Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Glob Chang Biol ; 26(10): 5613-5629, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32715608

RESUMEN

Western boundary currents (WBCs) redistribute heat and oligotrophic seawater from the tropics to temperate latitudes, with several displaying substantial climate change-driven intensification over the last century. Strengthening WBCs have been implicated in the poleward range expansion of marine macroflora and fauna, however, the impacts on the structure and function of temperate microbial communities are largely unknown. Here we show that the major subtropical WBC of the South Pacific Ocean, the East Australian Current (EAC), transports microbial assemblages that maintain tropical and oligotrophic (k-strategist) signatures, to seasonally displace more copiotrophic (r-strategist) temperate microbial populations within temperate latitudes of the Tasman Sea. We identified specific characteristics of EAC microbial assemblages compared with non-EAC assemblages, including strain transitions within the SAR11 clade, enrichment of Prochlorococcus, predicted smaller genome sizes and shifts in the importance of several functional genes, including those associated with cyanobacterial photosynthesis, secondary metabolism and fatty acid and lipid transport. At a temperate time-series site in the Tasman Sea, we observed significant reductions in standing stocks of total carbon and chlorophyll a, and a shift towards smaller phytoplankton and carnivorous copepods, associated with the seasonal impact of the EAC microbial assemblage. In light of the substantial shifts in microbial assemblage structure and function associated with the EAC, we conclude that climate-driven expansions of WBCs will expand the range of tropical oligotrophic microbes, and potentially profoundly impact the trophic status of temperate waters.


Asunto(s)
Prochlorococcus , Agua de Mar , Australia , Clorofila A , Océano Pacífico
2.
Environ Pollut ; : 124479, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960113

RESUMEN

The taxonomy of marine plastisphere communities has been extensively studied, demonstrating the ubiquity of hydrocarbonoclastic bacteria of potential biotechnological significance. However, prokaryotic functioning on plastic surfaces has received limited attention, and the question of whether these microorganisms are active and expressing specific molecular mechanisms underpinning plastisphere colonisation remains to be addressed. The aim of this study was to investigate the plastic colonisation process, to identify the active taxa involved in biofilm formation and the mechanisms used to initiate colonisation. To achieve this, a marine plastisphere characterised by active hydrocarbonoclastic genera was used as the inoculum for a short-term microcosm experiment using virgin low-density polyethylene as the sole carbon source. Following incubation for 1 and 2 weeks (representing early and late colonisation, respectively), a taxonomic and comparative metaproteomic approach revealed a significant shift in plastisphere diversity and composition, yet highlighted stability in the predominance of active Proteobacteria spanning 16 genera, including Marinomonas, Pseudomonas, and Pseudoalteromonas. Relative quantification of 1,762 proteins shared between the initial plastisphere inoculum, the microcosm plastisphere and the planktonic cells in the surrounding artificial seawater, provided insights into the differential regulation of proteins associated with plastisphere formation. This included the upregulation of proteins mediating cellular attachment in the plastisphere, for example flagellin expressed by Marinomonas, Cobetia, Pseudoalteromonas, and Pseudomonas, and curli expressed by Cobetia. In addition to the differential regulation of energy metabolism in Marinomonas, Psychrobacter, Pseudomonas and Cobetia within the plastisphere relative to the surrounding seawater. Further, we identified the upregulation of amino acid metabolism and transport, including glutamine hydrolysis to glutamate in Marinomonas and unclassified Halomonadaceae, potentially coupled to ammonia availability and oxidative stress experienced within the plastisphere. Our study provides novel insights into the dynamics of plastisphere formation and function, highlighting potential targets for regulating plastisphere growth to enhance plastic bioremediation processes.

3.
Microbiome ; 12(1): 36, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389111

RESUMEN

BACKGROUND: Microbial functioning on marine plastic surfaces has been poorly documented, especially within cold climates where temperature likely impacts microbial activity and the presence of hydrocarbonoclastic microorganisms. To date, only two studies have used metaproteomics to unravel microbial genotype-phenotype linkages in the marine 'plastisphere', and these have revealed the dominance of photosynthetic microorganisms within warm climates. Advancing the functional representation of the marine plastisphere is vital for the development of specific databases cataloging the functional diversity of the associated microorganisms and their peptide and protein sequences, to fuel biotechnological discoveries. Here, we provide a comprehensive assessment for plastisphere metaproteomics, using multi-omics and data mining on thin plastic biofilms to provide unique insights into plastisphere metabolism. Our robust experimental design assessed DNA/protein co-extraction and cell lysis strategies, proteomics workflows, and diverse protein search databases, to resolve the active plastisphere taxa and their expressed functions from an understudied cold environment. RESULTS: For the first time, we demonstrate the predominance and activity of hydrocarbonoclastic genera (Psychrobacter, Flavobacterium, Pseudomonas) within a primarily heterotrophic plastisphere. Correspondingly, oxidative phosphorylation, the citrate cycle, and carbohydrate metabolism were the dominant pathways expressed. Quorum sensing and toxin-associated proteins of Streptomyces were indicative of inter-community interactions. Stress response proteins expressed by Psychrobacter, Planococcus, and Pseudoalteromonas and proteins mediating xenobiotics degradation in Psychrobacter and Pseudoalteromonas suggested phenotypic adaptations to the toxic chemical microenvironment of the plastisphere. Interestingly, a targeted search strategy identified plastic biodegradation enzymes, including polyamidase, hydrolase, and depolymerase, expressed by rare taxa. The expression of virulence factors and mechanisms of antimicrobial resistance suggested pathogenic genera were active, despite representing a minor component of the plastisphere community. CONCLUSION: Our study addresses a critical gap in understanding the functioning of the marine plastisphere, contributing new insights into the function and ecology of an emerging and important microbial niche. Our comprehensive multi-omics and comparative metaproteomics experimental design enhances biological interpretations to provide new perspectives on microorganisms of potential biotechnological significance beyond biodegradation and to improve the assessment of the risks associated with microorganisms colonizing marine plastic pollution. Video Abstract.


Asunto(s)
Microbiota , Plásticos , Bacterias/genética , Multiómica , Biopelículas , Biodegradación Ambiental , Microbiota/genética
4.
Nat Commun ; 15(1): 2902, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575584

RESUMEN

Microbial diversity has been extensively explored in reef-building corals. However, the functional roles of coral-associated microorganisms remain poorly elucidated. Here, we recover 191 bacterial and 10 archaeal metagenome-assembled genomes (MAGs) from the coral Acropora kenti (formerly A. tenuis) and adjacent seawater, to identify microbial functions and metabolic interactions within the holobiont. We show that 82 MAGs were specific to the A. kenti holobiont, including members of the Pseudomonadota, Bacteroidota, and Desulfobacterota. A. kenti-specific MAGs displayed significant differences in their genomic features and functional potential relative to seawater-specific MAGs, with a higher prevalence of genes involved in host immune system evasion, nitrogen and carbon fixation, and synthesis of five essential B-vitamins. We find a diversity of A. kenti-specific MAGs encode the biosynthesis of essential amino acids, such as tryptophan, histidine, and lysine, which cannot be de novo synthesised by the host or Symbiodiniaceae. Across a water quality gradient spanning 2° of latitude, A. kenti microbial community composition is correlated to increased temperature and dissolved inorganic nitrogen, with corresponding enrichment in molecular chaperones, nitrate reductases, and a heat-shock protein. We reveal mechanisms of A. kenti-microbiome-symbiosis on the Great Barrier Reef, highlighting the interactions underpinning the health of this keystone holobiont.


Asunto(s)
Antozoos , Microbiota , Resiliencia Psicológica , Animales , Antozoos/genética , Antozoos/microbiología , Microbiota/genética , Metagenoma/genética , Nitrógeno , Arrecifes de Coral , Simbiosis/genética
5.
Commun Biol ; 7(1): 125, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267685

RESUMEN

Marine heatwaves (MHWs) cause disruption to marine ecosystems, deleteriously impacting macroflora and fauna. However, effects on microorganisms are relatively unknown despite ocean temperature being a major determinant of assemblage structure. Using data from thousands of Southern Hemisphere samples, we reveal that during an "unprecedented" 2015/16 Tasman Sea MHW, temperatures approached or surpassed the upper thermal boundary of many endemic taxa. Temperate microbial assemblages underwent a profound transition to niche states aligned with sites over 1000 km equatorward, adapting to higher temperatures and lower nutrient conditions bought on by the MHW. MHW conditions also modulate seasonal patterns of microbial diversity and support novel assemblage compositions. The most significant affects of MHWs on microbial assemblages occurred during warmer months, when temperatures exceeded the upper climatological bounds. Trends in microbial response across several MHWs in different locations suggest these are emergent properties of temperate ocean warming, which may facilitate monitoring, prediction and adaptation efforts.


Asunto(s)
Ecosistema , Rayos Infrarrojos , Nutrientes , Temperatura
6.
ISME Commun ; 2(1): 16, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37938744

RESUMEN

Ecological interactions between marine bacteria and phytoplankton play a pivotal role in governing the ocean's major biogeochemical cycles. Among these, members of the marine Roseobacter Group (MRG) can establish mutualistic relationships with phytoplankton that are, in part, maintained by exchanges of the organosulfur compound, dimethylsulfoniopropionate (DMSP). Yet most of what is known about these interactions has been derived from culture-based laboratory studies. To investigate temporal and spatial co-occurrence patterns between members of the MRG and DMSP-producing phytoplankton we analysed 16S and 18S rRNA gene amplicon sequence variants (ASVs) derived from 5 years of monthly samples from seven environmentally distinct Australian oceanographic time-series. The MRG and DMSP-producer communities often displayed contemporaneous seasonality, which was greater in subtropical and temperate environments compared to tropical environments. The relative abundance of both groups varied latitudinally, displaying a poleward increase, peaking (MRG at 33% of total bacteria, DMSP producers at 42% of eukaryotic phototrophs) during recurrent spring-summer phytoplankton blooms in the most temperate site (Maria Island, Tasmania). Network analysis identified 20,140 significant positive correlations between MRG ASVs and DMSP producers and revealed that MRGs exhibit significantly stronger correlations to high DMSP producers relative to other DMSP-degrading bacteria (Pelagibacter, SAR86 and Actinobacteria). By utilising the power of a continental network of oceanographic time-series, this study provides in situ confirmation of interactions found in laboratory studies and demonstrates that the ecological dynamics of an important group of marine bacteria are shaped by the production of an abundant and biogeochemically significant organosulfur compound.

7.
Sci Total Environ ; 841: 156704, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35718174

RESUMEN

Southeast Asia is considered to have some of the highest levels of marine plastic pollution in the world. It is therefore vitally important to increase our understanding of the impacts and risks of plastic pollution to marine ecosystems and the essential services they provide to support the development of mitigation measures in the region. An interdisciplinary, international network of experts (Australia, Indonesia, Ireland, Malaysia, the Philippines, Singapore, Thailand, the United Kingdom, and Vietnam) set a research agenda for marine plastic pollution in the region, synthesizing current knowledge and highlighting areas for further research in Southeast Asia. Using an inductive method, 21 research questions emerged under five non-predefined key themes, grouping them according to which: (1) characterise marine plastic pollution in Southeast Asia; (2) explore its movement and fate across the region; (3) describe the biological and chemical modifications marine plastic pollution undergoes; (4) detail its environmental, social, and economic impacts; and, finally, (5) target regional policies and possible solutions. Questions relating to these research priority areas highlight the importance of better understanding the fate of marine plastic pollution, its degradation, and the impacts and risks it can generate across communities and different ecosystem services. Knowledge of these aspects will help support actions which currently suffer from transboundary problems, lack of responsibility, and inaction to tackle the issue from its point source in the region. Being profoundly affected by marine plastic pollution, Southeast Asian countries provide an opportunity to test the effectiveness of innovative and socially inclusive changes in marine plastic governance, as well as both high and low-tech solutions, which can offer insights and actionable models to the rest of the world.


Asunto(s)
Ecosistema , Plásticos , Asia Sudoriental , Monitoreo del Ambiente , Contaminación Ambiental , Filipinas , Residuos/análisis
8.
PeerJ ; 9: e10809, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717676

RESUMEN

Biological dinitrogen (N2) fixation is one mechanism by which specific microorganisms (diazotrophs) can ameliorate nitrogen (N) limitation. Historically, rates of N2 fixation were believed to be limited outside of the low nutrient tropical and subtropical open ocean; however, emerging evidence suggests that N2 fixation is also a significant process within temperate coastal waters. Using a combination of amplicon sequencing, targeting the nitrogenase reductase gene (nifH), quantitative nifH PCR, and 15N2 stable isotope tracer experiments, we investigated spatial patterns of diazotroph assemblage structure and N2 fixation rates within the temperate coastal waters of southern Australia during Austral autumn and summer. Relative to previous studies in open ocean environments, including tropical northern Australia, and tropical and temperate estuaries, our results indicate that high rates of N2 fixation (10-64 nmol L-1 d-1) can occur within the large inverse estuary Spencer Gulf, while comparatively low rates of N2 fixation (2 nmol L-1 d-1) were observed in the adjacent continental shelf waters. Across the dataset, low concentrations of NO3/NO2 were significantly correlated with the highest N2 fixation rates, suggesting that N2 fixation could be an important source of new N in the region as dissolved inorganic N concentrations are typically limiting. Overall, the underlying diazotrophic community was dominated by nifH sequences from Cluster 1 unicellular cyanobacteria of the UCYN-A clade, as well as non-cyanobacterial diazotrophs related to Pseudomonas stutzeri, and Cluster 3 sulfate-reducing deltaproteobacteria. Diazotroph community composition was significantly influenced by salinity and SiO4 concentrations, reflecting the transition from UCYN-A-dominated assemblages in the continental shelf waters, to Cluster 3-dominated assemblages in the hypersaline waters of the inverse estuary. Diverse, transitional diazotrophic communities, comprised of a mixture of UCYN-A and putative heterotrophic bacteria, were observed at the mouth and southern edge of Spencer Gulf, where the highest N2 fixation rates were observed. In contrast to observations in other environments, no seasonal patterns in N2 fixation rates and diazotroph community structure were apparent. Collectively, our findings are consistent with the emerging view that N2 fixation within temperate coastal waters is a previously overlooked dynamic and potentially important component of the marine N cycle.

9.
10.
ISME J ; 13(3): 663-675, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30323263

RESUMEN

Marine Group II (MGII) archaea represent the most abundant planktonic archaeal group in ocean surface waters, but our understanding of the group has been limited by a lack of cultured representatives and few sequenced genomes. Here, we conducted a comparative phylogenomic analysis of 270 recently available MGII metagenome-assembled genomes (MAGs) to investigate their evolution and ecology. Based on a rank-normalised genome phylogeny, we propose that MGII is an order-level lineage for which we propose the name Candidatus Poseidoniales (after Gr. n. Poseidon, God of the sea), comprising the families Candidatus Poseidonaceae fam. nov. (formerly subgroup MGIIa) and Candidatus Thalassarchaeaceae fam. nov. (formerly subgroup MGIIb). Within these families, 21 genera could be resolved, many of which had distinct biogeographic ranges and inferred nutrient preferences. Phylogenetic analyses of key metabolic functions suggest that the ancestor of Ca. Poseidoniales was a surface water-dwelling photoheterotroph that evolved to occupy multiple related ecological niches based primarily on spectral tuning of proteorhodopsin genes. Interestingly, this adaptation appears to involve an overwrite mechanism whereby an existing single copy of the proteorhodopsin gene is replaced by a horizontally transferred copy, which in many instances should allow an abrupt change in light absorption capacity. Phototrophy was lost entirely from five Ca. Poseidoniales genera coinciding with their adaptation to deeper aphotic waters. We also report the first instances of nitrate reductase in two genera acquired via horizontal gene transfer (HGT), which was a potential adaptation to oxygen limitation. Additional metabolic traits differentiating families and genera include flagellar-based adhesion, transporters, and sugar, amino acid, and peptide degradation. Our results suggest that HGT has shaped the evolution of Ca. Poseidoniales to occupy a variety of ecological niches and to become the most successful archaeal lineage in ocean surface waters.


Asunto(s)
Archaea/genética , Transferencia de Gen Horizontal , Genoma Arqueal/genética , Metagenoma , Plancton/genética , Rodopsinas Microbianas/genética , Adaptación Fisiológica , Archaea/aislamiento & purificación , Evolución Biológica , Ecología , Océanos y Mares , Filogenia , Plancton/aislamiento & purificación , Agua de Mar
11.
Nat Microbiol ; 4(12): 2090-2100, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31548681

RESUMEN

Corals and the reef ecosystems that they support are in global decline due to increasing anthropogenic pressures such as climate change1. However, effective reef conservation strategies are hampered by a limited mechanistic understanding of coral biology and the functional roles of the diverse microbial communities that underpin coral health2,3. Here, we present an integrated genomic characterization of the coral species Porites lutea and its microbial partners. High-quality genomes were recovered from P. lutea, as well as a metagenome-assembled Cladocopium C15 (the dinoflagellate symbiont) and 52 bacterial and archaeal populations. Comparative genomic analysis revealed that many of the bacterial and archaeal genomes encode motifs that may be involved in maintaining association with the coral host and in supplying fixed carbon, B-vitamins and amino acids to their eukaryotic partners. Furthermore, mechanisms for ammonia, urea, nitrate, dimethylsulfoniopropionate and taurine transformation were identified that interlink members of the holobiont and may be important for nutrient acquisition and retention in oligotrophic waters. Our findings demonstrate the critical and diverse roles that microorganisms play within the coral holobiont and underscore the need to consider all of the components of the holobiont if we are to effectively inform reef conservation strategies.


Asunto(s)
Antozoos/microbiología , Archaea/genética , Bacterias/genética , Genoma , Simbiosis , Animales , Antozoos/metabolismo , Arrecifes de Coral , Dinoflagelados/genética , Metagenómica , Microbiota
12.
Nat Ecol Evol ; 3(11): 1509-1520, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31636428

RESUMEN

Research into the microbiomes of natural environments is changing the way ecologists and evolutionary biologists view the importance of microorganisms in ecosystem function. This is particularly relevant in ocean environments, where microorganisms constitute the majority of biomass and control most of the major biogeochemical cycles, including those that regulate Earth's climate. Coastal marine environments provide goods and services that are imperative to human survival and well-being (for example, fisheries and water purification), and emerging evidence indicates that these ecosystem services often depend on complex relationships between communities of microorganisms (the 'microbiome') and the environment or their hosts - termed the 'holobiont'. Understanding of coastal ecosystem function must therefore be framed under the holobiont concept, whereby macroorganisms and their associated microbiomes are considered as a synergistic ecological unit. Here, we evaluate the current state of knowledge on coastal marine microbiome research and identify key questions within this growing research area. Although the list of questions is broad and ambitious, progress in the field is increasing exponentially, and the emergence of large, international collaborative networks and well-executed manipulative experiments are rapidly advancing the field of coastal marine microbiome research.


Asunto(s)
Microbiota , Clima , Explotaciones Pesqueras , Humanos
13.
Front Microbiol ; 9: 3356, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30728821

RESUMEN

The tropical marine environments of northern Australia encompasses a diverse range of geomorphological and oceanographic conditions and high levels of productivity and nitrogen fixation. However, efforts to characterize phytoplankton assemblages in these waters have been restricted to studies using microscopic and pigment analyses, leading to the current consensus that this region is dominated by large diatoms, dinoflagellates, and the marine cyanobacterium Trichodesmium. During an oceanographic transect from the Arafura Sea through the Torres Strait to the Coral Sea, we characterized prokaryotic and eukaryotic phytoplankton communities in surface waters using a combination of flow cytometry and Illumina based 16S and 18S ribosomal RNA amplicon sequencing. Similar to observations in other marine regions around Australian, phytoplankton assemblages throughout this entire region were rich in unicellular picocyanobacterial primary producers while picoeukaryotic phytoplankton formed a consistent, though smaller proportion of the photosynthetic biomass. Major taxonomic groups displayed distinct biogeographic patterns linked to oceanographic and nutrient conditions. Unicellular picocyanobacteria dominated in both flow cytometric abundance and carbon biomass, with members of the Synechococcus genus dominating in the shallower Arafura Sea and Torres Strait where chlorophyll a was relatively higher (averaging 0.4 ± 0.2 mg m-3), and Prochlorococcus dominating in the oligotrophic Coral Sea where chlorophyll a averaged 0.13 ± 0.07 mg m-3. Consistent with previous microscopic and pigment-based observations, we found from sequence analysis that a variety of diatoms (Bacillariophyceae) exhibited high relative abundance in the Arafura Sea and Torres Strait, while dinoflagellates (Dinophyceae) and prymnesiophytes (Prymnesiophyceae) were more abundant in the Coral Sea. Ordination analysis identified temperature, nutrient concentrations and water depth as key drivers of the region's assemblage composition. This is the first molecular and flow cytometric survey of the abundance and diversity of both prokaryotic and picoeukaryotic phytoplankton in this region, and points to the need to include the picocyanobacterial populations as an essential oceanic variable for sustained monitoring in order to better understand the health of these important coastal waters as global oceans change.

14.
Sci Data ; 5: 180130, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30015804

RESUMEN

Sustained observations of microbial dynamics are rare, especially in southern hemisphere waters. The Australian Marine Microbial Biodiversity Initiative (AMMBI) provides methodologically standardized, continental scale, temporal phylogenetic amplicon sequencing data describing Bacteria, Archaea and microbial Eukarya assemblages. Sequence data is linked to extensive physical, biological and chemical oceanographic contextual information. Samples are collected monthly to seasonally from multiple depths at seven sites: Darwin Harbour (Northern Territory), Yongala (Queensland), North Stradbroke Island (Queensland), Port Hacking (New South Wales), Maria Island (Tasmania), Kangaroo Island (South Australia), Rottnest Island (Western Australia). These sites span ~30° of latitude and ~38° longitude, range from tropical to cold temperate zones, and are influenced by both local and globally significant oceanographic and climatic features. All sequence datasets are provided in both raw and processed fashion. Currently 952 samples are publically available for bacteria and archaea which include 88,951,761 bacterial (72,435 unique) and 70,463,079 archaeal (24,205 unique) 16 S rRNA v1-3 gene sequences, and 388 samples are available for eukaryotes which include 39,801,050 (78,463 unique) 18 S rRNA v4 gene sequences.


Asunto(s)
Archaea/genética , Bacterias/genética , Microbiota , Australia , Biodiversidad , Océanos y Mares , Análisis de Secuencia de ARN , Microbiología del Agua
16.
Front Microbiol ; 8: 967, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28638369

RESUMEN

Discrepancies between bioavailable nitrogen (N) concentrations and phytoplankton growth rates in the oligotrophic waters of the Great Barrier Reef (GBR) suggest that undetermined N sources must play a significant role in supporting primary productivity. One such source could be biological dinitrogen (N2) fixation through the activity of "diazotrophic" bacterioplankton. Here, we investigated N2 fixation and diazotroph community composition over 10° S of latitude within GBR surface waters. Qualitative N2 fixation rates were found to be variable across the GBR but were relatively high in coastal, inner and outer GBR waters, reaching 68 nmol L-1 d-1. Diazotroph assemblages, identified by amplicon sequencing of the nifH gene, were dominated by the cyanobacterium Trichodesmium erythraeum, γ-proteobacteria from the Gamma A clade, and δ-proteobacterial phylotypes related to sulfate-reducing genera. However, diazotroph communities exhibited significant spatial heterogeneity, correlated with shifts in dissolved inorganic nutrient concentrations. Specifically, heterotrophic diazotrophs generally increased in relative abundance with increasing concentrations of phosphate and N, while Trichodesmium was proportionally more abundant when concentrations of these nutrients were low. This study provides the first in-depth characterization of diazotroph community composition and N2 fixation dynamics within the oligotrophic, N-limited surface waters of the GBR. Our observations highlight the need to re-evaluate N cycling dynamics within oligotrophic coral reef systems, to include diverse N2 fixing assemblages as a potentially significant source of dissolved N within the water column.

17.
ISME J ; 10(6): 1499-513, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26613341

RESUMEN

Australia's tropical waters represent predicted 'hotspots' for nitrogen (N2) fixation based on empirical and modelled data. However, the identity, activity and ecology of diazotrophs within this region are virtually unknown. By coupling DNA and cDNA sequencing of nitrogenase genes (nifH) with size-fractionated N2 fixation rate measurements, we elucidated diazotroph dynamics across the shelf region of the Arafura and Timor Seas (ATS) and oceanic Coral Sea during Austral spring and winter. During spring, Trichodesmium dominated ATS assemblages, comprising 60% of nifH DNA sequences, while Candidatus Atelocyanobacterium thalassa (UCYN-A) comprised 42% in the Coral Sea. In contrast, during winter the relative abundance of heterotrophic unicellular diazotrophs (δ-proteobacteria and γ-24774A11) increased in both regions, concomitant with a marked decline in UCYN-A sequences, whereby this clade effectively disappeared in the Coral Sea. Conservative estimates of N2 fixation rates ranged from <1 to 91 nmol l(-1) day(-1), and size fractionation indicated that unicellular organisms dominated N2 fixation during both spring and winter, but average unicellular rates were up to 10-fold higher in winter than in spring. Relative abundances of UCYN-A1 and γ-24774A11 nifH transcripts negatively correlated to silicate and phosphate, suggesting an affinity for oligotrophy. Our results indicate that Australia's tropical waters are indeed hotspots for N2 fixation and that regional physicochemical characteristics drive differential contributions of cyanobacterial and heterotrophic phylotypes to N2 fixation.


Asunto(s)
Cianobacterias , Deltaproteobacteria , Fijación del Nitrógeno/genética , Animales , Antozoos , Australia , Cianobacterias/genética , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Deltaproteobacteria/crecimiento & desarrollo , Deltaproteobacteria/metabolismo , Ecología , Procesos Heterotróficos , Nitrogenasa/genética , Océanos y Mares , Estaciones del Año , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Trichodesmium/genética , Trichodesmium/crecimiento & desarrollo , Trichodesmium/metabolismo
18.
PeerJ ; 4: e1973, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27168982

RESUMEN

The intensification of western boundary currents in the global ocean will potentially influence meso-scale eddy generation, and redistribute microbes and their associated ecological and biogeochemical functions. To understand eddy-induced changes in microbial community composition as well as how they control growth, we targeted the East Australian Current (EAC) region to sample microbes in a cyclonic (cold-core) eddy (CCE) and the adjacent EAC. Phototrophic and diazotrophic microbes were more diverse (2-10 times greater Shannon index) in the CCE relative to the EAC, and the cell size distribution in the CCE was dominated (67%) by larger micro-plankton [Formula: see text], as opposed to pico- and nano-sized cells in the EAC. Nutrient addition experiments determined that nitrogen was the principal nutrient limiting growth in the EAC, while iron was a secondary limiting nutrient in the CCE. Among the diazotrophic community, heterotrophic NifH gene sequences dominated in the EAC and were attributable to members of the gamma-, beta-, and delta-proteobacteria, while the CCE contained both phototrophic and heterotrophic diazotrophs, including Trichodesmium, UCYN-A and gamma-proteobacteria. Daily sampling of incubation bottles following nutrient amendment captured a cascade of effects at the cellular, population and community level, indicating taxon-specific differences in the speed of response of microbes to nutrient supply. Nitrogen addition to the CCE community increased picoeukaryote chlorophyll a quotas within 24 h, suggesting that nutrient uplift by eddies causes a 'greening' effect as well as an increase in phytoplankton biomass. After three days in both the EAC and CCE, diatoms increased in abundance with macronutrient (N, P, Si) and iron amendment, whereas haptophytes and phototrophic dinoflagellates declined. Our results indicate that cyclonic eddies increase delivery of nitrogen to the upper ocean to potentially mitigate the negative consequences of increased stratification due to ocean warming, but also increase the biological demand for iron that is necessary to sustain the growth of large-celled phototrophs and potentially support the diversity of diazotrophs over longer time-scales.

19.
Front Microbiol ; 6: 432, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26042096

RESUMEN

Rising seawater temperature associated with global climate change is a significant threat to coral health and is linked to increasing coral disease and pathogen-related bleaching events. We performed heat stress experiments with the coral Pocillopora damicornis, where temperature was increased to 31°C, consistent with the 2-3°C predicted increase in summer sea surface maxima. 16S rRNA amplicon sequencing revealed a large shift in the composition of the bacterial community at 31°C, with a notable increase in Vibrio, including known coral pathogens. To investigate the dynamics of the naturally occurring Vibrio community, we performed quantitative PCR targeting (i) the whole Vibrio community and (ii) the coral pathogen Vibrio coralliilyticus. At 31°C, Vibrio abundance increased by 2-3 orders of magnitude and V. coralliilyticus abundance increased by four orders of magnitude. Using a Vibrio-specific amplicon sequencing assay, we further demonstrated that the community composition shifted dramatically as a consequence of heat stress, with significant increases in the relative abundance of known coral pathogens. Our findings provide quantitative evidence that the abundance of potential coral pathogens increases within natural communities of coral-associated microbes as a consequence of rising seawater temperature and highlight the potential negative impacts of anthropogenic climate change on coral reef ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA