Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38894105

RESUMEN

Combining proton and phosphorus magnetic resonance spectroscopy offers a unique opportunity to study the oxidative and glycolytic components of metabolism in working muscle. This paper presents a 7 T proton calf coil design that combines dipole and loop elements to achieve the high performance necessary for detecting metabolites with low abundance and restricted visibility, specifically lactate, while including the option of adding a phosphorus array. We investigated the transmit, receive, and parallel imaging performance of three transceiver dipoles with six pair-wise overlap-decoupled standard or twisted pair receive-only coils. With a higher SNR and more efficient transmission decoupling, standard loops outperformed twisted pair coils. The dipoles with standard loops provided a four-fold-higher image SNR than a multinuclear reference coil comprising two proton channels and 32% more than a commercially available 28-channel proton knee coil. The setup enabled up to three-fold acceleration in the right-left direction, with acceptable g-factors and no visible aliasing artefacts. Spectroscopic phantom measurements revealed a higher spectral SNR for lactate with the developed setup than with either reference coil and fewer restrictions in voxel placement due to improved transmit homogeneity. This paper presents a new use case for dipoles and highlights their advantages for the integration in multinuclear calf coils.


Asunto(s)
Imagen por Resonancia Magnética , Músculo Esquelético , Fantasmas de Imagen , Humanos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/química , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Relación Señal-Ruido , Ácido Láctico/química , Ácido Láctico/metabolismo
2.
Magn Reson Med ; 88(1): 309-321, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35373857

RESUMEN

PURPOSE: To evaluate the feasibility of motion correction for sodium (23 Na) MRI based on interleaved acquired 3D proton (1 H) navigator images. METHODS: A 3D radial density-adapted sequence for interleaved 23 Na/1 H MRI was implemented on a 7 Tesla whole-body MRI system. The 1 H data obtained during the 23 Na acquisition were used to reconstruct 140 navigator image volumes with a nominal spatial resolution of (2.5 mm)3 and a temporal resolution of 6 s. The motion information received from co-registration was then used to correct the 23 Na image dataset, which also had a nominal spatial resolution of (2.5 mm)3 . The approach was evaluated on six healthy volunteers, whose motion during the scans had different intensities and characteristics. RESULTS: Interleaved acquisition of two nuclei did not show any relevant influence on image quality (SNR of 13.0 for interleaved versus 13.2 for standard 23 Na MRI and 176.4 for interleaved versus 178.0 for standard 1 H MRI). The applied motion correction increased the consistency between two consecutive scans for all examined volunteers and improved the image quality for all kinds of motion. The SD of the differences ranged between 2.30% and 6.96% for the uncorrected and between 2.13% and 2.67% for the corrected images. CONCLUSION: The feasibility of interleaved acquired 1 H navigator images to be used for retrospective motion correction of 23 Na images was successfully demonstrated. The approach neither affected the 23 Na image quality nor elongated the scan time and can therefore be an important tool to improve the accuracy of quantitative 23 Na MRI.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Estudios Retrospectivos , Sodio
3.
Magn Reson Med ; 87(3): 1174-1183, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34719061

RESUMEN

PURPOSE: Lactate is a key metabolite in skeletal muscle and whole-body physiology. Its MR visibility in muscle is affected by overlapping lipid signals and fiber orientation. Double-quantum filtered (DQF) 1 H MRS selectively detects lactate at 1.3 ppm, but at ultra-high field the efficiency of slice-selective 3D-localization with conventional RF pulses is limited by bandwidth. This novel 3D-localized 1 H DQF MRS sequence uses adiabatic refocusing pulses to unambiguously detect lactate in skeletal muscle at 7 T. METHODS: Lactate double-quantum coherences were 3D-localized using slice-selective Shinnar-Le Roux optimized excitation and adiabatic refocusing pulses (similar to semi-LASER). DQF MR spectra were acquired at 7 T from lactate phantoms, meat specimens with injected lactate (exploring multiple TEs and fiber orientations), and human gastrocnemius in vivo during and after exercise (without cuff ischemia). RESULTS: Lactate was readily detected, achieving the full potential of 50% signal with a DQF, in solution. The effects of fiber orientation and TE on the lactate doublet (peak splitting, amplitude, and phase) were in good agreement with theory and literature. Exercise-induced lactate accumulation was detected with 30 s time resolution. CONCLUSION: This novel 3D-localized 1 H DQF MRS sequence can dynamically detect glycolytically generated lactate in muscle during exercise and recovery at 7 T.


Asunto(s)
Ácido Láctico , Músculo Esquelético , Ejercicio Físico , Humanos , Espectroscopía de Resonancia Magnética , Músculo Esquelético/diagnóstico por imagen , Fantasmas de Imagen
4.
NMR Biomed ; 35(10): e4735, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35352440

RESUMEN

Magnetic resonance signals from different nuclei can be excited or received at the same time,rendering simultaneous or rapidly interleaved multi-nuclear acquisitions feasible. The advan-tages are a reduction of total scan time compared to sequential multi-nuclear acquisitions or that additional information from heteronuclear data is obtained at thesame time and anatomical position. Information content can be qualitatively increased by delivering a more comprehensive MR-based picture of a transient state (such as an exercise bout). Also, combiningnon-proton MR acquisitions with 1 Hinformation (e.g., dynamic shim updates and motion correction) can be used to improve data quality during long scans and benefits image coregistration. This work reviews the literature on interleaved and simultaneous multi-nuclear MRI and MRS in vivo. Prominent use cases for this methodology in clinical and research applications are brain and muscle, but studies have also been carried out in other targets, including the lung, knee, breast and heart. Simultaneous multi-nuclear measurements in the liver and kidney have also been performed, but exclusively in rodents. In this review, a consistent nomenclature is proposed, to help clarify the terminology used for this principle throughout the literature on in-vivo MR. An overview covers the basic principles, the technical requirements on the MR scanner and the implementations realised either by MR system vendors or research groups, from the early days until today. Considerations regarding the multi-tuned RF coils required and heteronuclear polarisation interactions are briefly discussed, and fields for future in-vivo applications for interleaved multi-nuclear MR pulse sequences are identified.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Movimiento (Física) , Ondas de Radio
5.
Magn Reson Med ; 86(1): 115-130, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33565187

RESUMEN

PURPOSE: To evaluate the repeatability of multinuclear interleaved 1 H/31 P NMR dynamic acquisitions in skeletal muscle and the impact of nuclear Overhauser enhancement (nOe) on the 31 P results at 3T in exercise-recovery and ischemia-hyperemia paradigms. METHODS: A 1 H/31 P interleaved pulse sequence was used to measure every 2.5 s a perfusion-weighted image, a T2∗ map, a 31 P spectrum and 32 1 H spectra sensitive to deoxymyoglobin. 21 subjects performed a plantar flexion exercise and after recovery underwent an 8-min lower leg ischemia. The procedure was repeated in visit 2 with 12 subjects. An additional exercise bout without 1 H excitation was appended to visit 1. Individual 1 H RF pulse nOe was measured at rest in every visit. RESULTS: Repeatability scores (coefficient of variation, Bland-Altman analysis) were similar to those found in the literature using similar mono-nuclear acquisitions. |Pi]/[PCr], pH drop, creatine rephosphorylation rate (τPCr ), maximum perfusion, time to peak perfusion, and blood flow post-exercise showed high reliability (intraclass correlation coefficient > 0.7), whereas hemodynamic results from reactive hyperemia showed higher repeatability. After accounting for nOe, which increased Pi and PCr signal-to-noise ratio by 30%, no differences in 31 P results were observed between interleaved and 31 P MRS-only acquisitions. τPCr was unaffected by nOe. CONCLUSION: The method shows good repeatability for both paradigms while simultaneously providing multiple dynamic data sets on a clinical scanner. The nOe effects were accounted for on a per-subject and per-visit basis using a short 31 P reference scan. This multiparametric approach has a multitude of applications for the study of oxygen utilization and ATP turnover in the muscle.


Asunto(s)
Pierna , Músculo Esquelético , Ejercicio Físico , Humanos , Pierna/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Músculo Esquelético/diagnóstico por imagen , Reproducibilidad de los Resultados
6.
NMR Biomed ; 34(5): e4484, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33559967

RESUMEN

The translation of MRS to clinical practice has been impeded by the lack of technical standardization. There are multiple methods of acquisition, post-processing, and analysis whose details greatly impact the interpretation of the results. These details are often not fully reported, making it difficult to assess MRS studies on a standardized basis. This hampers the reviewing of manuscripts, limits the reproducibility of study results, and complicates meta-analysis of the literature. In this paper a consensus group of MRS experts provides minimum guidelines for the reporting of MRS methods and results, including the standardized description of MRS hardware, data acquisition, analysis, and quality assessment. This consensus statement describes each of these requirements in detail and includes a checklist to assist authors and journal reviewers and to provide a practical way for journal editors to ensure that MRS studies are reported in full.


Asunto(s)
Consenso , Espectroscopía de Resonancia Magnética , Informe de Investigación/normas , Testimonio de Experto , Humanos , Programas Informáticos
7.
Magn Reson Med ; 83(6): 1909-1919, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31846116

RESUMEN

PURPOSE: MR offers the unique possibility to noninvasively investigate cellular energy metabolism via 31P MRS, while blood perfusion, which provides oxygen and substrates to the tissue, is accessible by arterial spin labeling (ASL) 1H MRI. Because metabolic and hemodynamic parameters are linked, it would be desirable to study them simultaneously. A 3D-resolved method is presented that allows such measurements with high spatiotemporal resolution and has the potential to discern differences along an exercising muscle. METHODS: Multi-voxel localized 31 P MRS was temporally interleaved with multi-slice pASL 1H MRI. Phosphorus spectra were collected from two adjacent positions in gastrocnemius medialis (GM) during rest, submaximal plantar flexion exercise and recovery, while perfusion and T2* -weighted axial images were acquired at the same time. Seventeen healthy volunteers (9 f / 8 m) were studied at 7 T. RESULTS: An increase of postexercise perfusion and T2* -weighted signal in GM positively correlated with end-exercise PCr depletion and pH drop. At proximal positions functional and metabolic activity was higher than distally, that is, perfusion increase and peak T2* -weighted signal, end-exercise PCr depletion, end-exercise pH, and PCr recovery time constant were significantly different. An NOE-induced SNR increase of approximately 20 % (P < .001), at rest, was found in interleaved 31 P spectra, when comparing to 31 P-only acquisitions. CONCLUSIONS: A technique for fast, simultaneous imaging of muscle functional heterogeneity in ASL, T2* and acquisition of time-resolved 31 P  MRS data is presented. These single exercise recovery experiments can be used to investigate local variations during disease progression in patients suffering from vascular or muscular diseases.


Asunto(s)
Pierna , Músculo Esquelético , Ejercicio Físico , Humanos , Pierna/diagnóstico por imagen , Imagen por Resonancia Magnética , Músculo Esquelético/diagnóstico por imagen , Fosfocreatina
8.
NMR Biomed ; : e4347, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32808407

RESUMEN

With a 40-year history of use for in vivo studies, the terminology used to describe the methodology and results of magnetic resonance spectroscopy (MRS) has grown substantially and is not consistent in many aspects. Given the platform offered by this special issue on advanced MRS methodology, the authors decided to describe many of the implicated terms, to pinpoint differences in their meanings and to suggest specific uses or definitions. This work covers terms used to describe all aspects of MRS, starting from the description of the MR signal and its theoretical basis to acquisition methods, processing and to quantification procedures, as well as terms involved in describing results, for example, those used with regard to aspects of quality, reproducibility or indications of error. The descriptions of the meanings of such terms emerge from the descriptions of the basic concepts involved in MRS methods and examinations. This paper also includes specific suggestions for future use of terms where multiple conventions have emerged or coexisted in the past.

9.
NMR Biomed ; : e4246, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32037688

RESUMEN

Skeletal muscle phosphorus-31 31 P MRS is the oldest MRS methodology to be applied to in vivo metabolic research. The technical requirements of 31 P MRS in skeletal muscle depend on the research question, and to assess those questions requires understanding both the relevant muscle physiology, and how 31 P MRS methods can probe it. Here we consider basic signal-acquisition parameters related to radio frequency excitation, TR, TE, spectral resolution, shim and localisation. We make specific recommendations for studies of resting and exercising muscle, including magnetisation transfer, and for data processing. We summarise the metabolic information that can be quantitatively assessed with 31 P MRS, either measured directly or derived by calculations that depend on particular metabolic models, and we give advice on potential problems of interpretation. We give expected values and tolerable ranges for some measured quantities, and minimum requirements for reporting acquisition parameters and experimental results in publications. Reliable examination depends on a reproducible setup, standardised preconditioning of the subject, and careful control of potential difficulties, and we summarise some important considerations and potential confounders. Our recommendations include the quantification and standardisation of contraction intensity, and how best to account for heterogeneous muscle recruitment. We highlight some pitfalls in the assessment of mitochondrial function by analysis of phosphocreatine (PCr) recovery kinetics. Finally, we outline how complementary techniques (near-infrared spectroscopy, arterial spin labelling, BOLD and various other MRI and 1 H MRS measurements) can help in the physiological/metabolic interpretation of 31 P MRS studies by providing information about blood flow and oxygen delivery/utilisation. Our recommendations will assist in achieving the fullest possible reliable picture of muscle physiology and pathophysiology.

10.
NMR Biomed ; 31(6): e3905, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29578260

RESUMEN

Exercise studies investigating the metabolic response of calf muscles using 31 P MRS are usually performed with a single knee angle. However, during natural movement, the distribution of workload between the main contributors to force, gastrocnemius and soleus is influenced by the knee angle. Hence, it is of interest to measure the respective metabolic response of these muscles to exercise as a function of knee angle using localized spectroscopy. Time-resolved multivoxel 31 P MRS at 7 T was performed simultaneously in gastrocnemius medialis and soleus during rest, plantar flexion exercise and recovery in 12 healthy volunteers. This experiment was conducted with four different knee angles. PCr depletions correlated negatively with knee angle in gastrocnemius medialis, decreasing from 79±14 % (extended leg) to 35±23 %(∼40°), and positively in soleus, increasing from 20±21 % to 36±25 %; differences were significant. Linear correlations were found between knee angle and end-exercise PCr depletions in gastrocnemius medialis (R2 =0.8) and soleus (R2 =0.53). PCr recovery times and end-exercise pH changes that correlated with PCr depletion were consistent with the literature in gastrocnemius medialis and differences between knee angles were significant. These effects were less pronounced in soleus and not significant for comparable PCr depletions. Maximum oxidative capacity calculated for all knee angles was in excellent agreement with the literature and showed no significant changes between different knee angles. In conclusion, these findings confirm that plantar flexion exercise with a straight leg is a suitable paradigm, when data are acquired from gastrocnemius only (using either localized MRS or small surface coils), and that activation of soleus requires the knee to be flexed. The present study comprises a systematic investigation of the effects of the knee angle on metabolic parameters, measured with dynamic multivoxel 31 P MRS during muscle exercise and recovery, and the findings should be used in future study design.


Asunto(s)
Ejercicio Físico/fisiología , Articulación de la Rodilla/fisiología , Espectroscopía de Resonancia Magnética , Fósforo/química , Rango del Movimiento Articular/fisiología , Adulto , Femenino , Humanos , Concentración de Iones de Hidrógeno , Modelos Lineales , Masculino , Oxidación-Reducción , Fosfocreatina/metabolismo
11.
Magn Reson Med ; 77(3): 921-927, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-26914656

RESUMEN

PURPOSE: Separate measurements are required when investigating multiple exercising muscles with singlevoxel-localized dynamic 31 P-MRS. With multivoxel spectroscopy, 31 P-MRS time-series spectra are acquired from multiple independent regions during one exercise-recovery experiment with the same time resolution as for singlevoxel measurements. METHODS: Multiple independently selected volumes were localized using temporally interleaved semi-LASER excitations at 7T. Signal loss caused by mutual saturation from shared excitation or refocusing slices was quantified at partial and full overlap, and potential contamination was investigated in phantom measurements. During an exercise-recovery experiment both gastrocnemius medialis and soleus of two healthy volunteers were measured using multivoxel acquisitions with a total TR of 6 s, while avoiding overlap of excitation slices. RESULTS: Signal reduction by shared adiabatic refocusing slices selected 1 s after the preceding voxel was between 10% (full overlap) and 20% (half overlap), in a phantom measurement. In vivo data were acquired from both muscles within the same exercise experiment, with 13-18% signal reduction. Spectra show phosphocreatine, inorganic phosphate, adenosine-triposphate, phosphomonoesters, and phosphodiesters. CONCLUSION: Signal decrease was relatively low compared to the 2-fold increase in information. The approach could help to improve the understanding in metabolic research and is applicable to other organs and nuclei. Magn Reson Med 77:921-927, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Algoritmos , Ejercicio Físico/fisiología , Espectroscopía de Resonancia Magnética/métodos , Músculo Esquelético/fisiología , Compuestos de Fósforo/metabolismo , Isótopos de Fósforo/farmacocinética , Femenino , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Imagen Molecular/métodos , Radiofármacos/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Magn Reson Med ; 76(5): 1636-1641, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26608834

RESUMEN

PURPOSE: Modification of a clinical MRI scanner to enable simultaneous or rapid interleaved acquisition of signals from two different nuclei. METHODS: A device was developed to modify the local oscillator signal fed to the receive channel(s) of an MRI console. This enables external modification of the frequency at which the receiver is sensitive and rapid switching between different frequencies. Use of the device was demonstrated with interleaved and simultaneous 31 P and 1 H spectroscopic acquisitions, and with interleaved 31 P and 1 H imaging. RESULTS: Signal amplitudes and signal-to-noise ratios were found to be unchanged for the modified system, compared with data acquired with the MRI system in the standard configuration. CONCLUSION: Interleaved and simultaneous 1 H and 31 P signal acquisition was successfully demonstrated with a clinical MRI scanner, with only minor modification of the RF architecture. While demonstrated with 31 P, the modification is applicable to any detectable nucleus without further modification, enabling a wide range of simultaneous and interleaved experiments to be performed within a clinical setting. Magn Reson Med 76:1636-1641, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13/instrumentación , Imagen por Resonancia Magnética/instrumentación , Imagen Molecular/instrumentación , Isótopos de Fósforo/farmacocinética , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Integración de Sistemas
13.
Magn Reson Med ; 75(6): 2324-31, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26115021

RESUMEN

PURPOSE: Simultaneous acquisition of spatially resolved (31) P-MRI data for evaluation of muscle specific energy metabolism, i.e., PCr and pH kinetics. METHODS: A three-dimensional (3D) gradient-echo sequence for multiple frequency-selective excitations of the PCr and Pi signals in an interleaved sampling scheme was developed and tested at 7 Tesla (T). The pH values were derived from the chemical shift-induced phase difference between the resonances. The achieved spatial resolution was ∼2 mL with image acquisition time below 6 s. Ten healthy volunteers were studied performing plantar flexions during the delay between (31) P-MRI acquisitions, yielding a temporal resolution of 9-10 s. RESULTS: Signal from anatomically matched regions of interest had sufficient signal-to-noise ratio to allow single-acquisition PCr and pH quantification. The Pi signal was clearly detected in voxels of actively exercising muscles. The PCr depletions were in gastrocnemius 42 ± 14% (medialis), 48 ± 17% (lateralis) and in soleus 20 ± 11%. The end exercise pH values were 6.74 ± 0.18 and 6.65 ± 0.27 for gastrocnemius medialis and lateralis, respectively, and 6.96 ± 0.12 for soleus muscle. CONCLUSION: Simultaneous acquisition of PCr and Pi images with high temporal resolution, suitable for measuring PCr and pH kinetics in exercise-recovery experiments, was demonstrated at 7T. This study presents a fast alternative to MRS for quantifying energy metabolism of posterior muscle groups of the lower leg. Magn Reson Med 75:2324-2331, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Ejercicio Físico/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Músculo Esquelético/diagnóstico por imagen , Fosfocreatina/metabolismo , Adulto , Femenino , Humanos , Concentración de Iones de Hidrógeno , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Fosfocreatina/análisis , Isótopos de Fósforo/metabolismo , Relación Señal-Ruido , Adulto Joven
14.
NMR Biomed ; 29(12): 1825-1834, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27862510

RESUMEN

Phosphorus MRSI (31 P-MRSI) using a spiral-trajectory readout at 7 T was developed for high temporal resolution mapping of the mitochondrial capacity of exercising human skeletal muscle. The sensitivity and localization accuracy of the method was investigated in phantoms. In vivo performance was assessed in 12 volunteers, who performed a plantar flexion exercise inside a whole-body 7 T MR scanner using an MR-compatible ergometer and a surface coil. In five volunteers the knee was flexed (~60°) to shift the major workload from the gastrocnemii to the soleus muscle. Spiral-encoded MRSI provided 16-25 times faster mapping with a better point spread function than elliptical phase-encoded MRSI with the same matrix size. The inevitable trade-off for the increased temporal resolution was a reduced signal-to-noise ratio, but this was acceptable. The phosphocreatine (PCr) depletion caused by exercise at 0° knee angulation was significantly higher in both gastrocnemii than in the soleus (i.e. 64.8 ± 19.6% and 65.9 ± 23.6% in gastrocnemius lateralis and medialis versus 15.3 ± 8.4% in the soleus). Spiral-encoded 31 P-MRSI is a powerful tool for dynamic mapping of exercising muscle oxidative metabolism, including localized assessment of PCr concentrations, pH and maximal oxidative flux with high temporal and spatial resolution.


Asunto(s)
Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Espectroscopía de Resonancia Magnética/métodos , Mitocondrias Musculares/fisiología , Imagen Molecular/métodos , Músculo Esquelético/fisiología , Fosfocreatina/metabolismo , Adulto , Tolerancia al Ejercicio/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Mitocondrias Musculares/ultraestructura , Músculo Esquelético/diagnóstico por imagen , Isótopos de Fósforo/farmacocinética , Radiofármacos/farmacocinética , Rango del Movimiento Articular , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Magn Reson Med ; 73(3): 1190-5, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24752959

RESUMEN

PURPOSE: The aim of this study was to develop a measurement protocol for noninvasive simultaneous perfusion quantification and T2 *-weighted MRI acquisition in the exercising calf muscle at 7 Tesla. METHODS: Using a nonmagnetic ergometer and a dedicated in-house built calf coil array, dynamic pulsed arterial spin labeling (PASL) measurements with a temporal resolution of 12 s were performed before, during, and after plantar flexion exercise in 16 healthy volunteers. RESULTS: Postexercise peak perfusion in gastrocnemius muscle (GAS) was 27 ± 16 ml/100g/min, whereas in soleus (SOL) and tibialis anterior (TA) muscles it remained at baseline levels. T2 *-weighted and ASL time courses in GAS showed comparable times to peak of 161 ± 72 s and 167 ± 115 s, respectively. The T2 *-weighted signal in the GAS showed a minimum during exercise (88 ± 6 % of the baseline signal) and a peak during the recovery (122 ± 9%), whereas in all other muscles only a signal decrease was observed (minimum 91 ± 6% in SOL; 87 ± 8% in TA). CONCLUSION: We demonstrate the feasibility of dynamic perfusion quantification in skeletal muscle at 7 Tesla using PASL. This may help to better investigate the physiological processes in the skeletal muscle and also in diseases such as diabetes mellitus and peripheral arterial disease.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Imagen de Difusión por Resonancia Magnética/métodos , Ejercicio Físico/fisiología , Angiografía por Resonancia Magnética/métodos , Músculo Esquelético/fisiología , Esfuerzo Físico/fisiología , Adulto , Estudios de Factibilidad , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Pierna , Masculino , Músculo Esquelético/irrigación sanguínea , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Magn Reson Med ; 73(2): 894-900, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24590906

RESUMEN

PURPOSE: Carbon-13 magnetic resonance spectroscopy ((13) C-MRS) is challenging because of the inherent low sensitivity of (13) C detection and the need for radiofrequency transmission at the (1) H frequency while receiving the (13) C signal, the latter requiring electrical decoupling of the (13) C and (1) H radiofrequency channels. In this study, we added traps to the (13) C coil to construct a quadrature-(13) C/quadrature-(1) H surface coil, with sufficient isolation between channels to allow simultaneous operation at both frequencies without compromise in coil performance. METHODS: Isolation between channels was evaluated on the bench by measuring all coupling parameters. The quadrature mode of the quadrature-(13) C coil was assessed using in vitro (23) Na gradient echo images. The signal-to-noise ratio (SNR) was measured on the glycogen and glucose resonances by (13) C-MRS in vitro, compared with that obtained with a linear-(13) C/quadrature-(1) H coil, and validated by (13) C-MRS in vivo in the human calf at 7T. RESULTS: Isolation between channels was better than -30 dB. The (23) Na gradient echo images indicate a region where the field is strongly circularly polarized. The quadrature coil provided an SNR enhancement over a linear coil of 1.4, in vitro and in vivo. CONCLUSION: It is feasible to construct a double-quadrature (13) C-(1) H surface coil for proton decoupled sensitivity enhanced (13) C-NMR spectroscopy in humans at 7T.


Asunto(s)
Glucógeno/análisis , Magnetismo/instrumentación , Músculo Esquelético/química , Espectroscopía de Protones por Resonancia Magnética/instrumentación , Adulto , Isótopos de Carbono/análisis , Isótopos de Carbono/química , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Humanos , Masculino , Protones , Ondas de Radio , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular
17.
Magn Reson Med ; 73(6): 2376-89, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25046817

RESUMEN

PURPOSE: To enhance sensitivity and coverage for calf muscle studies, a novel, form-fitted, three-channel phosphorus-31 ((31) P), two-channel proton ((1) H) transceiver coil array for 7 T MR imaging and spectroscopy is presented. METHODS: Electromagnetic simulations employing individually generated voxel models were performed to design a coil array for studying nonpathological muscle metabolism. Static phase combinations of the coil elements' transmit fields were optimized based on homogeneity and efficiency for several voxel models. The best-performing design was built and tested both on phantoms and in vivo. RESULTS: Simulations revealed that a shared conductor array for (31) P provides more robust interelement decoupling and better homogeneity than an overlap array in this configuration. A static B1 (+) shim setting that suited various calf anatomies was identified and implemented. Simulations showed that the (31) P array provides signal-to-noise ratio (SNR) benefits over a single loop and a birdcage coil of equal radius by factors of 3.2 and 2.6 in the gastrocnemius and by 2.5 and 2.0 in the soleus muscle. CONCLUSION: The performance of the coil in terms of B1 (+) and achievable SNR allows for spatially localized dynamic (31) P spectroscopy studies in the human calf. The associated higher specificity with respect to nonlocalized measurements permits distinguishing the functional responses of different muscles.


Asunto(s)
Aumento de la Imagen/instrumentación , Pierna , Imagen por Resonancia Magnética/instrumentación , Músculo Esquelético/anatomía & histología , Adulto , Simulación por Computador , Diseño de Equipo , Femenino , Voluntarios Sanos , Humanos , Masculino , Fantasmas de Imagen , Isótopos de Fósforo
18.
MAGMA ; 28(5): 493-501, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25894813

RESUMEN

OBJECTIVES: This study demonstrates the applicability of semi-LASER localized dynamic (31)P MRS to deeper lying areas of the exercising human soleus muscle (SOL). The effect of accurate localization and high temporal resolution on data specificity is investigated. MATERIALS AND METHODS: To achieve high signal-to-noise ratio (SNR) at a temporal resolution of 6 s, a custom-built human calf coil array was used at 7T. The kinetics of phosphocreatine (PCr) and intracellular pH were quantified separately in SOL and gastrocnemius medialis (GM) muscle of nine volunteers, during rest, plantar flexion exercise, and recovery. RESULTS: The average SNR of PCr at rest was [Formula: see text] in SOL ([Formula: see text] in GM). End exercise PCr depletion in SOL ([Formula: see text] %) was far lower than in GM ([Formula: see text] %). The pH in SOL increased rapidly and, in contrast to GM, remained elevated until the end of exercise. CONCLUSION: (31)P MRS in single-shots every 6 s localized in the deeper-lying SOL enabled quantification of PCr recovery times at low depletions and of fast pH changes, like the initial rise. Both high temporal resolution and accurate spatial localization improve specificity of Pi and, thus, pH quantification by avoiding multiple, and potentially indistinguishable sources for changing the Pi peak shape.


Asunto(s)
Ejercicio Físico/fisiología , Rayos Láser , Espectroscopía de Resonancia Magnética/instrumentación , Músculo Esquelético/fisiología , Fosfocreatina/metabolismo , Diseño de Equipo , Análisis de Falla de Equipo , Femenino , Humanos , Masculino , Isótopos de Fósforo/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
19.
Magn Reson Med ; 72(2): 584-90, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24006123

RESUMEN

PURPOSE: Multinuclear magnetic resonance spectroscopy and imaging require a radiofrequency probe capable of transmitting and receiving at the proton and non-proton frequencies. To minimize coupling between probe elements tuned to different frequencies, LC (inductor-capacitor) traps blocking current at the (1)H frequency can be inserted in non-proton elements. This work compares LC traps with LCC traps, a modified design incorporating an additional capacitor, enabling control of the trap reactance at the low frequency while maintaining (1)H blocking. METHODS: Losses introduced by both types of trap were analysed using circuit models. Radiofrequency coils incorporating a series of LC and LCC traps were then built and evaluated at the bench. LCC trap performance was then confirmed using (1)H and (13)C measurements in a 7T human scanner. RESULTS: LC and LCC traps both effectively block interaction between non-proton and proton coils at the proton frequency. LCC traps were found to introduce a sensitivity reduction of 5±2%, which was less than half of that caused by LC traps. CONCLUSION: Sensitivity of non-proton coils is critical. The improved trap design, incorporating one extra capacitor, significantly reduces losses introduced by the trap in the non-proton coil.


Asunto(s)
Aumento de la Imagen/instrumentación , Imagen por Resonancia Magnética/instrumentación , Magnetismo/instrumentación , Transductores , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Magnetismo/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
NMR Biomed ; 27(5): 553-60, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24610788

RESUMEN

Skeletal muscle metabolism is impaired in disorders like diabetes mellitus or peripheral vascular disease. The skeletal muscle echo planar imaging (EPI) signal (S(EPI) ) and its relation to energy metabolism are still debated. Localised ³¹P MRS and S(EPI) data from gastrocnemius medialis of 19 healthy subjects were combined in one scanning session to study direct relationships between phosphocreatine (PCr), pH kinetics and parameters of T2∗ time courses. Dynamic spectroscopy (semi-LASER) and EPI were performed immediately before, during and after 5 min of plantar flexions. Data were acquired in a 7 T MR scanner equipped with a custom-built ergometer and a dedicated ³¹P/¹H radio frequency (RF) coil array. Using a form-fitted multi-channel ³¹P/¹H coil array resulted in high signal-to-noise ratio (SNR). PCr and pH in the gastrocnemius medialis muscle were quantified from each ³¹P spectrum, acquired every 6 s. During exercise, SEPI (t) was found to be a linear function of tissue pH(t) (cross-correlation r = -0.85 ± 0.07). Strong Pearson's correlations were observed between post exercise time-to-peak (TTP) of SEPI and (a) the time constant of PCr recovery τPCr recovery (r = 0.89, p < 10⁻6), (b) maximum oxidative phosphorylation using the linear model, Q(max, lin) (r = 0.65, p = 0.002), the adenosine-diphosphate-driven model, Q(max,ADP) (r = 0.73, p = 0.0002) and (c) end exercise pH (r = 0.60, p = 0.005). Based on combined accurately localised ³¹P MRS and T2∗ weighted MRI, both with high temporal resolution, strong correlations of the skeletal muscle SEPI during exercise and tissue pH time courses and of post exercise SEPI and parameters of energy metabolism were observed. In conclusion, a tight coupling between skeletal muscle metabolic activity and tissue T2∗ signal weighting, probably induced by osmotically driven water shift, exists and can be measured non-invasively, using NMR at 7 T.


Asunto(s)
Ejercicio Físico/fisiología , Pierna/fisiología , Imagen por Resonancia Magnética , Músculo Esquelético/fisiología , Fosforilación Oxidativa , Fosfocreatina/metabolismo , Adulto , Demografía , Imagen Eco-Planar , Femenino , Humanos , Concentración de Iones de Hidrógeno , Masculino , Fosfocreatina/análogos & derivados , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA