Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Pharmacol Exp Ther ; 386(3): 277-287, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37024146

RESUMEN

Pulmonary fibroblasts are the primary producers of extracellular matrix (ECM) in the lungs, and their pathogenic activation drives scarring and loss of lung function in idiopathic pulmonary fibrosis (IPF). This uncontrolled production of ECM is stimulated by mechanosignaling and transforming growth factor beta 1 (TGF-ß1) signaling that together promote transcriptional programs including Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). G protein-coupled receptors (GPCRs) that couple to G α s have emerged as pharmacological targets to inactivate YAP/TAZ signaling and promote lung fibrosis resolution. Previous studies have shown a loss of expression of "antifibrotic GPCRs"-receptors that couple to G α s, in IPF patient-derived fibroblasts compared with non-IPF samples. Of the 14 G α s GPCRs we found to be expressed in lung fibroblasts, the dopamine receptor D1 (DRD1) was one of only two not repressed by TGF-ß1 signaling, with the ß2-adrenergic receptor being the most repressed. We compared the potency and efficacy of multiple D1 and ß2 receptor agonists +/- TGF-ß1 treatment in vitro for their ability to elevate cAMP, inhibit nuclear localization of YAP/TAZ, regulate expression of profibrotic and antifibrotic genes, and inhibit cellular proliferation and collagen deposition. Consistently, the activity of ß2 receptor agonists was lost, whereas D1 receptor agonists was maintained, after stimulating cultured lung fibroblasts with TGF-ß1. These data further support the therapeutic potential of the dopamine receptor D1 and highlight an orchestrated and pervasive loss of antifibrotic GPCRs mediated by TGF-ß1 signaling. SIGNIFICANCE STATEMENT: Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease with limited therapies. GPCRs have emerged as a primary target for the development of novel antifibrotic drugs; however, a challenge to this approach is the dramatic changes in GPCR expression in response to profibrotic stimuli. Here, we investigate the impact of TGF-ß1 on the expression of antifibrotic GPCRs and show the D1 dopamine receptor expression is uniquely maintained in response to TGF-ß1, further implicating it as a compelling target to treat IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Factor de Crecimiento Transformador beta1 , Humanos , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón , Receptores Dopaminérgicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
2.
Am J Respir Cell Mol Biol ; 64(4): 453-464, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33493091

RESUMEN

Fibroblast activation is transient in successful wound repair but persistent in fibrotic pathologies. Understanding fibroblast deactivation during successful wound healing may provide new approaches to therapeutically reverse fibroblast activation. To characterize the gene programs that accompany fibroblast activation and reversal during lung fibrosis resolution, we used RNA sequencing analysis of flow sorted Col1α1-GFP-positive and CD45-, CD31-, and CD326-negative cells isolated from the lungs of young mice exposed to bleomycin. We compared fibroblasts isolated from control mice with those isolated at Days 14 and 30 after bleomycin exposure, representing the peak of extracellular matrix deposition and an early stage of fibrosis resolution, respectively. Bleomycin exposure dramatically altered fibroblast gene programs at Day 14. Principal component and differential gene expression analyses demonstrated the predominant reversal of these trends at Day 30. Upstream regulator and pathway analyses of reversing "resolution" genes identified novel candidate antifibrotic genes and pathways. Two genes from these analyses that were decreased in expression at Day 14 and reversed at Day 30, Aldh2 and Nr3c1, were selected for further analysis. Enhancement of endogenous expression of either gene by CRISPR activation in cultured human idiopathic pulmonary fibrosis fibroblasts was sufficient to reduce profibrotic gene expression, fibronectin deposition, and collagen gel compaction, consistent with roles for these genes in fibroblast deactivation. This combination of RNA sequencing analysis of freshly sorted fibroblasts and hypothesis testing in cultured idiopathic pulmonary fibrosis fibroblasts offers a path toward identification of novel regulators of lung fibroblast deactivation, with potential relevance to understanding fibrosis resolution and its failure in human disease.


Asunto(s)
Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Animales , Bleomicina , Sistemas CRISPR-Cas , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/patología , Edición Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Ratones Transgénicos , RNA-Seq , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Remisión Espontánea , Transducción de Señal , Factores de Tiempo , Transcriptoma
3.
Mov Disord ; 36(4): 895-904, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33232556

RESUMEN

BACKGROUND: Recent studies reported abnormal alpha-synuclein deposition in biopsy-accessible sites of the peripheral nervous system in Parkinson's disease (PD). This has considerable implications for clinical diagnosis. Moreover, if deposition occurs early, it may enable tissue diagnosis of prodromal PD. OBJECTIVE: The aim of this study was to develop and test an automated bright-field immunohistochemical assay of cutaneous pathological alpha-synuclein deposition in patients with idiopathic rapid eye movement sleep behavior disorder, PD, and atypical parkinsonism and in control subjects. METHODS: For assay development, postmortem skin biopsies were taken from 28 patients with autopsy-confirmed Lewy body disease and 23 control subjects. Biopsies were stained for pathological alpha-synuclein in automated stainers using a novel dual-immunohistochemical assay for serine 129-phosphorylated alpha-synuclein and pan-neuronal marker protein gene product 9.5. After validation, single 3-mm punch skin biopsies were taken from the cervical 8 paravertebral area from 79 subjects (28 idiopathic rapid eye movement sleep behavior disorder, 20 PD, 10 atypical parkinsonism, and 21 control subjects). Raters blinded to clinical diagnosis assessed the biopsies. RESULTS: The immunohistochemistry assay differentiated alpha-synuclein pathology from nonpathological-appearing alpha-synuclein using combined phosphatase and protease treatments. Among autopsy samples, 26 of 28 Lewy body samples and none of the 23 controls were positive. Among living subjects, punch biopsies were positive in 23 (82%) subjects with idiopathic rapid eye movement sleep behavior disorder, 14 (70%) subjects with PD, 2 (20%) subjects with atypical parkinsonism, and none (0%) of the control subjects. After a 3-year follow-up, eight idiopathic rapid eye movement sleep behavior disorder subjects phenoconverted to defined neurodegenerative syndromes, in accordance with baseline biopsy results. CONCLUSION: Even with a single 3-mm punch biopsy, there is considerable promise for using pathological alpha-synuclein deposition in skin to diagnose both clinical and prodromal PD. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Piel , alfa-Sinucleína
4.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L852-L863, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32159970

RESUMEN

Idiopathic pulmonary fibrosis (IPF) results in scarring of the lungs by excessive extracellular matrix (ECM) production. Resident fibroblasts are the major cell type involved in ECM deposition. The biochemical pathways that facilitate pathological fibroblast activation leading to aberrant ECM deposition are not fully understood. Tank binding protein kinase-1 (TBK1) is a kinase that regulates multiple signaling pathways and was recently identified as a candidate regulator of fibroblast activation in a large-scale small-interfering RNA (siRNA) screen. To determine the effect of TBK1 on fibroblast activation, TBK1 was inhibited pharmacologically (MRT-68601) and genetically (siRNA) in normal and IPF human lung fibroblasts. Reducing the activity or expression of TBK1 led to reduction in α-smooth muscle actin stress fiber levels by 40-60% and deposition of ECM components collagen I and fibronectin by 50% in TGF-ß-stimulated normal and IPF fibroblasts. YAP and TAZ are homologous mechanoregulatory profibrotic transcription cofactors known to regulate fibroblast activation. TBK1 knockdown or inhibition decreased the total and nuclear protein levels of YAP/TAZ. Additionally, low cell-cell contact and increased ECM substrate stiffness augmented the phosphorylation and activation of TBK1, consistent with cues that regulate YAP/TAZ. The action of TBK1 toward YAP/TAZ activation was independent of LATS1/2 and canonical downstream TBK1 signaling mediator IRF3 but dependent on proteasomal machinery of the cell. This study identifies TBK1 as a fibrogenic activator of human pulmonary fibroblasts, suggesting TBK1 may be a novel therapeutic target in pulmonary fibrosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/genética , Proteínas Serina-Treonina Quinasas/genética , Transactivadores/genética , Factores de Transcripción/genética , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Comunicación Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibronectinas/genética , Fibronectinas/metabolismo , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Pulmón/metabolismo , Pulmón/patología , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Factor de Crecimiento Transformador beta/farmacología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Señalizadoras YAP
5.
Am J Respir Cell Mol Biol ; 61(5): 607-619, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31050552

RESUMEN

Reciprocal epithelial-mesenchymal interactions are pivotal in lung development, homeostasis, injury, and repair. Organoids have been used to investigate such interactions, but with a major focus on epithelial responses to mesenchyme and less attention to epithelial effects on mesenchyme. In the present study, we used nascent organoids composed of human and mouse lung epithelial and mesenchymal cells to demonstrate that healthy lung epithelium dramatically represses transcriptional, contractile, and matrix synthetic functions of lung fibroblasts. Repression of fibroblast activation requires signaling via the bone morphogenetic protein (BMP) pathway. BMP signaling is diminished after epithelial injury in vitro and in vivo, and exogenous BMP4 restores fibroblast repression in injured organoids. In contrast, inhibition of BMP signaling in healthy organoids is sufficient to derepress fibroblast matrix synthetic function. Our results reveal potent repression of fibroblast activation by healthy lung epithelium and a novel mechanism by which epithelial loss or injury is intrinsically coupled to mesenchymal activation via loss of repressive BMP signaling.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Epitelio/metabolismo , Fibroblastos/metabolismo , Pulmón/metabolismo , Animales , Proliferación Celular/fisiología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Mesodermo/metabolismo , Ratones , Factores de Transcripción/metabolismo
6.
Thorax ; 74(8): 749-760, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31182654

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal ageing-related disease linked to mitochondrial dysfunction. The present study aimed to determine whether peroxisome proliferator activated receptor gamma co-activator 1-alpha (PPARGC1A, encoding PGC1α), a master regulator of mitochondrial biogenesis, is diminished in IPF and controls pathologic fibroblast activation. Primary human IPF, control lung fibroblasts and fibroblasts sorted from bleomycin-injured mice were used to evaluate the expression and function of PGC1α. In vitro PGC1α manipulation was performed by small interfering RNA knockdown or overexpression. Fibroblast activation was assessed by quantitative PCR, Western blotting, matrix deposition, secreted cytokine array, immunofluorescence and traction force microscopy. Mitochondrial function was assessed by Seahorse analyzer and mitochondria mass and number by flow cytometry, mitochondrial DNA quantification and transmission electron microscopy (TEM). We found that PGC1α levels are stably repressed in IPF fibroblasts. After bleomycin injury in young mice, PGC1α expression drops transiently but then increases prior to fibrosis resolution. In contrast, PGC1α expression fails to recover in aged mice with persistent fibrosis. PGC1α knockdown alone in normal human lung fibroblasts reduces mitochondrial mass and function while enhancing contractile and matrix synthetic fibroblast activation, senescence-related gene expression and soluble profibrotic and prosenescence signalling. Re-expression of PGC1α in IPF fibroblasts ameliorates all of these pathological cellular functions. Pharmacological treatment of IPF fibroblasts with rosiglitazone, but not thyroid hormone, elevated PGC1α expression and attenuated fibroblast activation. The sustained repression of PGC1α and beneficial effects of its rescue in IPF fibroblasts identifies PGC1α as an important regulator of the fibroblast's pathological state in IPF.


Asunto(s)
Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Mitocondrias/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Actinas/genética , Animales , Bleomicina , Línea Celular , Senescencia Celular/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Hipoglucemiantes/farmacología , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/patología , Ratones , NAD/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Cultivo Primario de Células , ARN Interferente Pequeño , Rosiglitazona/farmacología , Transducción de Señal/genética , Triyodotironina/farmacología , beta-Galactosidasa/genética
7.
Respir Res ; 20(1): 281, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31829168

RESUMEN

BACKGROUND: Fibroblasts regulate tissue homeostasis and the balance between tissue repair and fibrosis. CCAAT/enhancer-binding protein alpha (CEBPA) is a key transcription factor that regulates adipogenesis. CEBPA has been shown to be essential for lung maturation, and deficiency of CEBPA expression leads to abnormal lung architecture. However, its specific role in lung fibroblast regulation and fibrosis has not yet been elucidated. METHODS: Lung fibroblast CEBPA expression, pro-fibrotic and lipofibroblast gene expression were assessed by qRT-PCR. CEBPA gain and loss of function experiments were carried out to evaluate the role of CEBPA in human lung fibroblast activation with and without TGF-ß1 treatment. Adipogenesis assay was used to measure the adiopogenic potential of lung fibroblasts. Finally, CRISPR activation system was used to enhance endogenous CEBPA expression. RESULTS: We found that CEBPA gene expression is significantly decreased in IPF-derived fibroblasts compared to normal lung fibroblasts. CEBPA knockdown in normal human lung fibroblasts enhanced fibroblast pro-fibrotic activation and ECM production. CEBPA over-expression by transient transfection in IPF-derived fibroblasts significantly reduced pro-fibrotic gene expression, ECM deposition and αSMA expression and promoted the formation of lipid droplets measured by Oil Red O staining and increased lipofibroblast gene expression. Inhibition of the histone methyl transferase G9a enhanced CEBPA expression, and the anti-fibrotic effects of G9a inhibition were partially mediated by CEBPA expression. Finally, targeted CRISPR-mediated activation of CEBPA resulted in fibroblasts switching from fibrogenic to lipofibroblast states. CONCLUSIONS: CEBPA expression is reduced in human IPF fibroblasts and its deficiency reduces adipogenic potential and promotes fibrogenic activation. CEBPA expression can be rescued via an inhibitor of epigenetic repression or by targeted CRISPR activation, leading to reduced fibrogenic activation.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fibroblastos/metabolismo , Edición Génica , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Adipogénesis , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibrosis , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Fenotipo , Interferencia de ARN , Transducción de Señal , Factor de Crecimiento Transformador beta1/farmacología
8.
Physiol Rep ; 12(7): e15999, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38610069

RESUMEN

Pulmonary arterial hypertension (PAH) causes pulmonary vascular remodeling, increasing pulmonary vascular resistance (PVR) and leading to right heart failure and death. Matrix stiffening early in the disease promotes remodeling in pulmonary artery smooth muscle cells (PASMCs), contributing to PAH pathogenesis. Our research identified YAP and TAZ as key drivers of the mechanobiological feedback loop in PASMCs, suggesting targeting them could mitigate remodeling. However, YAP/TAZ are ubiquitously expressed and carry out diverse functions, necessitating a cell-specific approach. Our previous work demonstrated that targeting non-canonical IKB kinase TBK1 reduced YAP/TAZ activation in human lung fibroblasts. Here, we investigate non-canonical IKB kinases TBK1 and IKKε in pulmonary hypertension (PH) and their potential to modulate PASMC pathogenic remodeling by regulating YAP/TAZ. We show that TBK1 and IKKε are activated in PASMCs in a rat PH model. Inflammatory cytokines, elevated in PAH, activate these kinases in human PASMCs. Inhibiting TBK1/IKKε expression/activity significantly reduces PAH-associated PASMC remodeling, with longer-lasting effects on YAP/TAZ than treprostinil, an approved PAH therapy. These results show that non-canonical IKB kinases regulate YAP/TAZ in PASMCs and may offer a novel approach for reducing vascular remodeling in PAH.


Asunto(s)
Hipertensión Pulmonar , Quinasa I-kappa B , Hipertensión Arterial Pulmonar , Remodelación Vascular , Animales , Humanos , Ratas , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Quinasa I-kappa B/metabolismo , Miocitos del Músculo Liso , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar , Proteínas Señalizadoras YAP/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo
9.
bioRxiv ; 2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-38014129

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is an aggressive and thus far incurable disease, characterized by aberrant fibroblast-mediated extracellular matrix deposition. Our understanding of the disease etiology is incomplete; however, there is consensus that a reduction-oxidation (redox) imbalance plays a role. In this study we use the autofluorescent properties of two redox molecules, NAD(P)H and FAD, to quantify changes in their relative abundance in living lung tissue of mice with experimental lung fibrosis, and in freshly isolated cells from mouse lungs and humans with IPF. Our results identify cell population-specific intracellular redox changes in the lungs in experimental and human fibrosis. We focus particularly on redox changes within collagen producing cells, where we identified a bimodal distribution of NAD(P)H concentrations, establishing NAD(P)H high and NAD(P)H low sub-populations. NAD(P)H high fibroblasts exhibited elevated pro-fibrotic gene expression and decreased collagenolytic protease activity relative to NAD(P)H low fibroblasts. The NAD(P)H high population was present in healthy lungs but expanded with time after bleomycin injury suggesting a potential role in fibrosis progression. We identified a similar increased abundance of NAD(P)H high cells in freshly dissociated lungs of subjects with IPF relative to controls, and similar reductions in collagenolytic activity in this cell population. These data highlight the complexity of redox state changes in experimental and human pulmonary fibrosis and the need for selective approaches to restore redox imbalances in the fibrotic lung.

10.
JCI Insight ; 7(6)2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35167499

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is an aging-associated disease characterized by myofibroblast accumulation and progressive lung scarring. To identify transcriptional gene programs driving persistent lung fibrosis in aging, we performed RNA-Seq on lung fibroblasts isolated from young and aged mice during the early resolution phase after bleomycin injury. We discovered that, relative to injured young fibroblasts, injured aged fibroblasts exhibited a profibrotic state characterized by elevated expression of genes implicated in inflammation, matrix remodeling, and cell survival. We identified the proviral integration site for Moloney murine leukemia virus 1 (PIM1) and its target nuclear factor of activated T cells-1 (NFATc1) as putative drivers of the sustained profibrotic gene signatures in injured aged fibroblasts. PIM1 and NFATc1 transcripts were enriched in a pathogenic fibroblast population recently discovered in IPF lungs, and their protein expression was abundant in fibroblastic foci. Overexpression of PIM1 in normal human lung fibroblasts potentiated their fibrogenic activation, and this effect was attenuated by NFATc1 inhibition. Pharmacological inhibition of PIM1 attenuated IPF fibroblast activation and sensitized them to apoptotic stimuli. Interruption of PIM1 signaling in IPF lung explants ex vivo inhibited prosurvival gene expression and collagen secretion, suggesting that targeting this pathway may represent a therapeutic strategy to block IPF progression.


Asunto(s)
Fibroblastos , Fibrosis Pulmonar Idiopática , Envejecimiento/genética , Animales , Bleomicina/toxicidad , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Ratones
11.
Nat Commun ; 13(1): 4170, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879310

RESUMEN

Vascular dysfunction is a hallmark of chronic diseases in elderly. The contribution of the vasculature to lung repair and fibrosis is not fully understood. Here, we performed an epigenetic and transcriptional analysis of lung endothelial cells (ECs) from young and aged mice during the resolution or progression of bleomycin-induced lung fibrosis. We identified the transcription factor ETS-related gene (ERG) as putative orchestrator of lung capillary homeostasis and repair, and whose function is dysregulated in aging. ERG dysregulation is associated with reduced chromatin accessibility and maladaptive transcriptional responses to injury. Loss of endothelial ERG enhances paracrine fibroblast activation in vitro, and impairs lung fibrosis resolution in young mice in vivo. scRNA-seq of ERG deficient mouse lungs reveales transcriptional and fibrogenic abnormalities resembling those associated with aging and human lung fibrosis, including reduced number of general capillary (gCap) ECs. Our findings demonstrate that lung endothelial chromatin remodeling deteriorates with aging leading to abnormal transcription, vascular dysrepair, and persistent fibrosis following injury.


Asunto(s)
Fibrosis Pulmonar , Anciano , Envejecimiento/genética , Animales , Bleomicina , Células Endoteliales/metabolismo , Fibrosis , Humanos , Pulmón/patología , Ratones , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Transducción de Señal , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo
12.
J Cell Biol ; 220(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33625469

RESUMEN

Matrix stiffness is a central regulator of fibroblast function. However, the transcriptional mechanisms linking matrix stiffness to changes in fibroblast phenotype are incompletely understood. Here, we evaluated the effect of matrix stiffness on genome-wide chromatin accessibility in freshly isolated lung fibroblasts using ATAC-seq. We found higher matrix stiffness profoundly increased global chromatin accessibility relative to lower matrix stiffness, and these alterations were in close genomic proximity to known profibrotic gene programs. Motif analysis of these regulated genomic loci identified ZNF416 as a putative mediator of fibroblast stiffness responses. Genome occupancy analysis using ChIP-seq confirmed that ZNF416 occupies a broad range of genes implicated in fibroblast activation and tissue fibrosis, with relatively little overlap in genomic occupancy with other mechanoresponsive and profibrotic transcriptional regulators. Using loss- and gain-of-function studies, we demonstrated that ZNF416 plays a critical role in fibroblast proliferation, extracellular matrix synthesis, and contractile function. Together, these observations identify ZNF416 as novel mechano-activated transcriptional regulator of fibroblast biology.


Asunto(s)
Fibroblastos/fisiología , Regulación de la Expresión Génica/genética , Transcripción Genética/genética , Animales , Proliferación Celular/genética , Células Cultivadas , Cromatina/genética , Matriz Extracelular/genética , Fibrosis/genética , Genoma/genética , Pulmón/fisiología , Ratones , Ratones Transgénicos , Fenotipo
13.
Aging Cell ; 19(8): e13196, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32691484

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive disease thought to result from impaired lung repair following injury and is strongly associated with aging. While vascular alterations have been associated with IPF previously, the contribution of lung vasculature during injury resolution and fibrosis is not well understood. To compare the role of endothelial cells (ECs) in resolving and non-resolving models of lung fibrosis, we applied bleomycin intratracheally to young and aged mice. We found that injury in aged mice elicited capillary rarefaction, while injury in young mice resulted in increased capillary density. ECs from the lungs of injured aged mice relative to young mice demonstrated elevated pro-fibrotic and reduced vascular homeostasis gene expression. Among the latter, Nos3 (encoding the enzyme endothelial nitric oxide synthase, eNOS) was transiently upregulated in lung ECs from young but not aged mice following injury. Young mice deficient in eNOS recapitulated the non-resolving lung fibrosis observed in aged animals following injury, suggesting that eNOS directly participates in lung fibrosis resolution. Activation of the NO receptor soluble guanylate cyclase in human lung fibroblasts reduced TGFß-induced pro-fibrotic gene and protein expression. Additionally, loss of eNOS in human lung ECs reduced the suppression of TGFß-induced lung fibroblast activation in 2D and 3D co-cultures. Altogether, our results demonstrate that persistent lung fibrosis in aged mice is accompanied by capillary rarefaction, loss of EC identity, and impaired eNOS expression. Targeting vascular function may thus be critical to promote lung repair and fibrosis resolution in aging and IPF.


Asunto(s)
Bleomicina/efectos adversos , Fibrosis/patología , Fibrosis Pulmonar Idiopática/inducido químicamente , Pulmón/patología , Animales , Humanos , Ratones
14.
JCI Insight ; 52019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31095524

RESUMEN

Pulmonary fibrosis is a devastating disease characterized by accumulation of activated fibroblasts and scarring in the lung. While fibroblast activation in physiological wound repair reverses spontaneously, fibroblast activation in fibrosis is aberrantly sustained. Here we identified histone 3 lysine 9 methylation (H3K9me) as a critical epigenetic modification that sustains fibroblast activation by repressing the transcription of genes essential to returning lung fibroblasts to an inactive state. We show that the histone methyltransferase G9a (EHMT2) and chromobox homolog 5 (CBX5, also known as HP1α), which deposit H3K9me marks and assemble an associated repressor complex respectively, are essential to initiation and maintenance of fibroblast activation specifically through epigenetic repression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha gene (PPARGC1A, encoding PGC1α). Both TGFß and increased matrix stiffness potently inhibit PGC1α expression in lung fibroblasts through engagement of the CBX5/G9a pathway. Inhibition of CBX5/G9a pathway in fibroblasts elevates PGC1α, attenuates TGFß- and matrix stiffness-promoted H3K9 methylation, and reduces collagen accumulation in the lungs following bleomycin injury. Our results demonstrate that epigenetic silencing mediated by H3K9 methylation is essential for both biochemical and biomechanical fibroblast activation, and that targeting this epigenetic pathway may provide therapeutic benefit by returning lung fibroblasts to quiescence.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Fibroblastos/metabolismo , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Fibrosis Pulmonar Idiopática/genética , Pulmón/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Animales , Antibióticos Antineoplásicos/toxicidad , Bleomicina/toxicidad , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Colágeno/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética , Fibroblastos/patología , Silenciador del Gen , Antígenos de Histocompatibilidad/metabolismo , Código de Histonas/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/citología , Pulmón/patología , Ratones , Ratones Transgénicos , Factor de Crecimiento Transformador beta/metabolismo
15.
Sci Transl Med ; 11(516)2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666402

RESUMEN

Tissue fibrosis is characterized by uncontrolled deposition and diminished clearance of fibrous connective tissue proteins, ultimately leading to organ scarring. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) have recently emerged as pivotal drivers of mesenchymal cell activation in human fibrosis. Therapeutic strategies inhibiting YAP and TAZ have been hindered by the critical role that these proteins play in regeneration and homeostasis in different cell types. Here, we find that the Gαs-coupled dopamine receptor D1 (DRD1) is preferentially expressed in lung and liver mesenchymal cells relative to other resident cells of these organs. Agonism of DRD1 selectively inhibits YAP/TAZ function in mesenchymal cells and shifts their phenotype from profibrotic to fibrosis resolving, reversing in vitro extracellular matrix stiffening and in vivo tissue fibrosis in mouse models. Aromatic l-amino acid decarboxylase [DOPA decarboxylase (DDC)], the enzyme responsible for the final step in biosynthesis of dopamine, is decreased in the lungs of subjects with idiopathic pulmonary fibrosis, and its expression inversely correlates with disease severity, consistent with an endogenous protective role for dopamine signaling that is lost in pulmonary fibrosis. Together, these findings establish a pharmacologically tractable and cell-selective approach to targeting YAP/TAZ via DRD1 that reverses fibrosis in mice.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas de Ciclo Celular/antagonistas & inhibidores , Fibroblastos/patología , Cirrosis Hepática/patología , Fibrosis Pulmonar/patología , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Transactivadores/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Bleomicina , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Dopa-Decarboxilasa/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/patología , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Lesión Pulmonar/patología , Masculino , Ratones Endogámicos C57BL , Fenantridinas/farmacología , Fenotipo , Transporte de Proteínas/efectos de los fármacos , Interferencia de ARN , Transactivadores/metabolismo , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA