Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 117(2): 541-560, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37932864

RESUMEN

Carotenoids are isoprenoid pigments indispensable for photosynthesis. Moreover, they are the precursor of apocarotenoids, which include the phytohormones abscisic acid (ABA) and strigolactones (SLs) as well as retrograde signaling molecules and growth regulators, such as ß-cyclocitral and zaxinone. Here, we show that the application of the volatile apocarotenoid ß-ionone (ß-I) to Arabidopsis plants at micromolar concentrations caused a global reprogramming of gene expression, affecting thousands of transcripts involved in stress tolerance, growth, hormone metabolism, pathogen defense, and photosynthesis. This transcriptional reprogramming changes, along with induced changes in the level of the phytohormones ABA, jasmonic acid, and salicylic acid, led to enhanced Arabidopsis resistance to the widespread necrotrophic fungus Botrytis cinerea (B.c.) that causes the gray mold disease in many crop species and spoilage of harvested fruits. Pre-treatment of tobacco and tomato plants with ß-I followed by inoculation with B.c. confirmed the effect of ß-I in increasing the resistance to this pathogen in crop plants. Moreover, we observed reduced susceptibility to B.c. in fruits of transgenic tomato plants overexpressing LYCOPENE ß-CYCLASE, which contains elevated levels of endogenous ß-I, providing a further evidence for its effect on B.c. infestation. Our work unraveled ß-I as a further carotenoid-derived regulatory metabolite and indicates the possibility of establishing this natural volatile as an environmentally friendly bio-fungicide to control B.c.


Asunto(s)
Arabidopsis , Norisoprenoides , Solanum lycopersicum , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Transcriptoma , Ácido Abscísico , Botrytis/metabolismo , Plantas Modificadas Genéticamente/genética , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
2.
Plant J ; 113(5): 986-1003, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36602437

RESUMEN

The enzyme DWARF27 (D27) catalyzes the reversible isomerization of all-trans- into 9-cis-ß-carotene, initiating strigolactone (SL) biosynthesis. Genomes of higher plants encode two D27-homologs, D27-like1 and -like2, with unknown functions. Here, we investigated the enzymatic activity and biological function of the Arabidopsis D27-like1. In vitro enzymatic assays and expression in Synechocystis sp. PCC6803 revealed an unreported 13-cis/15-cis/9-cis- and a 9-cis/all-trans-ß-carotene isomerization. Although disruption of AtD27-like1 did not cause SL deficiency phenotypes, overexpression of AtD27-like1 in the d27 mutant restored the more-branching phenotype, indicating a contribution of AtD27-like1 to SL biosynthesis. Accordingly, generated d27 d27like1 double mutants showed a more pronounced branching phenotype compared to d27. The contribution of AtD27-like1 to SL biosynthesis is likely a result of its formation of 9-cis-ß-carotene that was present at higher levels in AtD27-like1 overexpressing lines. By contrast, AtD27-like1 expression correlated negatively with the content of 9-cis-violaxanthin, a precursor of ABA, in shoots. Consistently, ABA levels were higher in shoots and also in dry seeds of the d27like1 and d27 d27like1 mutants. Transgenic lines expressing GUS driven by the AtD27LIKE1 promoter and transcript analysis of hormone-treated Arabidopsis seedlings revealed that AtD27LIKE1 is expressed in different tissues and affects ABA and auxin. Taken together, our work reports a cis/cis-ß-carotene isomerase that affects the content of both cis-carotenoid-derived plant hormones, ABA and SLs.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , beta Caroteno/metabolismo , cis-trans-Isomerasas/genética , cis-trans-Isomerasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Isomerasas/genética , Isomerasas/metabolismo
3.
Plant Physiol ; 190(1): 319-339, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35640120

RESUMEN

During the maturation phase of flower development, the onset of anthesis visibly marks the transition from buds to open flowers, during which petals stretch out, nectar secretion commences, and pollination occurs. Analysis of the metabolic changes occurring during this developmental transition has primarily focused on specific classes of metabolites, such as pigments and scent emission, and far less on the whole network of primary and secondary metabolites. To investigate the metabolic changes occurring at anthesis, we performed multi-platform metabolomics alongside RNA sequencing in individual florets harvested from the main inflorescence of Arabidopsis (Arabidopsis thaliana) ecotype Col-0. To trace metabolic fluxes at the level of the whole inflorescence and individual florets, we further integrated these studies with radiolabeled experiments. These extensive analyses revealed high-energy-level metabolism and transport of carbohydrates and amino acids, supporting intense metabolic rearrangements occurring at the time of this floral transition. These comprehensive data are discussed in the context of our current understanding of the metabolic shifts underlying flower opening. We envision that this analysis will facilitate the introgression of floral metabolic traits promoting pollination in crop species for which a comprehensive knowledge of flower metabolism is still limited.


Asunto(s)
Flores , Polinización , Inflorescencia , Odorantes , Reproducción
4.
Plant J ; 105(2): 351-375, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33258195

RESUMEN

Carotenoids are isoprenoid compounds synthesized by all photosynthetic and some non-photosynthetic organisms. They are essential for photosynthesis and contribute to many other aspects of a plant's life. The oxidative breakdown of carotenoids gives rise to the formation of a diverse family of essential metabolites called apocarotenoids. This metabolic process either takes place spontaneously through reactive oxygen species or is catalyzed by enzymes generally belonging to the CAROTENOID CLEAVAGE DIOXYGENASE family. Apocarotenoids include the phytohormones abscisic acid and strigolactones (SLs), signaling molecules and growth regulators. Abscisic acid and SLs are vital in regulating plant growth, development and stress response. SLs are also an essential component in plants' rhizospheric communication with symbionts and parasites. Other apocarotenoid small molecules, such as blumenols, mycorradicins, zaxinone, anchorene, ß-cyclocitral, ß-cyclogeranic acid, ß-ionone and loliolide, are involved in plant growth and development, and/or contribute to different processes, including arbuscular mycorrhiza symbiosis, abiotic stress response, plant-plant and plant-herbivore interactions and plastid retrograde signaling. There are also indications for the presence of structurally unidentified linear cis-carotene-derived apocarotenoids, which are presumed to modulate plastid biogenesis and leaf morphology, among other developmental processes. Here, we provide an overview on the biology of old, recently discovered and supposed plant apocarotenoid signaling molecules, describing their biosynthesis, developmental and physiological functions, and role as a messenger in plant communication.


Asunto(s)
Carotenoides/metabolismo , Transducción de Señal , Ácido Abscísico/metabolismo , Comunicación Celular , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Redes y Vías Metabólicas , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Plantas/metabolismo
5.
Plant J ; 107(1): 54-66, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33837613

RESUMEN

Carotenoid-derived regulatory metabolites and hormones are generally known to arise through the oxidative cleavage of a single double bond in the carotenoid backbone, which yields mono-carbonyl products called apocarotenoids. However, the extended conjugated double bond system of these pigments predestines them also to repeated cleavage forming dialdehyde products, diapocarotenoids, which have been less investigated due to their instability and low abundance. Recently, we reported on the short diapocarotenoid anchorene as an endogenous Arabidopsis metabolite and specific signaling molecule that promotes anchor root formation. In this work, we investigated the biological activity of a synthetic isomer of anchorene, iso-anchorene, which can be derived from repeated carotenoid cleavage. We show that iso-anchorene is a growth inhibitor that specifically inhibits primary root growth by reducing cell division rates in the root apical meristem. Using auxin efflux transporter marker lines, we also show that the effect of iso-anchorene on primary root growth involves the modulation of auxin homeostasis. Moreover, by using liquid chromatography-mass spectrometry analysis, we demonstrate that iso-anchorene is a natural Arabidopsis metabolite. Chemical inhibition of carotenoid biosynthesis led to a significant decrease in the iso-anchorene level, indicating that it originates from this metabolic pathway. Taken together, our results reveal a novel carotenoid-derived regulatory metabolite with a specific biological function that affects root growth, manifesting the biological importance of diapocarotenoids.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carotenoides/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Meristema/citología , Meristema/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente
6.
Plant Biotechnol J ; 20(11): 2202-2216, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35997958

RESUMEN

Crocins are beneficial antioxidants and potential chemotherapeutics that give raise, together with picrocrocin, to the colour and taste of saffron, the most expensive spice, respectively. Crocins are formed from crocetin dialdehyde that is produced in Crocus sativus from zeaxanthin by the carotenoid cleavage dioxygenase 2L (CsCCD2L), while GjCCD4a from Gardenia jasminoides, another major source of crocins, converted different carotenoids, including zeaxanthin, into crocetin dialdehyde in bacterio. To establish a biotechnological platform for sustainable production of crocins, we investigated the enzymatic activity of GjCCD4a, in comparison with CsCCD2L, in citrus callus engineered by Agrobacterium-mediated supertransformation of multi genes and in transiently transformed Nicotiana benthamiana leaves. We demonstrate that co-expression of GjCCD4a with phytoene synthase and ß-carotene hydroxylase genes is an optimal combination for heterologous production of crocetin, crocins and picrocrocin in citrus callus. By profiling apocarotenoids and using in vitro assays, we show that GjCCD4a cleaved ß-carotene, in planta, and produced crocetin dialdehyde via C30 ß-apocarotenoid intermediate. GjCCD4a also cleaved C27 ß-apocarotenoids, providing a new route for C17 -dialdehyde biosynthesis. Callus lines overexpressing GjCCD4a contained higher number of plastoglobuli in chromoplast-like plastids and increased contents in phytoene, C17:0 fatty acid (FA), and C18:1 cis-9 and C22:0 FA esters. GjCCD4a showed a wider substrate specificity and higher efficiency in Nicotiana leaves, leading to the accumulation of up to 1.6 mg/g dry weight crocins. In summary, we established a system for investigating CCD enzymatic activity in planta and an efficient biotechnological platform for crocins production in green and non-green crop tissues/organs.


Asunto(s)
Crocus , Dioxigenasas , Gardenia , Dioxigenasas/genética , Zeaxantinas , Carotenoides , Crocus/química , Crocus/genética , Nicotiana/genética
7.
Metab Eng ; 70: 166-180, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35031492

RESUMEN

Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.


Asunto(s)
Solanum lycopersicum , Biomasa , Vías Biosintéticas/genética , Carotenoides/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Estrés Fisiológico
8.
Proc Natl Acad Sci U S A ; 116(21): 10563-10567, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31068462

RESUMEN

Natural compounds capable of increasing root depth and branching are desirable tools for enhancing stress tolerance in crops. We devised a sensitized screen to identify natural metabolites capable of regulating root traits in Arabidopsis ß-Cyclocitral, an endogenous root compound, was found to promote cell divisions in root meristems and stimulate lateral root branching. ß-Cyclocitral rescued meristematic cell divisions in ccd1ccd4 biosynthesis mutants, and ß-cyclocitral-driven root growth was found to be independent of auxin, brassinosteroid, and reactive oxygen species signaling pathways. ß-Cyclocitral had a conserved effect on root growth in tomato and rice and generated significantly more compact crown root systems in rice. Moreover, ß-cyclocitral treatment enhanced plant vigor in rice plants exposed to salt-contaminated soil. These results indicate that ß-cyclocitral is a broadly effective root growth promoter in both monocots and eudicots and could be a valuable tool to enhance crop vigor under environmental stress.


Asunto(s)
Aldehídos/farmacología , Diterpenos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis
9.
Plant J ; 103(6): 1967-1984, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32623777

RESUMEN

Because carotenoids act as accessory pigments in photosynthesis, play a key photoprotective role and are of major nutritional importance, carotenogenesis has been a target for crop improvement. Although carotenoids are important precursors of phytohormones, previous genetic manipulations reported little if any effects on biomass production and plant development, but resulted in specific modifications in carotenoid content. Unexpectedly, the expression of the carrot lycopene ß-cyclase (DcLCYB1) in Nicotiana tabacum cv. Xanthi not only resulted in increased carotenoid accumulation, but also in altered plant architecture characterized by longer internodes, faster plant growth, early flowering and increased biomass. Here, we have challenged these transformants with a range of growth conditions to determine the robustness of their phenotype and analyze the underlying mechanisms. Transgenic DcLCYB1 lines showed increased transcript levels of key genes involved in carotenoid, chlorophyll, gibberellin (GA) and abscisic acid (ABA) biosynthesis, but also in photosynthesis-related genes. Accordingly, their carotenoid, chlorophyll, ABA and GA contents were increased. Hormone application and inhibitor experiments confirmed the key role of altered GA/ABA contents in the growth phenotype. Because the longer internodes reduce shading of mature leaves, induction of leaf senescence was delayed, and mature leaves maintained a high photosynthetic capacity. This increased total plant assimilation, as reflected in higher plant yields under both fully controlled constant and fluctuating light, and in non-controlled conditions. Furthermore, our data are a warning that engineering of isoprenoid metabolism can cause complex changes in phytohormone homeostasis and therefore plant development, which have not been sufficiently considered in previous studies.


Asunto(s)
Carotenoides/metabolismo , Genes de Plantas/fisiología , Nicotiana/crecimiento & desarrollo , Fotosíntesis/genética , Ácido Abscísico/metabolismo , Daucus carota/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Giberelinas/metabolismo , Redes y Vías Metabólicas/genética , Fotosíntesis/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Nicotiana/anatomía & histología , Nicotiana/metabolismo , Nicotiana/fisiología , Regulación hacia Arriba
10.
PLoS Pathog ; 15(1): e1007499, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30677094

RESUMEN

INDETERMINATE DOMAIN (IDD)/ BIRD proteins are a highly conserved plant-specific family of transcription factors which play multiple roles in plant development and physiology. Here, we show that mutation in IDD4/IMPERIAL EAGLE increases resistance to the hemi-biotrophic pathogen Pseudomonas syringae, indicating that IDD4 may act as a repressor of basal immune response and PAMP-triggered immunity. Furthermore, the idd4 mutant exhibits enhanced plant-growth indicating IDD4 as suppressor of growth and development. Transcriptome comparison of idd4 mutants and IDD4ox lines aligned to genome-wide IDD4 DNA-binding studies revealed major target genes related to defense and developmental-biological processes. IDD4 is a phospho-protein that interacts and becomes phosphorylated on two conserved sites by the MAP kinase MPK6. DNA-binding studies of IDD4 after flg22 treatment and with IDD4 phosphosite mutants show enhanced binding affinity to ID1 motif-containing promoters and its function as a transcriptional regulator. In contrast to the IDD4-phospho-dead mutant, the IDD4 phospho-mimicking mutant shows altered susceptibility to PstDC3000, salicylic acid levels and transcriptome reprogramming. In summary, we found that IDD4 regulates various hormonal pathways thereby coordinating growth and development with basal immunity.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Inmunidad de la Planta/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas/genética , Mutación , Desarrollo de la Planta/genética , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Plant Physiol ; 182(2): 1052-1065, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31806735

RESUMEN

Plasma membrane (PM) depolarization functions as an initial step in plant defense signaling pathways. However, only a few ion channels/transporters have been characterized in the context of plant immunity. Here, we show that the Arabidopsis (Arabidopsis thaliana) Na+:K+:2Cl- (NKCC) cotransporter CCC1 has a dual function in plant immunity. CCC1 functions independently of PM depolarization and negatively regulates pathogen-associated molecular pattern-triggered immunity. However, CCC1 positively regulates plant basal and effector-triggered resistance to Pseudomonas syringae pv. tomato (Pst) DC3000. In line with the compromised immunity to Pst DC3000, ccc1 mutants show reduced expression of genes encoding enzymes involved in the biosynthesis of antimicrobial peptides, camalexin, and 4-OH-ICN, as well as pathogenesis-related proteins. Moreover, genes involved in cell wall and cuticle biosynthesis are constitutively down-regulated in ccc1 mutants, and the cell walls of these mutants exhibit major changes in monosaccharide composition. The role of CCC1 ion transporter activity in the regulation of plant immunity is corroborated by experiments using the specific NKCC inhibitor bumetanide. These results reveal a function for ion transporters in immunity-related cell wall fortification and antimicrobial biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Resistencia a la Enfermedad/genética , Pseudomonas syringae/inmunología , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Bumetanida/farmacología , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/fisiología , Pared Celular/química , Pared Celular/genética , Pared Celular/metabolismo , Resistencia a la Enfermedad/inmunología , Perfilación de la Expresión Génica , Indoles/metabolismo , Monosacáridos/química , Monosacáridos/metabolismo , Mutación , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/efectos de los fármacos , Inmunidad de la Planta/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente/metabolismo , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/patogenicidad , RNA-Seq , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/inmunología , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Tiazoles/metabolismo
12.
J Exp Bot ; 72(7): 2544-2569, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33484250

RESUMEN

Carotenoids are important isoprenoids produced in the plastids of photosynthetic organisms that play key roles in photoprotection and antioxidative processes. ß-Carotene is generated from lycopene by lycopene ß-cyclase (LCYB). Previously, we demonstrated that the introduction of the Daucus carota (carrot) DcLCYB1 gene into tobacco (cv. Xanthi) resulted in increased levels of abscisic acid (ABA) and especially gibberellins (GAs), resulting in increased plant yield. In order to understand this phenomenon prior to exporting this genetic strategy to crops, we generated tobacco (Nicotiana tabacum cv. Petit Havana) mutants that exhibited a wide range of LCYB expression. Transplastomic plants expressing DcLCYB1 at high levels showed a wild-type-like growth, even though their pigment content was increased and their leaf GA1 content was reduced. RNA interference (RNAi) NtLCYB lines showed different reductions in NtLCYB transcript abundance, correlating with reduced pigment content and plant variegation. Photosynthesis (leaf absorptance, Fv/Fm, and light-saturated capacity of linear electron transport) and plant growth were impaired. Remarkably, drastic changes in phytohormone content also occurred in the RNAi lines. However, external application of phytohormones was not sufficient to rescue these phenotypes, suggesting that altered photosynthetic efficiency might be another important factor explaining their reduced biomass. These results show that LCYB expression influences plant biomass by different mechanisms and suggests thresholds for LCYB expression levels that might be beneficial or detrimental for plant growth.


Asunto(s)
Liasas Intramoleculares , Nicotiana , Carotenoides , Regulación de la Expresión Génica de las Plantas , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
13.
PLoS Genet ; 14(10): e1007708, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30352065

RESUMEN

The Trihelix Transcription factor GT2-like 1 (GTL1) was previously shown to be a key regulator of ploidy-dependent trichome growth and drought tolerance. Here, we report that GTL1 plays an important role in coordinating plant immunity. We show that gtl1 mutants are compromised in the regulation of basal immunity, microbial pattern-triggered immunity (PTI) and effector-triggered RIN4-mediated immunity. Transcriptome analysis revealed that GTL1 positively regulates defense genes and inhibits factors that mediate growth and development. By performing hormonal measurements and chromatin-immunoprecipitation studies, we found GTL1 to coordinate genes involved in salicylic acid metabolism, transport and response. Interaction studies and comparative transcriptomics to known data sets revealed that GTL1 is part of the MPK4 pathway and regulates oppositely the expression of differentially expressed genes in mpk4 plants. We introduced the gtl1 mutation in the mpk4 mutant and thereby partially suppressed its dwarfism and the high resistance against a bacterial invader. Our data show that GTL1 is part of the MPK4 pathway and acts as a positive regulator of bacterial-triggered immunity and SA homeostasis.


Asunto(s)
Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Proteínas de Arabidopsis/genética , Genes de Plantas , Mutación , Inmunidad de la Planta , Regiones Promotoras Genéticas , Ácido Salicílico/metabolismo
14.
Plant Cell Physiol ; 60(7): 1536-1555, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30989238

RESUMEN

INDETERMINATE DOMAIN (IDD)/BIRD proteins belong to a highly conserved plant-specific group of transcription factors with dedicated functions in plant physiology and development. Here, we took advantage of the chimeric repressor gene-silencing technology (CRES-T, SRDX) to widen our view on the role of IDD4/IMPERIAL EAGLE and IDD family members in plant immunity. The hypomorphic idd4SRDX lines are compromised in growth and show a robust autoimmune phenotype. Hormonal measurements revealed the concomitant accumulation of salicylic acid and jasmonic acid suggesting that IDDs are involved in regulating the metabolism of these biotic stress hormones. The analysis of immunity-pathways showed enhanced activation of immune MAP kinase-signaling pathways, the accumulation of hydrogen peroxide and spontaneous programmed cell death. The transcriptome of nonelicited idd4SRDX lines can be aligned to approximately 40% of differentially expressed genes (DEGs) in flg22-treated wild-type plants. The pattern of DEGs implies IDDs as pivotal repressors of flg22-dependent gene induction. Infection experiments showed the increased resistance of idd4SRDX lines to Pseudomonas syringae and Botrytis cinerea implying a function of IDDs in defense adaptation to hemibiotrophs and necrotrophs. Genome-wide IDD4 DNA-binding studies (DAP-SEQ) combined with DEG analysis of idd4SRDX lines identified IDD4-regulated functional gene clusters that contribute to plant growth and development. In summary, we discovered that the expression of idd4SRDX activates a wide range of defense-related traits opening up the possibility to apply idd4SRDX as a powerful tool to stimulate innate immunity in engineered crops.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/inmunología , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Represoras/fisiología , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Botrytis , Resistencia a la Enfermedad , Homeostasis , Sistema de Señalización de MAP Quinasas , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Pseudomonas syringae , Proteínas Represoras/genética
15.
Plant Physiol ; 177(3): 990-1006, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29844227

RESUMEN

Saffron is the dried stigmas of Crocus sativus and is the most expensive spice in the world. Its red color is due to crocins, which are apocarotenoid glycosides that accumulate in the vacuole to a level up to 10% of the stigma dry weight. Previously, we characterized the first dedicated enzyme in the crocin biosynthetic pathway, carotenoid cleavage dioxygenase2 (CsCCD2), which cleaves zeaxanthin to yield crocetin dialdehyde. In this work, we identified six putative aldehyde dehydrogenase (ALDH) genes expressed in C. sativus stigmas. Heterologous expression in Escherichia coli showed that only one of corresponding proteins (CsALDH3I1) was able to convert crocetin dialdehyde into the crocin precursor crocetin. CsALDH3I1 carries a carboxyl-terminal hydrophobic domain, similar to that of the Neurospora crassa membrane-associated apocarotenoid dehydrogenase YLO-1. We also characterized the UDP-glycosyltransferase CsUGT74AD1, which converts crocetin to crocins 1 and 2'. In vitro assays revealed high specificity of CsALDH3I1 for crocetin dialdehyde and long-chain apocarotenals and of CsUGT74AD1 for crocetin. Following extract fractionation, CsCCD2, CsALDH3I1, and CsUGT74AD1 were found in the insoluble fraction, suggesting their association with membranes or large insoluble complexes. Analysis of protein localization in both C. sativus stigmas and following transgene expression in Nicotiana benthamiana leaves revealed that CsCCD2, CsALDH3I, and CsUGT74AD1 were localized to the plastids, the endoplasmic reticulum, and the cytoplasm, respectively, in association with cytoskeleton-like structures. Based on these findings and current literature, we propose that the endoplasmic reticulum and cytoplasm function as transit centers for metabolites whose biosynthesis starts in the plastid and are accumulated in the vacuole.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Carotenoides/biosíntesis , Crocus/metabolismo , Glicosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Aldehído Deshidrogenasa/genética , Carotenoides/metabolismo , Crocus/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glicosilación , Glicosiltransferasas/genética , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica/métodos , Microscopía Confocal , Especificidad de Órganos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Nicotiana/genética , Vitamina A/análogos & derivados
16.
Analyst ; 144(4): 1197-1204, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30569922

RESUMEN

Apocarotenoid glycosylation serves as a valve regulating carotenoid homeostasis in plants and may contribute to their response to photo-oxidative stress. However, an analytical method that allows comprehensive and sensitive profiling of glycosylated apocarotenoids (GAPOs) is still missing. We developed an efficient ultra-high performance liquid chromatography-high resolution-mass spectrometry (UHPLC-HR-MS) method to analyze 25 GAPOs present in carotenoid-accumulating E. coli cells and plant tissues. Optimized HR-heated-electrospray ionization (HESI)-MS parameters enabled, based on HR MS and tandem mass spectrometry (MS/MS) data, the identification of yet undescribed GAPOs from Arabidopsis, which include Glc-apo-11-carotenal (GAPO11), Glc-apo-13-carotenone (GAPO13), and their isomers. The identity of these compounds was confirmed by the transformation of deuterium-labelled non-hydroxylated carotene cleavage products into the corresponding GAPOs in planta. Quantitative analysis of GAPOs in Arabidopsis showed that the levels of Glc-cyclocitral (GAPO7), Glc-cyclocitral isomer I (GAPO7I), Glc-ionone (GAPO9), Glc-ionone isomer I (GAPO9I), Glc-apo-11-carotenal isomer I (GAPO11I), Glc-apo-13-carotenone (GAPO13), and Glc-apo-13-carotenone isomers (GAPO13I, GAPO13II, and GAPO13III) significantly increase after high light (HL) treatment. This treatment also led to an obvious increase in the levels of most carotene- and all xanthophyll-derived apocarotenoids detected in our system. Our work demonstrates for the first time that HL stress induces apocarotenoid glycosylation in Arabidopsis and unravels a novel plant metabolic pathway that leads from carotene cleavage products to GAPOs that are identical to xanthophyll derived GAPOs. Thus, our new approach allows sensitive and reliable profiling of GAPOs, which is crucial for understanding the function of apocarotenoid glycosylation in plants and its role in the acclimation to HL stress.

17.
BMC Cancer ; 18(1): 799, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089463

RESUMEN

BACKGROUND: Resistance to chemotherapy drugs (e.g. taxol) has been a major obstacle in successful cancer treatment. In A549 human lung adenocarcinoma, acquired resistance to the first-line chemotherapy taxol has been a critical problem in clinics. Sphingolipid (SPL) controls various aspects of cell growth, survival, adhesion, and motility in cancer, and has been gradually regarded as a key factor in drug resistance. To better understand the taxol-resistant mechanism, a comprehensive sphingolipidomic approach was carried out to investigate the sphingolipid metabolism in taxol-resistant strain of A549 cell (A549T). METHODS: A549 and A549T cells were extracted according to the procedure with optimal condition for SPLs. Sphingolipidomic analysis was carried out by using an UHPLC coupled with quadrupole time-of-flight (Q-TOF) MS system for qualitative profiling and an UHPLC coupled with triple quadrupole (QQQ) MS system for quantitative analysis. The differentially expressed sphingolipids between taxol-sensitive and -resistant cells were explored by using multivariate analysis. RESULTS: Based on accurate mass and characteristic fragment ions, 114 SPLs, including 4 new species, were clearly identified. Under the multiple reaction monitoring (MRM) mode of QQQ MS, 75 SPLs were further quantified in both A549 and A549T. Multivariate analysis explored that the levels of 57 sphingolipids significantly altered in A549T comparing to those of A549 (p < 0.001 and VIP > 1), including 35 sphingomyelins (SMs), 14 ceramides (Cers), 3 hexosylceramides (HexCers), 4 lactosylceramides (LacCers) and 1 sphingosine. A significant decrease of SM and Cer levels and overall increase of HexCer and LacCer represent the major SPL metabolic characteristic in A549T. CONCLUSIONS: This study investigated sphingolipid profiles in human lung adenocarcinoma cell lines, which is the most comprehensive sphingolipidomic analysis of A549 and A549T. To some extent, the mechanism of taxol-resistance could be attributed to the aberrant sphingolipid metabolism, "inhibition of the de novo synthesis pathway" and "activation of glycosphingolipid pathway" may play the dominant role for taxol-resistance in A549T. This study provides insights into the strategy for clinical diagnosis and treatment of taxol resistant lung cancer.


Asunto(s)
Células A549 , Resistencia a Antineoplásicos , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacología , Esfingolípidos , Células A549/química , Células A549/efectos de los fármacos , Células A549/metabolismo , Cromatografía Liquida , Biología Computacional , Humanos , Espectrometría de Masas , Análisis de Componente Principal , Esfingolípidos/análisis , Esfingolípidos/química , Esfingolípidos/metabolismo
18.
Molecules ; 22(10)2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29064460

RESUMEN

The fermentation products of Cordyceps sinensis (C. sinensis) mycelia are sustainable substitutes for natural C. sinensis. However, the volatile compositions of the commercial products are still unclear. In this paper, we have developed a simultaneous distillation-extraction (SDE) and gas chromatography-mass spectrometry (GC-MS) method for the profiling of volatile components in five fermentation products. A total of 64, 39, 56, 52, and 44 components were identified in the essential oils of Jinshuibao capsule (JSBC), Bailing capsule (BLC), Zhiling capsule (ZLC), Ningxinbao capsule (NXBC), and Xinganbao capsule (XGBC), respectively. 5,6-Dihydro-6-pentyl-2H-pyran-2-one (massoia lactone) was first discovered as the dominant component in JSBC volatiles. Fatty acids including palmitic acid (C16:0) and linoleic acid (C18:2) were also found to be major volatile compositions of the fermentation products. The multivariate partial least squares-discriminant analysis (PLS-DA) showed a clear discrimination among the different commercial products as well as the counterfeits. This study may provide further chemical evidences for the quality evaluation of the fermentation products of C. sinensis mycelia.


Asunto(s)
Cordyceps/química , Micelio/química , Compuestos Orgánicos Volátiles/análisis , Análisis Discriminante , Destilación , Ácidos Grasos/análisis , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles/análisis
19.
Anal Chem ; 86(12): 5688-96, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24844867

RESUMEN

The emerging field of sphingolipidomics calls for accurate quantitative analyses of sphingolipidome. Existing analytical methods for sphingolipid (SPL) profiling often suffer from isotopic/isomeric interference, leading to the low-abundance, but biologically important SPLs being undetected. In the current study, we have developed an improved sphingolipidomic approach for reliable and sensitive quantification of up to 10 subclasses of cellular SPLs. By integratively utilizing high efficiency chromatographic separation, quadrupole time-of-flight (Q-TOF) and triple quadrupole (QQQ) mass spectrometry (MS), our approach facilitated unambiguous identification of several groups of potentially important but low-abundance SPLs that are usually masked by isotopic/isomeric species and hence largely overlooked in many published methods. The methodology, which featured a modified sample preparation and optimized MS parameters, permitted the measurement of 86 individual SPLs in PC12 cells in a single run, demonstrating great potential for high throughput analysis. The improved characterization, along with increased sensitivity for low-abundance SPL species, resulted in the highest number of SPLs being quantified in a single run in PC12 cells. The improved method was fully validated and applied to a lipidomic study of PC12 cell samples with or without amyloid ß peptide (Aß) treatment, which presents a most precise and genuine sphingolipidomic profile of the PC12 cell line. The adoption of the metabolomics protocol, as described in this study, could avoid misidentification and bias in the measurement of the analytically challenging low-abundance endogenous SPLs, hence achieving informative and reliable sphingolipidomics data relevant to discovery of potential SPL biomarkers for Aß-induced neurotoxicity and neurodegenerative disease.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Neuronas/efectos de los fármacos , Esfingolípidos/química , Animales , Límite de Detección , Células PC12 , Ratas , Pruebas de Toxicidad
20.
J Colloid Interface Sci ; 662: 695-706, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368827

RESUMEN

Developing efficient heterojunction photocatalysts with enhanced charge transfer and reduced recombination rates of photogenerated carriers is crucial for harnessing solar energy in the photocatalytic CO2 reduction into renewable fuels. This study employed electrostatic self-assembly techniques to construct a 3D Bi2WO6/ZnIn2S4 direct Z-scheme heterojunctions. The unique 3D structure provided abundant active sites and facilitated CO2 adsorption. Moreover, the optimized Bi2WO6/ZnIn2S4 composite demonstrated an impressive CH4 yield of 19.54 µmol g-1 under 4 h of simulated sunlight irradiation, which was about 8.73 and 16.30-fold higher than pure ZnIn2S4 and Bi2WO6. The observed enhancements in photocatalytic performance are attributed to forming a direct Z-scheme heterojunction, which effectively promotes charge transport and migration. This research introduces a novel strategy for constructing photocatalysts through the synergistic effect of morphological interface modifications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA