Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hum Brain Mapp ; 41(8): 2014-2027, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31957959

RESUMEN

Calibrated functional magnetic resonance imaging can remove unwanted sources of signal variability in the blood oxygenation level-dependent (BOLD) response. This is achieved by scaling, using information from a perfusion-sensitive scan during a purely vascular challenge, typically induced by a gas manipulation or a breath-hold task. In this work, we seek for a validation of the use of the resting-state fluctuation amplitude (RSFA) as a scaling factor to remove vascular contributions from the BOLD response. Given the peculiarity of depth-dependent vascularization in gray matter, BOLD and vascular space occupancy (VASO) data were acquired at submillimeter resolution and averaged across cortical laminae. RSFA from the primary motor cortex was, thus, compared to the amplitude of hypercapnia-induced signal changes (tSDhc ) and with the M factor of the Davis model on a laminar level. High linear correlations were observed for RSFA and tSDhc ( R2 = 0.92 ± 0.06) and somewhat reduced for RSFA and M ( R2 = 0.62 ± 0.19). Laminar profiles of RSFA-normalized BOLD signal changes yielded good agreement with corresponding VASO profiles. Overall, this suggests that RSFA contains strong vascular components and is also modulated by baseline quantities contained in the M factor. We conclude that RSFA may replace the scaling factor tSDhc for normalizing the laminar BOLD response.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Conectoma/normas , Hipercapnia/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Adulto , Femenino , Humanos , Hipercapnia/inducido químicamente , Masculino , Reproducibilidad de los Resultados , Adulto Joven
2.
Neuroimage ; 173: 113-126, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29454105

RESUMEN

As energy metabolism in the brain is largely oxidative, the measurement of cerebral metabolic rate of oxygen consumption (CMRO2) is a desirable biomarker for quantifying brain activity and tissue viability. Currently, PET techniques based on oxygen isotopes are the gold standard for obtaining whole brain CMRO2 maps. Among MRI techniques that have been developed as an alternative are dual calibrated fMRI (dcFMRI) methods, which exploit simultaneous measurements of BOLD and ASL signals during a hypercapnic-hyperoxic experiment to modulate brain blood flow and oxygenation. In this study we quantified the repeatability of a dcFMRI approach developed in our lab, evaluating its limits and informing its application in studies aimed at characterising the metabolic state of human brain tissue over time. Our analysis focussed on the estimates of oxygen extraction fraction (OEF), cerebral blood flow (CBF), CBF-related cerebrovascular reactivity (CVR) and CMRO2 based on a forward model that describes analytically the acquired dual echo GRE signal. Indices of within- and between-session repeatability are calculated from two different datasets both at a bulk grey matter and at a voxel-wise resolution and finally compared with similar indices obtained from previous MRI and PET measurements. Within- and between-session values of intra-subject coefficient of variation (CVintra) calculated from bulk grey matter estimates 6.7 ±â€¯6.6% (mean ±â€¯std.) and 10.5 ±â€¯9.7% for OEF, 6.9 ±â€¯6% and 5.5 ±â€¯4.7% for CBF, 12 ±â€¯9.7% and 12.3 ±â€¯10% for CMRO2. Coefficient of variation (CV) and intraclass correlation coefficient (ICC) maps showed the spatial distribution of the repeatability metrics, informing on the feasibility limits of the method. In conclusion, results show an overall consistency of the estimated physiological parameters with literature reports and a satisfactory level of repeatability considering the higher spatial sensitivity compared to other MRI methods, with varied performance depending on the specific parameter under analysis, on the spatial resolution considered and on the study design.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos , Adulto , Conjuntos de Datos como Asunto , Femenino , Hemodinámica/fisiología , Humanos , Masculino , Consumo de Oxígeno/fisiología
3.
Neuroimage ; 155: 331-343, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28323164

RESUMEN

This study aims to map the acute effects of caffeine ingestion on grey matter oxygen metabolism and haemodynamics with a novel MRI method. Sixteen healthy caffeine consumers (8 males, age=24.7±5.1) were recruited to this randomised, double-blind, placebo-controlled study. Each participant was scanned on two days before and after the delivery of an oral caffeine (250mg) or placebo capsule. Our measurements were obtained with a newly proposed estimation approach applied to data from a dual calibration fMRI experiment that uses hypercapnia and hyperoxia to modulate brain blood flow and oxygenation. Estimates were based on a forward model that describes analytically the contributions of cerebral blood flow (CBF) and of the measured end-tidal partial pressures of CO2 and O2 to the acquired dual-echo GRE signal. The method allows the estimation of grey matter maps of: oxygen extraction fraction (OEF), CBF, CBF-related cerebrovascular reactivity (CVR) and cerebral metabolic rate of oxygen consumption (CMRO2). Other estimates from a multi inversion time ASL acquisition (mTI-ASL), salivary samples of the caffeine concentration and behavioural measurements are also reported. We observed significant differences between caffeine and placebo on average across grey matter, with OEF showing an increase of 15.6% (SEM±4.9%, p<0.05) with caffeine, while CBF and CMRO2 showed differences of -30.4% (SEM±1.6%, p<0.01) and -18.6% (SEM±2.9%, p<0.01) respectively with caffeine administration. The reduction in oxygen metabolism found is somehow unexpected, but consistent with a hypothesis of decreased energetic demand, supported by previous electrophysiological studies reporting reductions in spectral power with EEG. Moreover the maps of the physiological parameters estimated illustrate the spatial distribution of changes across grey matter enabling us to localise the effects of caffeine with voxel-wise resolution. CBF changes were widespread as reported by previous findings, while changes in OEF were found to be more restricted, leading to unprecedented mapping of significant CMRO2 reductions mainly in frontal gyrus, parietal and occipital lobes. In conclusion, we propose the estimation framework based on our novel forward model with a dual calibrated fMRI experiment as a viable MRI method to map the effects of drugs on brain oxygen metabolism and haemodynamics with voxel-wise resolution.


Asunto(s)
Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Circulación Cerebrovascular/efectos de los fármacos , Neuroimagen Funcional/métodos , Sustancia Gris , Consumo de Oxígeno/efectos de los fármacos , Adulto , Cafeína/administración & dosificación , Cafeína/sangre , Estimulantes del Sistema Nervioso Central/administración & dosificación , Estimulantes del Sistema Nervioso Central/sangre , Método Doble Ciego , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/efectos de los fármacos , Sustancia Gris/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
4.
Neuroimage ; 129: 159-174, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26801605

RESUMEN

Several techniques have been proposed to estimate relative changes in cerebral metabolic rate of oxygen consumption (CMRO2) by exploiting combined BOLD fMRI and cerebral blood flow data in conjunction with hypercapnic or hyperoxic respiratory challenges. More recently, methods based on respiratory challenges that include both hypercapnia and hyperoxia have been developed to assess absolute CMRO2, an important parameter for understanding brain energetics. In this paper, we empirically optimize a previously presented "original calibration model" relating BOLD and blood flow signals specifically for the estimation of oxygen extraction fraction (OEF) and absolute CMRO2. To do so, we have created a set of synthetic BOLD signals using a detailed BOLD signal model to reproduce experiments incorporating hypercapnic and hyperoxic respiratory challenges at 3T. A wide range of physiological conditions was simulated by varying input parameter values (baseline cerebral blood volume (CBV0), baseline cerebral blood flow (CBF0), baseline oxygen extraction fraction (OEF0) and hematocrit (Hct)). From the optimization of the calibration model for estimation of OEF and practical considerations of hypercapnic and hyperoxic respiratory challenges, a new "simplified calibration model" is established which reduces the complexity of the original calibration model by substituting the standard parameters α and ß with a single parameter θ. The optimal value of θ is determined (θ=0.06) across a range of experimental respiratory challenges. The simplified calibration model gives estimates of OEF0 and absolute CMRO2 closer to the true values used to simulate the experimental data compared to those estimated using the original model incorporating literature values of α and ß. Finally, an error propagation analysis demonstrates the susceptibility of the original and simplified calibration models to measurement errors and potential violations in the underlying assumptions of isometabolism. We conclude that using the simplified calibration model results in a reduced bias in OEF0 estimates across a wide range of potential respiratory challenge experimental designs.


Asunto(s)
Encéfalo/metabolismo , Modelos Neurológicos , Consumo de Oxígeno/fisiología , Encéfalo/irrigación sanguínea , Calibración , Circulación Cerebrovascular/fisiología , Simulación por Computador , Humanos , Hipercapnia/fisiopatología , Hiperoxia/fisiopatología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Modelos Teóricos , Oxígeno/sangre
5.
JMIR Med Inform ; 11: e43847, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36943344

RESUMEN

BACKGROUND: Increasing digitalization in the medical domain gives rise to large amounts of health care data, which has the potential to expand clinical knowledge and transform patient care if leveraged through artificial intelligence (AI). Yet, big data and AI oftentimes cannot unlock their full potential at scale, owing to nonstandardized data formats, lack of technical and semantic data interoperability, and limited cooperation between stakeholders in the health care system. Despite the existence of standardized data formats for the medical domain, such as Fast Healthcare Interoperability Resources (FHIR), their prevalence and usability for AI remain limited. OBJECTIVE: In this paper, we developed a data harmonization pipeline (DHP) for clinical data sets relying on the common FHIR data standard. METHODS: We validated the performance and usability of our FHIR-DHP with data from the Medical Information Mart for Intensive Care IV database. RESULTS: We present the FHIR-DHP workflow in respect of the transformation of "raw" hospital records into a harmonized, AI-friendly data representation. The pipeline consists of the following 5 key preprocessing steps: querying of data from hospital database, FHIR mapping, syntactic validation, transfer of harmonized data into the patient-model database, and export of data in an AI-friendly format for further medical applications. A detailed example of FHIR-DHP execution was presented for clinical diagnoses records. CONCLUSIONS: Our approach enables the scalable and needs-driven data modeling of large and heterogenous clinical data sets. The FHIR-DHP is a pivotal step toward increasing cooperation, interoperability, and quality of patient care in the clinical routine and for medical research.

6.
Alzheimers Res Ther ; 14(1): 62, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35505442

RESUMEN

IMPORTANCE: The entry of artificial intelligence into medicine is pending. Several methods have been used for the predictions of structured neuroimaging data, yet nobody compared them in this context. OBJECTIVE: Multi-class prediction is key for building computational aid systems for differential diagnosis. We compared support vector machine, random forest, gradient boosting, and deep feed-forward neural networks for the classification of different neurodegenerative syndromes based on structural magnetic resonance imaging. DESIGN, SETTING, AND PARTICIPANTS: Atlas-based volumetry was performed on multi-centric T1-weighted MRI data from 940 subjects, i.e., 124 healthy controls and 816 patients with ten different neurodegenerative diseases, leading to a multi-diagnostic multi-class classification task with eleven different classes. INTERVENTIONS: N.A. MAIN OUTCOMES AND MEASURES: Cohen's kappa, accuracy, and F1-score to assess model performance. RESULTS: Overall, the neural network produced both the best performance measures and the most robust results. The smaller classes however were better classified by either the ensemble learning methods or the support vector machine, while performance measures for small classes were comparatively low, as expected. Diseases with regionally specific and pronounced atrophy patterns were generally better classified than diseases with widespread and rather weak atrophy. CONCLUSIONS AND RELEVANCE: Our study furthermore underlines the necessity of larger data sets but also calls for a careful consideration of different machine learning methods that can handle the type of data and the classification task best.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Algoritmos , Atrofia , Humanos , Síndrome
7.
Sci Rep ; 10(1): 10712, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32612129

RESUMEN

Machine learning has considerably improved medical image analysis in the past years. Although data-driven approaches are intrinsically adaptive and thus, generic, they often do not perform the same way on data from different imaging modalities. In particular computed tomography (CT) data poses many challenges to medical image segmentation based on convolutional neural networks (CNNs), mostly due to the broad dynamic range of intensities and the varying number of recorded slices of CT volumes. In this paper, we address these issues with a framework that adds domain-specific data preprocessing and augmentation to state-of-the-art CNN architectures. Our major focus is to stabilise the prediction performance over samples as a mandatory requirement for use in automated and semi-automated workflows in the clinical environment. To validate the architecture-independent effects of our approach we compare a neural architecture based on dilated convolutions for parallel multi-scale processing (a modified Mixed-Scale Dense Network: MS-D Net) to traditional scaling operations (a modified U-Net). Finally, we show that an ensemble model combines the strengths across different individual methods. Our framework is simple to implement into existing deep learning pipelines for CT analysis. It performs well on a range of tasks such as liver and kidney segmentation, without significant differences in prediction performance on strongly differing volume sizes and varying slice thickness. Thus our framework is an essential step towards performing robust segmentation of unknown real-world samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA