveolin-1 (CAV-1) is widely expressed in lung cells and plays a key role in platelet-derived growth factor (PDGF) signalling and cell proliferation. This study aims to investigate the effect of Zed on human bronchial smooth muscle cell (HBSMC) proliferation and explore its potential molecular mechanisms. We assessed the effect of Zed on the proliferation of PDGF-stimulated HBSMCs and performed proteomic analysis to identify potential molecular targets and pathways. CAV1 siRNA was used to validate our findings in vitro. In PDGF-stimulated HBSMCs, Zed significantly inhibited excessive proliferation of HBSMCs. Proteomic analysis of zedoarondiol-treated HBSMCs revealed significant enrichment of differentially expressed proteins in cell proliferation-related pathways and biological processes. Zed inhibition of HBSMC proliferation was associated with upregulation of CAV1, regulation of the CAV-1/PDGF pathway and inhibition of MAPK and PI3K/AKT signalling pathway activation. Treatment of HBSMCs with CAV1 siRNA partly reversed the inhibitory effect of Zed on HBSMC proliferation. Thus, this study reveals that zedoarondiol potently inhibits HBSMC proliferation by upregulating CAV-1 expression, highlighting its potential value in airway remodelling and related diseases.


Asunto(s)
Bronquios , Caveolina 1 , Proliferación Celular , Miocitos del Músculo Liso , Factor de Crecimiento Derivado de Plaquetas , Transducción de Señal , Humanos , Caveolina 1/metabolismo , Caveolina 1/genética , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Bronquios/metabolismo , Bronquios/citología , Bronquios/patología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteómica/métodos , Fosfatidilinositol 3-Quinasas/metabolismo , Células Cultivadas
14.
Int J Nanomedicine ; 19: 1487-1508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380147

RESUMEN

Background: Radiation stimulates the secretion of tumor stroma and induces resistance, recurrence, and metastasis of stromal-vascular tumors during radiotherapy. The proliferation and activation of tumor-associated fibroblasts (TAFs) are important reasons for the production of tumor stroma. Telmisartan (Tel) can inhibit the proliferation and activation of TAFs (resting TAFs), which may promote radiosensitization. However, Tel has a poor water solubility. Methods: In this study, self-assembled telmisartan nanoparticles (Tel NPs) were prepared by aqueous solvent diffusion method to solve the insoluble problem of Tel and achieve high drug loading of Tel. Then, erythrocyte membrane (ECM) obtained by hypotonic lysis was coated on the surface of Tel NPs (ECM/Tel) for the achievement of in vivo long circulation and tumor targeting. Immunofluorescence staining, western blot and other biological techniques were used to investigate the effect of ECM/Tel on TAFs activation inhibition (resting effect) and mechanisms involved. The multicellular spheroids (MCSs) model and mouse breast cancer cells (4T1) were constructed to investigate the effect of ECM/Tel on reducing stroma secretion, alleviating hypoxia, and the corresponding promoting radiosensitization effect in vitro. A mouse orthotopic 4T1 breast cancer model was constructed to investigate the radiosensitizing effect of ECM/Tel on inhibiting breast cancer growth and lung metastasis of breast cancer. Results: ECM/Tel showed good physiological stability and tumor-targeting ability. ECM/Tel could rest TAFs and reduce stroma secretion, alleviate hypoxia, and enhance penetration in tumor microenvironment. In addition, ECM/Tel arrested the cell cycle of 4T1 cells to the radiosensitive G2/M phase. In mouse orthotopic 4T1 breast cancer model, ECM/Tel played a superior role in radiosensitization and significantly inhibited lung metastasis of breast cancer. Conclusion: ECM/Tel showed synergistical radiosensitization effect on both the tumor microenvironment and tumor cells, which is a promising radiosensitizer in the radiotherapy of stroma-vascular tumors.


Asunto(s)
Neoplasias Pulmonares , Neoplasias Vasculares , Ratones , Animales , Telmisartán/farmacología , Telmisartán/uso terapéutico , Membrana Eritrocítica , Neoplasias Pulmonares/tratamiento farmacológico , Tolerancia a Radiación , Hipoxia , Línea Celular Tumoral , Microambiente Tumoral
15.
Int J Biol Macromol ; 275(Pt 2): 133724, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977054

RESUMEN

Cellulose papers (CPs) possess a pore structure, rendering them ideal precursors for carbon scaffolds because of their renewability. However, achieving a tradeoff between high electromagnetic shielding effectiveness and low reflection coefficient poses a tremendous challenge for CP-based carbon scaffolds. To meet the challenge, leveraging the synergistic effect of gravity and evaporation dynamics, laminar CP-based carbon scaffolds with a bidirectional gradient distribution of Fe3O4 nanoparticles were fabricated via immersion, drying, and carbonization processes. The resulting carbon scaffold, owing to the bidirectional gradient structure of magnetic nanoparticles and unique laminar arrangement, exhibited excellent in-plane electrical conductivity (96.3 S/m), superior electromagnetic shielding efficiency (1805.9 dB/cm2 g), low reflection coefficients (0.23), and a high green index (gs, 3.38), suggesting its green shielding capabilities. Furthermore, the laminar structure conferred upon the resultant carbon scaffold a surprisingly anisotropic thermal conductivity, with an in-plane thermal conductivity of 1.73 W/m K compared to a through-plane value of only 0.07 W/m K, confirming the integration of thermal insulation and thermal management functionalities. These green electromagnetic interference shielding materials, coupled with thermal insulation and thermal management properties, hold promising prospects for applications in sensitive devices.

16.
BMC Complement Altern Med ; 13: 152, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23815892

RESUMEN

BACKGROUND: Formaldehyde can induce misfolding and aggregation of Tau protein and ß amyloid protein, which are characteristic pathological features of Alzheimer's disease (AD). An increase in endogenous formaldehyde concentration in the brain is closely related to dementia in aging people. Therefore, the discovery of effective drugs to counteract the adverse impact of formaldehyde on neuronal cells is beneficial for the development of appropriate treatments for age-associated cognitive decline. METHODS: In this study, we assessed the neuroprotective properties of TongLuoJiuNao (TLJN), a traditional Chinese medicine preparation, against formaldehyde stress in human neuroblastoma cells (SH-SY5Y cell line). The effect of TLJN and its main ingredients (geniposide and ginsenoside Rg1) on cell viability, apoptosis, intracellular antioxidant activity and the expression of apoptotic-related genes in the presence of formaldehyde were monitored. RESULTS: Cell counting studies showed that in the presence of TLJN, the viability of formaldehyde-treated SH-SY5Y cells significantly recovered. Laser scanning confocal microscopy revealed that the morphology of formaldehyde-injured cells was rescued by TLJN and geniposide, an effective ingredient of TLJN. Moreover, the inhibitory effect of geniposide on formaldehyde-induced apoptosis was dose-dependent. The activity of intracellular antioxidants (superoxide dismutase and glutathione peroxidase) increased, as did mRNA and protein levels of the antiapoptotic gene Bcl-2 after the addition of geniposide. In contrast, the expression of the apoptotic-related gene - P53, apoptotic executer - caspase 3 and apoptotic initiator - caspase 9 were downregulated after geniposide treatment. CONCLUSIONS: Our results indicate that geniposide can protect SH-SY5Y cells against formaldehyde stress through modulating the expression of Bcl-2, P53, caspase 3 and caspase 9, and by increasing the activity of intracellular superoxide dismutase and glutathione peroxidase.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Formaldehído/metabolismo , Iridoides/farmacología , Neuroblastoma/metabolismo , Fármacos Neuroprotectores/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Línea Celular Tumoral , Humanos , Neuroblastoma/genética , Neuroblastoma/fisiopatología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
17.
Molecules ; 18(4): 4628-39, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23603946

RESUMEN

We report here the preparation of asymmetrical phthalocyanine dimers 1a-3a, which are endowed with novel charge transfer bands at 1,151-1,154 nm and strong NIR luminescences at 840-860 nm and 1,600-1,650 nm. Through H-bonding interaction, 1a-3a are inclined to self-assemble into hexrod nanotubes at the interface of CHCl3 and CH3H. Our results provide further insights into the interaction in molecular dimers, and suggest that 1a-3a have potential application in magnets and supramolecular architectures.


Asunto(s)
Indoles/química , Enlace de Hidrógeno , Indoles/síntesis química , Isoindoles , Fenómenos Magnéticos , Estructura Molecular , Nanotubos/química , Resonancia Magnética Nuclear Biomolecular , Polímeros/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectroscopía Infrarroja Corta
18.
Artículo en Inglés | MEDLINE | ID: mdl-35341143

RESUMEN

Objectives: The purpose of this study was to investigate the influence of Tai Chi on cardiorespiratory fitness (CRF) in elderly people using meta-analysis. Methods: This study used seven electronic databases and data retrieved from randomized controlled trials (RCTs) investigating the role of Tai Chi on CRF in the elderly. All these 24 RCTs were screened and selected from 7 literature databases. The Stata 11.2 software (StataCorp, USA) was used for the meta-analysis, subgroup analysis, and bias test, while the Cochrane Collaboration's tool was used for the assessment of the risk of bias (RoB). 4 researchers independently participated in sample selection, data extraction, and RoB assessment. Results: Following the inclusion criteria, 24 eligible studies were included in our analysis. The meta-analysis indicated that Tai Chi practice significantly increased the maximum rate of oxygen consumption (VO2 max) (weighted mean difference (WMD) = 3.76, 95% CI: 1.25 to 6.26, P < 0.1), leading to an overall reduction in the heart rate (HR) (WMD = -1.84, 95% CI: -2.04 to -1.63, P ≤ 0.001) and an increase in the O2 pulse (WMD = 0.94, 95% CI: 0.60 to 1.28, P ≤ 0.001) in individuals who practiced Tai Chi regularly compared with those who did not. The subgroup analysis suggested that overall in those who practiced Tai Chi, males (WMD = 1.48, 95% CI: 0.85 to 2.12, P ≤ 0.001) had higher O2 pulse than females (WMD = 0.73, 95% CI: 0.33 to 1.12, P ≤ 0.001). The subgroup analysis also showed an increase in the vital capacity (VC) (WMD = 316.05, 95% CI: 239.74 to 392.35, P ≤ 0.001) in individuals practicing Tai Chi. When the samples were further stratified by Tai Chi practicing time, the subgroup analysis suggested that individuals practicing Tai Chi over a period of 24 weeks showed no significant difference in VC (WMD = 82.95, 95% CI: -98.34 to 264.23, P=0.370), while those practicing Tai Chi over a period of 48 weeks showed a significant increase (WMD = 416.62, 95% CI: 280.68 to 552.56, P ≤ 0.001). Furthermore, the subgroup analysis demonstrated that the increase in VC is significantly correlated with the Tai Chi practicing time (WMD = 344.97, 95% CI: 227.88 to 442.06, P ≤ 0.001). Conclusion: Regular Tai Chi practice could improve the CRF in the elderly, as indicated by significant improvement in indicators including VO2 max, O2 pulse, VC, and HR. However, gender and practice time might influence the overall beneficial outcomes.

19.
Artículo en Inglés | MEDLINE | ID: mdl-35845591

RESUMEN

The incidence of liver-related complications in type 2 diabetes mellitus (T2DM) is rapidly increasing, which affects the physical and mental health of T2DM patients. Mulberry leaf flavonoids (MLF) were confirmed to have certain effects on lowering blood glucose and anti-inflammation. In this study, the high-fat diet (HFD) + STZ method was used to establish T2DM rat model and the MLF was administered by gavage for eight weeks. During the experiment, body weight and blood glucose level were measured at different time points. The pathological changes of rat liver were observed by H&E staining. The serum glucolipid metabolic indicators of serum, fasting insulin (FINS), and inflammatory factors levels were detected by ELISA. The expression levels of toll-like receptor 4 (TLR4), TNF receptor-associated factor 6 (TRAF6), myeloid differentiation factor 88 (MyD88), inhibitor of NF-κB alpha (IκΒα), p-IκΒα, and nuclear factor kappa-B (NF-κB)/p65 protein in liver tissue were measured by Western Blot. After 8 weeks' MLF treatment, the blood glucose of rats showed a downward trend; glycolipid metabolism level and insulin resistance were improved, which suggested that MLF could improve the disorder of glucose and lipid metabolism. The pathological damage and inflammation of the liver in T2DM rats were significantly improved, the levels of related serum inflammatory factors were reduced, and the expression of liver tissue-related proteins was downregulated. Our results indicated that MLF could reduce blood glucose and inhibit the development of liver inflammation. The mechanisms may be associated with the activation of TLR4/MyD88/NF-κB signal pathway to reduce the levels of inflammatory factors in serum.

20.
J Proteome Res ; 10(12): 5416-32, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22029526

RESUMEN

To better understand nitric oxide (NO) responsive proteins, we investigated the proteomic differences between untreated (control), sodium nitroprusside (SNP) treated, and carboxy-PTIO potassium salt (cPTIO, NO scavenger) followed by SNP treated cotton plants. This is the first study to examine the effect of different concentrations of NO on the leaf proteome in cotton using a label-free approach based on nanoscale ultraperformance liquid chromatography-electrospray ionization (ESI)-low/high-collision energy MS analysis (MS(E)). One-hundred and sixty-six differentially expressed proteins were identified. Forty-seven of these proteins were upregulated, 82 were downregulated, and 37 were expressed specifically under different conditions. The 166 proteins were functionally divided into 17 groups and localized to chloroplast, Golgi apparatus, cytoplasm, and so forth. The pathway analysis demonstrated that NO is involved in various physiological activities and has a distinct influence on carbon fixation in photosynthetic organisms and photosynthesis. In addition, this is the first time proteins involved in ethylene synthesis were identified to be regulated by NO. The characterization of these protein networks provides a better understanding of the possible regulation mechanisms of cellular activities occurring in the NO-treated cotton leaves and offers new insights into NO responses in plants.


Asunto(s)
Gossypium/efectos de los fármacos , Óxido Nítrico/farmacología , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/análisis , Benzoatos/farmacología , Clorofila/química , Cloroplastos/química , Citoplasma/química , Bases de Datos de Proteínas , Etilenos/química , Regulación de la Expresión Génica de las Plantas , Aparato de Golgi/química , Gossypium/química , Gossypium/enzimología , Gossypium/genética , Imidazoles/farmacología , Nitroprusiato/farmacología , Fotosíntesis , Hojas de la Planta/química , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Biosíntesis de Proteínas , Proteoma/análisis , Proteoma/química , Proteómica/métodos , Semillas/química , Semillas/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA