Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 31(13): 1325-1338, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794185

RESUMEN

Deciphering the fundamental mechanisms controlling cardiac specification is critical for our understanding of how heart formation is initiated during embryonic development and for applying stem cell biology to regenerative medicine and disease modeling. Using systematic and unbiased functional screening approaches, we discovered that the Id family of helix-loop-helix proteins is both necessary and sufficient to direct cardiac mesoderm formation in frog embryos and human embryonic stem cells. Mechanistically, Id proteins specify cardiac cell fate by repressing two inhibitors of cardiogenic mesoderm formation-Tcf3 and Foxa2-and activating inducers Evx1, Grrp1, and Mesp1. Most importantly, CRISPR/Cas9-mediated ablation of the entire Id (Id1-4) family in mouse embryos leads to failure of anterior cardiac progenitor specification and the development of heartless embryos. Thus, Id proteins play a central and evolutionarily conserved role during heart formation and provide a novel means to efficiently produce cardiovascular progenitors for regenerative medicine and drug discovery applications.


Asunto(s)
Linaje de la Célula/genética , Corazón/embriología , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Organogénesis/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Línea Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Edición Génica , Regulación del Desarrollo de la Expresión Génica/genética , Cardiopatías Congénitas/genética , Humanos , Mesodermo/citología , Mesodermo/fisiología , Ratones , Mutación , Semillas , Xenopus laevis/embriología
2.
PLoS Genet ; 16(9): e1009000, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32925938

RESUMEN

Dilated cardiomyopathy (DCM) is a common cause of heart failure and sudden cardiac death. It has been estimated that up to half of DCM cases are hereditary. Mutations in more than 50 genes, primarily autosomal dominant, have been reported. Although rare, recessive mutations are thought to contribute considerably to DCM, especially in young children. Here we identified a novel recessive mutation in the striated muscle enriched protein kinase (SPEG, p. E1680K) gene in a family with nonsyndromic, early onset DCM. To ascertain the pathogenicity of this mutation, we generated SPEG E1680K homozygous mutant human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) using CRISPR/Cas9-mediated genome editing. Functional studies in mutant iPSC-CMs showed aberrant calcium homeostasis, impaired contractility, and sarcomeric disorganization, recapitulating the hallmarks of DCM. By combining genetic analysis with human iPSCs, genome editing, and functional assays, we identified SPEG E1680K as a novel mutation associated with early onset DCM and provide evidence for its pathogenicity in vitro. Our study provides a conceptual paradigm for establishing genotype-phenotype associations in DCM with autosomal recessive inheritance.


Asunto(s)
Cardiomiopatía Dilatada/genética , Proteínas Musculares/genética , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Edad de Inicio , Calcio/metabolismo , Cardiomiopatía Dilatada/etiología , Células Cultivadas , Niño , Preescolar , Femenino , Edición Génica , Genes Recesivos , Proteínas de Choque Térmico , Homocigoto , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Lactante , Masculino , Proteínas Musculares/metabolismo , Mutación , Contracción Miocárdica , Miocitos Cardíacos/patología , Linaje , Fragmentos de Péptidos , Proteínas Serina-Treonina Quinasas/metabolismo , Secuenciación del Exoma
3.
Eur Heart J ; 43(36): 3477-3489, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35728000

RESUMEN

AIMS: Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS: Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS: A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.


Asunto(s)
Cardiomiopatía Dilatada , Terapia Molecular Dirigida , Miocitos Cardíacos , Inhibidores de Proteínas Quinasas , Serina , Troponina T , Factor de Transcripción Activador 4/metabolismo , Adenosina Trifosfato/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Carbazoles/farmacología , Carbazoles/uso terapéutico , Cardiomiopatía Dilatada/tratamiento farmacológico , Cardiomiopatía Dilatada/genética , Evaluación Preclínica de Medicamentos/métodos , Glucosa/metabolismo , Glicina/biosíntesis , Glicina/genética , Humanos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Células Madre Pluripotentes Inducidas/fisiología , Mutación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Fosfoglicerato-Deshidrogenasa/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Serina/antagonistas & inhibidores , Serina/biosíntesis , Serina/genética , Troponina T/genética , Troponina T/metabolismo
4.
Circulation ; 144(5): 382-392, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33928785

RESUMEN

BACKGROUND: Phospholamban (PLN) is a critical regulator of calcium cycling and contractility in the heart. The loss of arginine at position 14 in PLN (R14del) is associated with dilated cardiomyopathy with a high prevalence of ventricular arrhythmias. How the R14 deletion causes dilated cardiomyopathy is poorly understood, and there are no disease-specific therapies. METHODS: We used single-cell RNA sequencing to uncover PLN R14del disease mechanisms in human induced pluripotent stem cells (hiPSC-CMs). We used both 2-dimensional and 3-dimensional functional contractility assays to evaluate the impact of modulating disease-relevant pathways in PLN R14del hiPSC-CMs. RESULTS: Modeling of the PLN R14del cardiomyopathy with isogenic pairs of hiPSC-CMs recapitulated the contractile deficit associated with the disease in vitro. Single-cell RNA sequencing revealed the induction of the unfolded protein response (UPR) pathway in PLN R14del compared with isogenic control hiPSC-CMs. The activation of UPR was also evident in the hearts from PLN R14del patients. Silencing of each of the 3 main UPR signaling branches (IRE1, ATF6, or PERK) by siRNA exacerbated the contractile dysfunction of PLN R14del hiPSC-CMs. We explored the therapeutic potential of activating the UPR with a small molecule activator, BiP (binding immunoglobulin protein) inducer X. PLN R14del hiPSC-CMs treated with BiP protein inducer X showed a dose-dependent amelioration of the contractility deficit in both 2-dimensional cultures and 3-dimensional engineered heart tissues without affecting calcium homeostasis. CONCLUSIONS: Together, these findings suggest that the UPR exerts a protective effect in the setting of PLN R14del cardiomyopathy and that modulation of the UPR might be exploited therapeutically.


Asunto(s)
Proteínas de Unión al Calcio/genética , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Susceptibilidad a Enfermedades , Eliminación de Secuencia , Respuesta de Proteína Desplegada , Adaptación Fisiológica , Biomarcadores , Cardiomiopatías/diagnóstico , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Manejo de la Enfermedad , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Terapia Molecular Dirigida , Contracción Miocárdica/efectos de los fármacos , Análisis de la Célula Individual , Transcriptoma
5.
Circ Res ; 126(10): e80-e96, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32134364

RESUMEN

RATIONALE: Diabetes mellitus is a complex, multisystem disease, affecting large populations worldwide. Chronic CaMKII (Ca2+/calmodulin-dependent kinase II) activation may occur in diabetes mellitus and be arrhythmogenic. Diabetic hyperglycemia was shown to activate CaMKII by (1) O-linked attachment of N-acetylglucosamine (O-GlcNAc) at S280 leading to arrhythmia and (2) a reactive oxygen species (ROS)-mediated oxidation of CaMKII that can increase postinfarction mortality. OBJECTIVE: To test whether high extracellular glucose (Hi-Glu) promotes ventricular myocyte ROS generation and the role played by CaMKII. METHODS AND RESULTS: We tested how extracellular Hi-Glu influences ROS production in adult ventricular myocytes, using DCF (2',7'-dichlorodihydrofluorescein diacetate) and genetically targeted Grx-roGFP2 redox sensors. Hi-Glu (30 mmol/L) significantly increased the rate of ROS generation-an effect prevented in myocytes pretreated with CaMKII inhibitor KN-93 or from either global or cardiac-specific CaMKIIδ KO (knockout) mice. CaMKII KO or inhibition also prevented Hi-Glu-induced sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks). Thus, CaMKII activation is required for Hi-Glu-induced ROS generation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes. To test the involvement of O-GlcNAc-CaMKII pathway, we inhibited GlcNAcylation removal by Thiamet G (ThmG), which mimicked the Hi-Glu-induced ROS production. Conversely, inhibition of GlcNAcylation (OSMI-1 [(αR)-α-[[(1,2-dihydro-2-oxo-6-quinolinyl)sulfonyl]amino]-N-(2-furanylmethyl)-2-methoxy-N-(2-thienylmethyl)-benzeneacetamide]) prevented ROS induction in response to either Hi-Glu or ThmG. Moreover, in a CRSPR-based knock-in mouse in which the functional GlcNAcylation site on CaMKIIδ was ablated (S280A), neither Hi-Glu nor ThmG induced myocyte ROS generation. So CaMKIIδ-S280 is required for the Hi-Glu-induced (and GlcNAc dependent) ROS production. To identify the ROS source(s), we used different inhibitors of NOX (NADPH oxidase) 2 (Gp91ds-tat peptide), NOX4 (GKT137831), mitochondrial ROS (MitoTempo), and NOS (NO synthase) pathway inhibitors (L-NAME, L-NIO, and L-NPA). Only NOX2 inhibition or KO prevented Hi-Glu/ThmG-induced ROS generation. CONCLUSIONS: Diabetic hyperglycemia induces acute cardiac myocyte ROS production by NOX2 that requires O-GlcNAcylation of CaMKIIδ at S280. This novel ROS induction may exacerbate pathological consequences of diabetic hyperglycemia.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomiopatías Diabéticas/etiología , Glucosa/toxicidad , Hiperglucemia/complicaciones , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/deficiencia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Células Cultivadas , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/fisiopatología , Activación Enzimática , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glicosilación , Humanos , Hiperglucemia/enzimología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/enzimología , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/enzimología , NADPH Oxidasa 2/deficiencia , NADPH Oxidasa 2/genética , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/enzimología
6.
Eur Heart J ; 42(28): 2780-2792, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34104945

RESUMEN

AIMS: Increased shedding of extracellular vesicles (EVs)-small, lipid bilayer-delimited particles with a role in paracrine signalling-has been associated with human pathologies, e.g. atherosclerosis, but whether this is true for cardiac diseases is unknown. METHODS AND RESULTS: Here, we used the surface antigen CD172a as a specific marker of cardiomyocyte (CM)-derived EVs; the CM origin of CD172a+ EVs was supported by their content of cardiac-specific proteins and heart-enriched microRNAs. We found that patients with aortic stenosis, ischaemic heart disease, or cardiomyopathy had higher circulating CD172a+ cardiac EV counts than did healthy subjects. Cellular stress was a major determinant of EV release from CMs, with hypoxia increasing shedding in in vitro and in vivo experiments. At the functional level, EVs isolated from the supernatant of CMs derived from human-induced pluripotent stem cells and cultured in a hypoxic atmosphere elicited a positive inotropic response in unstressed CMs, an effect we found to be dependent on an increase in the number of EVs expressing ceramide on their surface. Of potential clinical relevance, aortic stenosis patients with the highest counts of circulating cardiac CD172a+ EVs had a more favourable prognosis for transcatheter aortic valve replacement than those with lower counts. CONCLUSION: We identified circulating CD172a+ EVs as cardiac derived, showing their release and function and providing evidence for their prognostic potential in aortic stenosis patients.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Infarto del Miocardio , Humanos , Hipoxia , Miocardio , Miocitos Cardíacos
7.
Genes Dev ; 28(8): 841-57, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24682306

RESUMEN

Fibro-adipogenic progenitors (FAPs) are important components of the skeletal muscle regenerative environment. Whether FAPs support muscle regeneration or promote fibro-adipogenic degeneration is emerging as a key determinant in the pathogenesis of muscular diseases, including Duchenne muscular dystrophy (DMD). However, the molecular mechanism that controls FAP lineage commitment and activity is currently unknown. We show here that an HDAC-myomiR-BAF60 variant network regulates the fate of FAPs in dystrophic muscles of mdx mice. Combinatorial analysis of gene expression microarray, genome-wide chromatin remodeling by nuclease accessibility (NA) combined with next-generation sequencing (NA-seq), small RNA sequencing (RNA-seq), and microRNA (miR) high-throughput screening (HTS) against SWI/SNF BAF60 variants revealed that HDAC inhibitors (HDACis) derepress a "latent" myogenic program in FAPs from dystrophic muscles at early stages of disease. Specifically, HDAC inhibition induces two core components of the myogenic transcriptional machinery, MYOD and BAF60C, and up-regulates the myogenic miRs (myomiRs) (miR-1.2, miR-133, and miR-206), which target the alternative BAF60 variants BAF60A and BAF60B, ultimately directing promyogenic differentiation while suppressing the fibro-adipogenic phenotype. In contrast, FAPs from late stage dystrophic muscles are resistant to HDACi-induced chromatin remodeling at myogenic loci and fail to activate the promyogenic phenotype. These results reveal a previously unappreciated disease stage-specific bipotency of mesenchimal cells within the regenerative environment of dystrophic muscles. Resolution of such bipotency by epigenetic intervention with HDACis provides a molecular rationale for the in situ reprogramming of target cells to promote therapeutic regeneration of dystrophic muscles.


Asunto(s)
Histona Desacetilasas/metabolismo , MicroARNs/metabolismo , Músculo Esquelético/fisiología , Distrofias Musculares/genética , Distrofias Musculares/fisiopatología , Células Madre/metabolismo , Animales , Reprogramación Celular/genética , Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Ácidos Hidroxámicos/farmacología , Ratones , Ratones Endogámicos mdx , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
8.
Basic Res Cardiol ; 116(1): 58, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34648073

RESUMEN

Cardiomyocyte Na+ and Ca2+ mishandling, upregulated Ca2+/calmodulin-dependent kinase II (CaMKII), and increased reactive oxygen species (ROS) are characteristics of various heart diseases, including heart failure (HF), long QT (LQT) syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). These changes may form a vicious cycle of positive feedback to promote cardiac dysfunction and arrhythmias. In HF rabbit cardiomyocytes investigated in this study, the inhibition of CaMKII, late Na+ current (INaL), and leaky ryanodine receptors (RyRs) all attenuated the prolongation and increased short-term variability (STV) of action potential duration (APD), but in age-matched controls these inhibitors had no or minimal effects. In control cardiomyocytes, we enhanced RyR leak (by low [caffeine] plus isoproterenol mimicking CPVT) which markedly increased STV and delayed afterdepolarizations (DADs). These proarrhythmic changes were significantly attenuated by both CaMKII inhibition and mitochondrial ROS scavenging, with a slight synergy with INaL inhibition. Inducing LQT by elevating INaL (by Anemone toxin II, ATX-II) caused markedly prolonged APD, increased STV, and early afterdepolarizations (EADs). Those proarrhythmic ATX-II effects were largely attenuated by mitochondrial ROS scavenging, and partially reduced by inhibition of CaMKII and pathological leaky RyRs using dantrolene. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) bearing LQT3 mutation SCN5A N406K, dantrolene significantly attenuated cell arrhythmias and APD prolongation. Targeting critical components of the Na+-Ca2+-CaMKII-ROS-INaL arrhythmogenic vicious cycle may exhibit important on-target and also trans-target effects (e.g., INaL and RyR inhibition can alter INaL-mediated LQT3 effects). Incorporating this vicious cycle into therapeutic strategies provides novel integrated insight for treating cardiac arrhythmias and diseases.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Células Madre Pluripotentes Inducidas , Potenciales de Acción , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Embarazo , Conejos , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina
9.
Basic Res Cardiol ; 116(1): 19, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742276

RESUMEN

Endogenous capability of the post-mitotic human heart holds great promise to restore the injured myocardium. Recent evidence indicates that the extracellular vesicles (EVs) regulate cardiac homeostasis and regeneration. Here, we investigated the molecular mechanism of EVs for self-repair. We isolated EVs from human iPSC-derived cardiomyocytes (iCMs), which were exposed to hypoxic (hEVs) and normoxic conditions (nEVs), and examined their roles in in vitro and in vivo models of cardiac injury. hEV treatment significantly improved the viability of hypoxic iCMs in vitro and cardiac function of severely injured murine myocardium in vivo. Microarray analysis of the EVs revealed significantly enriched expression of the miR-106a-363 cluster (miR cluster) in hEVs vs. nEVs. This miR cluster preserved survival and contractility of hypoxia-injured iCMs and maintained murine left-ventricular (LV) chamber size, improved LV ejection fraction, and reduced myocardial fibrosis of the injured myocardium. RNA-Seq analysis identified Jag1-Notch3-Hes1 as a target intracellular pathway of the miR cluster. Moreover, the study found that the cell cycle activator and cytokinesis genes were significantly up-regulated in the iCMs treated with miR cluster and Notch3 siRNA. Together, these results suggested that the miR cluster in the EVs stimulated cardiomyocyte cell cycle re-entry by repressing Notch3 to induce cell proliferation and augment myocardial self-repair. The miR cluster may represent an effective therapeutic approach for ischemic cardiomyopathy.


Asunto(s)
Proliferación Celular , Vesículas Extracelulares/trasplante , Células Madre Pluripotentes Inducidas/trasplante , MicroARNs/metabolismo , Infarto del Miocardio/cirugía , Miocitos Cardíacos/metabolismo , Receptor Notch3/metabolismo , Regeneración , Animales , Hipoxia de la Célula , Línea Celular , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones SCID , MicroARNs/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Receptor Notch3/genética , Recuperación de la Función , Transducción de Señal , Función Ventricular Izquierda
10.
J Hum Genet ; 66(11): 1127-1137, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34099864

RESUMEN

MicroRNAs (miRNAs) regulate diverse cancer hallmarks through sequence-specific regulation of gene expression, so genetic variability in their seed sequences or target sites could be responsible for cancer initiation or progression. While several efforts have been made to predict the locations of single nucleotide variants (SNVs) at miRNA target sites and associate them with cancer risk and susceptibility, there have been few direct assessments of SNVs in both mature miRNAs and their target sites to assess their impact on miRNA function in cancers. Using genome-wide target capture of miRNAs and miRNA-binding sites followed by deep sequencing in prostate cancer cell lines, here we identified prostate cancer-specific SNVs in mature miRNAs and their target binding sites. SNV rs9860655 in the mature sequence of miR-570 was not present in benign prostate hyperplasia (BPH) tissue or cell lines but was detectable in clinical prostate cancer tissue samples and adjacent normal tissue. SLC45A3 (prostein), a putative oncogene target of miR-1178, was highly upregulated in PC3 cells harboring an miR-1178 seed sequence SNV. Finally, systematic assessment of losses and gains of miRNA targets through 3'UTR SNVs revealed SNV-associated changes in target oncogene and tumor suppressor gene expression that might be associated with prostate carcinogenesis. Further work is required to systematically assess the functional effects of miRNA SNVs.


Asunto(s)
Carcinogénesis/genética , MicroARNs/genética , Proteínas de Transporte de Monosacáridos/genética , Neoplasias de la Próstata/genética , Sitios de Unión/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Neoplasias de la Próstata/patología , Proteínas de Unión al ARN/genética
11.
Bioorg Med Chem Lett ; 46: 128162, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34062251

RESUMEN

In the United States, approximately one million individuals are hospitalized every year for arrhythmias, making arrhythmias one of the top causes of healthcare expenditures. Mexiletine is currently used as an antiarrhythmic drug but has limitations. The purpose of this work was to use normal and Long QT syndrome Type 3 (LQTS3) patient-derived human induced pluripotent stem cell (iPSC)-derived cardiomyocytes to identify an analog of mexiletine with superior drug-like properties. Compared to racemic mexiletine, medicinal chemistry optimization of substituted racemic pyridyl phenyl mexiletine analogs resulted in a more potent sodium channel inhibitor with greater selectivity for the sodium over the potassium channel and for late over peak sodium current.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco/patología , Células Madre Pluripotentes Inducidas/química , Síndrome de QT Prolongado/patología , Mexiletine/farmacología , Miocitos Cardíacos/patología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Piridinas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Mexiletine/química , Estructura Molecular , Piridinas/química , Relación Estructura-Actividad
12.
Nature ; 525(7570): 479-85, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26375005

RESUMEN

The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans.


Asunto(s)
Proteínas Relacionadas con la Folistatina/metabolismo , Miocardio/metabolismo , Pericardio/crecimiento & desarrollo , Pericardio/metabolismo , Regeneración , Animales , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Femenino , Proteínas Relacionadas con la Folistatina/genética , Humanos , Masculino , Ratones , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/efectos de los fármacos , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Pericardio/citología , Pericardio/efectos de los fármacos , Ratas , Regeneración/efectos de los fármacos , Transducción de Señal , Porcinos , Transgenes/genética
13.
Genes Dev ; 27(21): 2332-44, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24186978

RESUMEN

A critical but molecularly uncharacterized step in heart formation and regeneration is the process that commits progenitor cells to differentiate into cardiomyocytes. Here, we show that the endoderm-derived dual Nodal/bone morphogenetic protein (BMP) antagonist Cerberus-1 (Cer1) in embryonic stem cell cultures orchestrates two signaling pathways that direct the SWI/SNF chromatin remodeling complex to cardiomyogenic loci in multipotent (KDR/Flk1+) progenitors, activating lineage-specific transcription. Transient inhibition of Nodal by Cer1 induces Brahma-associated factor 60c (Baf60c), one of three Baf60 variants (a, b, and c) that are mutually exclusively assembled into SWI/SNF. Blocking Nodal and BMP also induces lineage-specific transcription factors Gata4 and Tbx5, which interact with Baf60c. siRNA to Cer1, Baf60c, or the catalytic SWI/SNF subunit Brg1 prevented the developmental opening of chromatin surrounding the Nkx2.5 early cardiac enhancer and cardiomyocyte differentiation. Overexpression of Baf60c fully rescued these deficits, positioning Baf60c and SWI/SNF function downstream from Cer1. Thus, antagonism of Nodal and BMP coordinates induction of the myogenic Baf60c variant and interacting transcription factors to program the developmental opening of cardiomyocyte-specific loci in chromatin. This is the first demonstration that cues from the progenitor cell environment direct the subunit variant composition of SWI/SNF to remodel the transcriptional landscape for lineage-specific differentiation.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Miocitos Cardíacos/citología , Proteína Nodal/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Células Cultivadas , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona , Citocinas/genética , Citocinas/metabolismo , Endodermo/metabolismo , Perfilación de la Expresión Génica , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Proteína Nodal/genética , ARN Interferente Pequeño/metabolismo , Células Madre/citología , Células Madre/metabolismo
14.
Circulation ; 139(6): 799-811, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30586709

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in myosin-binding protein C3 ( MYBPC3) resulting in a premature termination codon (PTC). The underlying mechanisms of how PTC mutations in MYBPC3 lead to the onset and progression of HCM are poorly understood. This study's aim was to investigate the molecular mechanisms underlying the pathogenesis of HCM associated with MYBPC3 PTC mutations by utilizing human isogenic induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS: Isogenic iPSC lines were generated from HCM patients harboring MYBPC3 PTC mutations (p.R943x; p.R1073P_Fsx4) using genome editing. Comprehensive phenotypic and transcriptome analyses were performed in the iPSC-CMs. RESULTS: We observed aberrant calcium handling properties with prolonged decay kinetics and elevated diastolic calcium levels in the absence of structural abnormalities or contracile dysfunction in HCM iPSC-CMs as compared to isogenic controls. The mRNA expression levels of MYBPC3 were significantly reduced in mutant iPSC-CMs, but the protein levels were comparable among isogenic iPSC-CMs, suggesting that haploinsufficiency of MYBPC3 does not contribute to the pathogenesis of HCM in vitro. Furthermore, truncated MYBPC3 peptides were not detected. At the molecular level, the nonsense-mediated decay pathway was activated, and a set of genes involved in major cardiac signaling pathways was dysregulated in HCM iPSC-CMs, indicating an HCM gene signature in vitro. Specific inhibition of the nonsense-mediated decay pathway in mutant iPSC-CMs resulted in reversal of the molecular phenotype and normalization of calcium-handling abnormalities. CONCLUSIONS: iPSC-CMs carrying MYBPC3 PTC mutations displayed aberrant calcium signaling and molecular dysregulations in the absence of significant haploinsufficiency of MYBPC3 protein. Here we provided the first evidence of the direct connection between the chronically activated nonsense-mediated decay pathway and HCM disease development.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , Codón sin Sentido/genética , Mutación/genética , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/fisiología , ARN Mensajero/genética , Señalización del Calcio , Diferenciación Celular , Línea Celular , Progresión de la Enfermedad , Edición Génica , Perfilación de la Expresión Génica , Haploinsuficiencia , Humanos
15.
Nature ; 508(7497): 531-5, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24670661

RESUMEN

Heart failure is characterized by a debilitating decline in cardiac function, and recent clinical trial results indicate that improving the contractility of heart muscle cells by boosting intracellular calcium handling might be an effective therapy. MicroRNAs (miRNAs) are dysregulated in heart failure but whether they control contractility or constitute therapeutic targets remains speculative. Using high-throughput functional screening of the human microRNAome, here we identify miRNAs that suppress intracellular calcium handling in heart muscle by interacting with messenger RNA encoding the sarcoplasmic reticulum calcium uptake pump SERCA2a (also known as ATP2A2). Of 875 miRNAs tested, miR-25 potently delayed calcium uptake kinetics in cardiomyocytes in vitro and was upregulated in heart failure, both in mice and humans. Whereas adeno-associated virus 9 (AAV9)-mediated overexpression of miR-25 in vivo resulted in a significant loss of contractile function, injection of an antisense oligonucleotide (antagomiR) against miR-25 markedly halted established heart failure in a mouse model, improving cardiac function and survival relative to a control antagomiR oligonucleotide. These data reveal that increased expression of endogenous miR-25 contributes to declining cardiac function during heart failure and suggest that it might be targeted therapeutically to restore function.


Asunto(s)
Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , MicroARNs/antagonistas & inhibidores , Contracción Miocárdica/efectos de los fármacos , Animales , Calcio/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Células HEK293 , Corazón/efectos de los fármacos , Corazón/fisiología , Corazón/fisiopatología , Humanos , Cinética , Masculino , Ratones , MicroARNs/análisis , MicroARNs/genética , MicroARNs/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Análisis de Supervivencia , Regulación hacia Arriba/genética
16.
Genes Dev ; 26(24): 2673-83, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23222103

RESUMEN

Developmental biologists have defined many of the diffusible and transcription factors that control muscle differentiation, yet we still have only rudimentary knowledge of the mechanisms that dictate whether a myogenic progenitor cell forms muscle versus alternate lineages, including those that can be pathological in a state of disease or degeneration. Clues about the molecular basis for lineage determination in muscle progenitors are only now emerging from studies of chromatin modifications that avail myogenic genes for transcription, together with analysis of the composition and activities of the chromatin-modifying complexes themselves. Here we review recent progress on muscle determination and explore a unifying theme that environmental cues from the stem or progenitor niche control the selection of specific subunit variants of the switch/sucrose nonfermentable (SWI/SNF) chromatin-modifying complex, creating a combinatorial code that dictates whether cells adopt myogenic versus nonmyogenic cell fates. A key component of the code appears to be the mutually exclusive usage of the a, b, and c variants of the 60-kD structural subunit BAF60 (BRG1/BRM-associated factor 60), of which BAF60c is essential to activate both skeletal and cardiac muscle programs. Since chromatin remodeling governs myogenic fate, the combinatorial assembly of the SWI/SNF complex might be targeted to develop drugs aimed at the therapeutic reduction of compensatory fibrosis and fatty deposition in chronic muscular disorders.


Asunto(s)
Diferenciación Celular , Músculos/fisiología , Regeneración , Factores de Transcripción/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona , Mesodermo/citología , Músculos/lesiones , Enfermedades Musculares/terapia , Células Madre , Factores de Transcripción/genética
17.
Genes Dev ; 26(23): 2567-79, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23152446

RESUMEN

Tight control over the segregation of endoderm, mesoderm, and ectoderm is essential for normal embryonic development of all species, yet how neighboring embryonic blastomeres can contribute to different germ layers has never been fully explained. We postulated that microRNAs, which fine-tune many biological processes, might modulate the response of embryonic blastomeres to growth factors and other signals that govern germ layer fate. A systematic screen of a whole-genome microRNA library revealed that the let-7 and miR-18 families increase mesoderm at the expense of endoderm in mouse embryonic stem cells. Both families are expressed in ectoderm and mesoderm, but not endoderm, as these tissues become distinct during mouse and frog embryogenesis. Blocking let-7 function in vivo dramatically affected cell fate, diverting presumptive mesoderm and ectoderm into endoderm. siRNA knockdown of computationally predicted targets followed by mutational analyses revealed that let-7 and miR-18 down-regulate Acvr1b and Smad2, respectively, to attenuate Nodal responsiveness and bias blastomeres to ectoderm and mesoderm fates. These findings suggest a crucial role for the let-7 and miR-18 families in germ layer specification and reveal a remarkable conservation of function from amphibians to mammals.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Estratos Germinativos/embriología , MicroARNs/metabolismo , Animales , Células Cultivadas , Análisis Mutacional de ADN , Células Madre Embrionarias , Técnicas de Silenciamiento del Gen , Ratones , MicroARNs/genética , Xenopus laevis
18.
Mol Ther ; 26(3): 718-729, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29273502

RESUMEN

MicroRNAs are promising therapeutic targets, because their inhibition has the potential to normalize gene expression in diseased states. Recently, our group found that miR-25 is a key SERCA2a regulating microRNA, and we showed that multiple injections of antagomirs against miR-25 enhance cardiac contractility and function through SERCA2a restoration in a murine heart failure model. However, for clinical application, a more stable suppressor of miR-25 would be desirable. Tough Decoy (TuD) inhibitors are emerging as a highly effective method for microRNA inhibition due to their resistance to endonucleolytic degradation, high miRNA binding affinity, and efficient delivery. We generated a miR-25 TuD inhibitor and subcloned it into a cardiotropic AAV9 vector to evaluate its efficacy. The AAV9 TuD showed selective inhibition of miR-25 in vitro cardiomyoblast culture. In vivo, AAV9-miR-25 TuD delivered to the murine pressure-overload heart failure model selectively decreased expression of miR-25, increased levels of SERCA2a protein, and ameliorated cardiac dysfunction and fibrosis. Our data indicate that miR-25 TuD is an effective long-term suppressor of miR-25 and a promising therapeutic candidate to treat heart failure.


Asunto(s)
Antagomirs/genética , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , MicroARNs/genética , Contracción Miocárdica/genética , Animales , Antagomirs/química , Secuencia de Bases , Dependovirus/genética , Biblioteca de Genes , Orden Génico , Vectores Genéticos/genética , Pruebas de Función Cardíaca , Humanos , MicroARNs/química , Interferencia de ARN , ARN Mensajero/genética , Ratas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
19.
Mol Cell ; 44(4): 532-44, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-22099302

RESUMEN

Defining the mechanisms underlying the control of mitochondrial fusion and fission is critical to understanding cellular adaptation to diverse physiological conditions. Here we demonstrate that hypoxia induces fission of mitochondrial membranes, dependent on availability of the mitochondrial scaffolding protein AKAP121. AKAP121 controls mitochondria dynamics through PKA-dependent inhibitory phosphorylation of Drp1 and PKA-independent inhibition of Drp1-Fis1 interaction. Reduced availability of AKAP121 by the ubiquitin ligase Siah2 relieves Drp1 inhibition by PKA and increases its interaction with Fis1, resulting in mitochondrial fission. High AKAP121 levels, seen in cells lacking Siah2, attenuate fission and reduce apoptosis of cardiomyocytes under simulated ischemia. Infarct size and degree of cell death were reduced in Siah2(-/-) mice subjected to myocardial infarction. Inhibition of Siah2 or Drp1 in hatching C. elegans reduces their life span. Through modulating Fis1/Drp1 complex availability, our studies identify Siah2 as a key regulator of hypoxia-induced mitochondrial fission and its physiological significance in ischemic injury and nematode life span.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dinaminas/metabolismo , Hipoxia/metabolismo , Mitocondrias/fisiología , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Adaptación Fisiológica , Animales , Apoptosis , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Línea Celular , Dinaminas/genética , Humanos , Hipoxia/genética , Hipoxia/patología , Inmunohistoquímica , Lentivirus , Longevidad , Fusión de Membrana , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Isquemia Miocárdica/genética , Isquemia Miocárdica/patología , Miocitos Cardíacos/citología , Fosforilación , Transducción Genética , Ubiquitina-Proteína Ligasas/genética
20.
Nucleic Acids Res ; 45(6): 3046-3058, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27940555

RESUMEN

The expression of nearly all smooth muscle genes are controlled by serum response factor binding sites in their promoter regions. However, SRF alone is not sufficient for regulating smooth muscle cell development. It associates with other cardiovascular specific cofactors to regulate smooth muscle gene expression. Previously, we showed that the transcription co-factor CRP2 was a regulator of smooth muscle gene expression. Here, we report that CSRP2BP, a coactivator for CRP2, is a histone acetyltransferase and a driver of smooth muscle gene expression. CSRP2BP directly interacted with SRF, CRP2 and myocardin. CSRP2BP synergistically activated smooth muscle gene promoters in an SRF-dependent manner. A combination of SRF, GATA6 and CRP2 required CSRP2BP for robust smooth muscle gene promoter activity. Knock-down of Csrp2bp in smooth muscle cells resulted in reduced smooth muscle gene expression. We conclude that the CSRP2BP histone acetyltransferase is a coactivator for CRP2 that works synergistically with SRF and myocardin to regulate smooth muscle gene expression.


Asunto(s)
Regulación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Miocitos del Músculo Liso/metabolismo , Acetilación , Animales , Línea Celular , Núcleo Celular/enzimología , Células Cultivadas , Cromatina/enzimología , Expresión Génica , Histonas/metabolismo , Humanos , Ratones , Miocitos del Músculo Liso/enzimología , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Ratas , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA