RESUMEN
The microbiome is an important consideration for the conservation of endangered species. Studies provided evidence of the effect of behavior and habitat change on the microbiota of wild animals and reported various inferences. It indicates the complexity of factors influencing microbiota diversity, including incomplete sampling procedures. Data abnormality may arise due to the procedures warranting preliminary analysis, such as rarefaction, before downstream analysis. This present study demonstrated the effect of data rarefaction and aggregation on the comparison of wild rusa deer's gut microbial diversity. Eighty-five feces samples were collected from 11 deer populations inhabiting three national parks in Java and Bali islands. Using the Illumina Nova-Seq platform, fragments of 16s rRNA gene were sequenced, and raw data of 51,389 reads corresponding to 2 domains, 22 phyla, 45 classes, 83 orders, 182 families, and 460 genera of bacteria were obtained. Data rarefaction was applied at two different library sizes (minimum and fixed) and aggregation (11 populations into 3 research sites) to investigate its effect on the microbial diversity comparison. There are significant differences in alpha diversity between populations, but not research sites, at all library sizes of rarefaction. A similar finding is also found in beta diversity. Moreover, data rarefaction and aggregation result in different values of the diversity metrics. This present study shows that statistical analysis remains a substantial concern in microbiome studies applied to conservation biology. It suggests reporting a more detailed data normalization in microbiome studies as an inherent control of suboptimal sampling, particularly when involving feces.
RESUMEN
The European polecat (Mustela putorius) is a mammalian predator which occurs across much of Europe east to the Ural Mountains. In Great Britain, following years of persecution the range of the European polecat contracted and by the early 1900s was restricted to unmanaged forests of central Wales. The European polecat has recently undergone a population increase due to legal protection and its range now overlaps that of feral domestic ferrets (Mustela putorius furo). During this range expansion, European polecats hybridized with feral domestic ferrets producing viable offspring. Here, we carry out population-level whole-genome sequencing on 8 domestic ferrets, 19 British European polecats, and 15 European polecats from the European mainland. We used a range of population genomics methods to examine the data, including phylogenetics, phylogenetic graphs, model-based clustering, phylogenetic invariants, ABBA-BABA tests, topology weighting, and Fst. We found high degrees of genome introgression in British polecats outside their previous stronghold, even in those individuals phenotyped as "pure" polecats. These polecats ranged from presumed F1 hybrids (gamma = 0.53) to individuals that were much less introgressed (gamma = 0.2). We quantify this introgression and find introgressed genes containing Fst outliers associated with cognitive function and sight.
Asunto(s)
Hurones , Humanos , Animales , Hurones/genética , Reino Unido , Filogenia , Europa (Continente) , FenotipoRESUMEN
Ecological theory postulates that niches of co-occurring species must differ along some ecological dimensions in order to allow their stable coexistence. Yet, many biological systems challenge this competitive exclusion principle. Insectivorous bats from the Northern Hemisphere typically form local assemblages of multiple species sharing highly similar functional traits and pertaining to identical feeding guilds. Although their trophic niche can be accessed with unprecedented details using genetic identification of prey, the underlying mechanisms of resource partitioning remain vastly unexplored. Here, we studied the differential diet of three closely-related bat species of the genus Plecotus in sympatry and throughout their entire breeding season using DNA metabarcoding. Even at such a small geographic scale, we identified strong seasonal and spatial variation of their diet composition at both intra- and interspecific levels. Indeed, while the different bats fed on a distinct array of prey during spring, they showed higher trophic niche overlap during summer and fall, when all three species switched their hunting behaviour to feed on few temporarily abundant moths. By recovering 19 ecological traits for over 600 prey species, we further inferred that each bat species used different feeding grounds and hunting techniques, suggesting that niche partitioning was primarily habitat-driven. The two most-closely related bat species exhibited very distinct foraging habitat preferences, while the third, more distantly-related species was more generalist. These results highlight the need of temporally comprehensive samples to fully understand species coexistence, and that valuable information can be derived from the taxonomic identity of prey obtained by metabarcoding approaches.
Asunto(s)
Quirópteros , Mariposas Nocturnas , Animales , Quirópteros/genética , Código de Barras del ADN Taxonómico , Conducta Alimentaria , Hábitos , Conducta PredatoriaRESUMEN
Both exogenous and endogenous retroviruses have long been studied in mice, and some of the earliest mouse studies focused on the heritability of genetic factors influencing permissivity and resistance to infection. The prototypic retroviral restriction factor, Fv1, is now understood to exhibit a degree of control across multiple retroviral genera and is highly diverse within Mus To better understand the age and evolutionary history of Fv1, a comprehensive survey of the Muroidea was conducted, allowing the progenitor integration to be dated to â¼45 million years. Intact coding potential is visible beyond Mus, and sequence analysis reveals strong signatures of positive selection also within field mice, ApodemusFv1's survival for such a period implies a recurring and shifting retroviral burden imparting the necessary selective pressures-an influence likely also common to analogous factors. Regions of Fv1 adapt cooperatively, highlighting its preference for repeated structures and suggesting that this functionally constrained aspect of the retroviral capsid lattice presents a common target in the evolution of intrinsic immunity.
Asunto(s)
Evolución Molecular , Proteínas/genética , Animales , Ratones , MurinaeRESUMEN
The riparian European mink (Mustela lutreola), currently surviving in only three unconnected sites in Europe, is now listed as a critically endangered species in the IUCN Red List of Threatened Species. Habitat loss and degradation, anthropogenic mortality, interaction with the feral American mink (Neovison vison), and infectious diseases are among the main causes of its decline. In the Spanish Foral Community of Navarra, where the highest density of M. lutreola in its western population has been detected, different studies and conservation measures are ongoing, including health studies on European mink, and invasive American mink control. We report here a case of severe parasitism with progressive physiological exhaustion in an aged free-ranging European mink female, which was accidentally captured and subsequently died in a live-trap targeting American mink. Checking of the small intestine revealed the presence of 17 entangled Versteria mustelae worms. To our knowledge, this is the first description of hyperinfestation by tapeworms in this species.
Asunto(s)
Infecciones por Cestodos/veterinaria , Visón/parasitología , Platelmintos/fisiología , Animales , Infecciones por Cestodos/epidemiología , Infecciones por Cestodos/parasitología , Especies en Peligro de Extinción/estadística & datos numéricos , Europa (Continente)/epidemiología , Femenino , Masculino , Platelmintos/genética , Platelmintos/aislamiento & purificación , España/epidemiologíaRESUMEN
UNLABELLED: Gibbon ape leukemia virus (GALV) and koala retrovirus (KoRV) most likely originated from a cross-species transmission of an ancestral retrovirus into koalas and gibbons via one or more intermediate as-yet-unknown hosts. A virus highly similar to GALV has been identified in an Australian native rodent (Melomys burtoni) after extensive screening of Australian wildlife. GALV-like viruses have also been discovered in several Southeast Asian species, although screening has not been extensive and viruses discovered to date are only distantly related to GALV. We therefore screened 26 Southeast Asian rodent species for KoRV- and GALV-like sequences, using hybridization capture and high-throughput sequencing, in the attempt to identify potential GALV and KoRV hosts. Only the individuals belonging to a newly discovered subspecies of Melomys burtoni from Indonesia were positive, yielding an endogenous provirus very closely related to a strain of GALV. The sequence of the critical receptor domain for GALV infection in the Indonesian M. burtoni subsp. was consistent with the susceptibility of the species to GALV infection. The second record of a GALV in M. burtoni provides further evidence that M. burtoni, and potentially other lineages within the widespread subfamily Murinae, may play a role in the spread of GALV-like viruses. The discovery of a GALV in the most western part of the Australo-Papuan distribution of M. burtoni, specifically in a transitional zone between Asia and Australia (Wallacea), may be relevant to the cross-species transmission to gibbons in Southeast Asia and broadens the known distribution of GALVs in wild rodents. IMPORTANCE: Gibbon ape leukemia virus (GALV) and the koala retrovirus (KoRV) are very closely related, yet their hosts neither are closely related nor overlap geographically. Direct cross-species infection between koalas and gibbons is unlikely. Therefore, GALV and KoRV may have arisen via a cross-species transfer from an intermediate host whose range overlaps those of both gibbons and koalas. Using hybridization capture and high-throughput sequencing, we have screened a wide range of rodent candidate hosts from Southeast Asia for KoRV- and GALV-like sequences. Only a Melomys burtoni subspecies from Wallacea (Indonesia) was positive for GALV. We report the genome sequence of this newly identified GALV, the critical domain for infection of its potential cellular receptor, and its phylogenetic relationships with the other previously characterized GALVs. We hypothesize that Melomys burtoni, and potentially related lineages with an Australo-Papuan distribution, may have played a key role in cross-species transmission to other taxa.
Asunto(s)
Virus de la Leucemia del Gibón/aislamiento & purificación , Murinae/virología , Infecciones por Retroviridae/veterinaria , Enfermedades de los Roedores/virología , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Indonesia , Virus de la Leucemia del Gibón/genética , Hibridación de Ácido Nucleico , Provirus/genética , Provirus/aislamiento & purificación , Infecciones por Retroviridae/virología , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: The European mink (Mustela lutreola, L. 1761) is a critically endangered mustelid, which inhabits several main river drainages in Europe. Here, we assess the genetic variation of existing populations of this species, including new sampling sites and additional molecular markers (newly developed microsatellite loci specific to European mink) as compared to previous studies. Probabilistic analyses were used to examine genetic structure within and between existing populations, and to infer phylogeographic processes and past demography. RESULTS: According to both mitochondrial and nuclear microsatellite markers, Northeastern (Russia, Estonia and Belarus) and Southeastern (Romania) European populations showed the highest intraspecific diversity. In contrast, Western European (France and Spain) populations were the least polymorphic, featuring a unique mitochondrial DNA haplotype. The high differentiation values detected between Eastern and Western European populations could be the result of genetic drift in the latter due to population isolation and reduction. Genetic differences among populations were further supported by Bayesian clustering and two main groups were confirmed (Eastern vs. Western Europe) along with two contained subgroups at a more local scale (Northeastern vs. Southeastern Europe; France vs. Spain). CONCLUSIONS: Genetic data and performed analyses support a historical scenario of stable European mink populations, not affected by Quaternary climate oscillations in the Late Pleistocene, and posterior expansion events following river connections in both North- and Southeastern European populations. This suggests an eastern refuge during glacial maxima (as already proposed for boreal and continental species). In contrast, Western Europe was colonised more recently following either natural expansions or putative human introductions. Low levels of genetic diversity observed within each studied population suggest recent bottleneck events and stress the urgent need for conservation measures to counteract the demographic decline experienced by the European mink.
Asunto(s)
Especies en Peligro de Extinción , Variación Genética , Visón/genética , Animales , Teorema de Bayes , Conservación de los Recursos Naturales , ADN Mitocondrial/genética , Europa (Continente) , Flujo Genético , Repeticiones de Microsatélite , Filogenia , Dinámica PoblacionalRESUMEN
BACKGROUND: Endogenous murine leukemia retroviruses (MLVs) are high copy number proviral elements difficult to comprehensively characterize using standard low throughput sequencing approaches. However, high throughput approaches generate data that is challenging to process, interpret and present. RESULTS: Next generation sequencing (NGS) data was generated for MLVs from two wild caught Mus musculus domesticus (from mainland France and Corsica) and for inbred laboratory mouse strains C3H, LP/J and SJL. Sequence reads were grouped using a novel sequence clustering approach as applied to retroviral sequences. A Markov cluster algorithm was employed, and the sequence reads were queried for matches to specific xenotropic (Xmv), polytropic (Pmv) and modified polytropic (Mpmv) viral reference sequences. CONCLUSIONS: Various MLV subtypes were more widespread than expected among the mice, which may be due to the higher coverage of NGS, or to the presence of similar sequence across many different proviral loci. The results did not correlate with variation in the major MLV receptor Xpr1, which can restrict exogenous MLVs, suggesting that endogenous MLV distribution may reflect gene flow more than past resistance to infection.
Asunto(s)
Virus de la Leucemia Murina/clasificación , Virus de la Leucemia Murina/genética , ARN Viral/análisis , Análisis de Secuencia de ARN/métodos , Animales , Europa (Continente) , Evolución Molecular , Flujo Génico , Virus de la Leucemia Murina/aislamiento & purificación , Cadenas de Markov , Ratones , Receptor de Retrovirus Xenotrópico y Politrópico , Virus Relacionado con el Virus Xenotrópico de la Leucemia Murina/genéticaRESUMEN
BACKGROUND: African wildlife experienced a reduction in population size and geographical distribution over the last millennium, particularly since the 19th century as a result of human demographic expansion, wildlife overexploitation, habitat degradation and cattle-borne diseases. In many areas, ungulate populations are now largely confined within a network of loosely connected protected areas. These metapopulations face gene flow restriction and run the risk of genetic diversity erosion. In this context, we assessed the "genetic health" of free ranging southern African Cape buffalo populations (S.c. caffer) and investigated the origins of their current genetic structure. The analyses were based on 264 samples from 6 southern African countries that were genotyped for 14 autosomal and 3 Y-chromosomal microsatellites. RESULTS: The analyses differentiated three significant genetic clusters, hereafter referred to as Northern (N), Central (C) and Southern (S) clusters. The results suggest that splitting of the N and C clusters occurred around 6000 to 8400 years ago. Both N and C clusters displayed high genetic diversity (mean allelic richness (A r ) of 7.217, average genetic diversity over loci of 0.594, mean private alleles (P a ) of 11), low differentiation, and an absence of an inbreeding depression signal (mean F IS = 0.037). The third (S) cluster, a tiny population enclosed within a small isolated protected area, likely originated from a more recent isolation and experienced genetic drift (F IS = 0.062, mean A r = 6.160, P a = 2). This study also highlighted the impact of translocations between clusters on the genetic structure of several African buffalo populations. Lower differentiation estimates were observed between C and N sampling localities that experienced translocation over the last century. CONCLUSIONS: We showed that the current genetic structure of southern African Cape buffalo populations results from both ancient and recent processes. The splitting time of N and C clusters suggests that the current pattern results from human-induced factors and/or from the aridification process that occurred during the Holocene period. The more recent S cluster genetic drift probably results of processes that occurred over the last centuries (habitat fragmentation, diseases). Management practices of African buffalo populations should consider the micro-evolutionary changes highlighted in the present study.
Asunto(s)
Búfalos/genética , África Austral , Animales , Evolución Biológica , Cromosomas de los Mamíferos , Conservación de los Recursos Naturales , Ecosistema , Flujo Génico , Flujo Genético , Variación Genética , Genética de Población , Repeticiones de Microsatélite , Cromosoma YRESUMEN
The prion protein (PrP) when misfolded into the pathogenic conformer PrP(Sc) is the major causative agent of several lethal transmissible spongiform encephalopathies in mammals. Studies of evolutionary pressure on the corresponding gene using different datasets have yielded conflicting results. In addition, putative PrP or PrP interacting partners with strong similarity to PrP such as the doppel protein have not been examined to determine if the same evolutionary mechanisms apply to prion paralogs or if there are coselected sites that might indicate how and where the proteins interact. We examined several taxonomic groups that contain model organisms of prion diseases focusing on primates, bovids, and an expanded dataset of rodents for selection pressure on the prion gene (PRNP) and doppel gene (PRND) individually and for coevolving sites within. Overall, the results clearly indicate that both proteins are under strong selective constraints with relaxed selection on amino acid residues connecting α-helices 1 and 2.
Asunto(s)
Evolución Molecular , Priones/genética , Selección Genética , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Filogenia , Primates , Estructura Terciaria de Proteína , Roedores , Rumiantes , Alineación de SecuenciaRESUMEN
Despite no obvious barriers to gene flow in the marine realm, environmental variation and ecological specializations can lead to genetic differentiation in highly mobile predators. Here, we investigated the genetic structure of the harbour porpoise over the entire species distribution range in western Palearctic waters. Combined analyses of 10 microsatellite loci and a 5085 base-pair portion of the mitochondrial genome revealed the existence of three ecotypes, equally divergent at the mitochondrial genome, distributed in the Black Sea (BS), the European continental shelf waters, and a previously overlooked ecotype in the upwelling zones of Iberia and Mauritania. Historical demographic inferences using approximate Bayesian computation (ABC) suggest that these ecotypes diverged during the last glacial maximum (c. 23-19 kilo-years ago, kyrbp). ABC supports the hypothesis that the BS and upwelling ecotypes share a more recent common ancestor (c. 14 kyrbp) than either does with the European continental shelf ecotype (c. 28 kyrbp), suggesting they probably descended from the extinct populations that once inhabited the Mediterranean during the glacial and post-glacial period. We showed that the two Atlantic ecotypes established a narrow admixture zone in the Bay of Biscay during the last millennium, with highly asymmetric gene flow. This study highlights the impacts that climate change may have on the distribution and speciation process in pelagic predators and shows that allopatric divergence can occur in these highly mobile species and be a source of genetic diversity.
Asunto(s)
Cambio Climático , Ecotipo , Variación Genética , Genética de Población , Phocoena/genética , Animales , Océano Atlántico , Teorema de Bayes , ADN Mitocondrial/genética , Flujo Génico , Genotipo , Mar Mediterráneo , Repeticiones de Microsatélite , Modelos Genéticos , Phocoena/clasificación , Densidad de Población , Dinámica Poblacional , Análisis de Secuencia de ADNRESUMEN
Determining the dietary spectrum of European insectivorous bats over time is the cornerstone of their conservation, as it will aid our understanding of foraging behavior plasticity in response to plummeting insect populations. Despite the global decline in insects, a restricted number of arthropod pest species thrive. Yet past research has overlooked the potential of European bats to suppress pests harmful to woodlands or livestock, in spite of their economic relevance. Here we investigated the diet composition, its breeding season variations and pest consumption of an insectivorous bat species (Myotis emarginatus), at the northern edge of its range (Wallonia, Belgium). We also explored the prey ecology to gain insight into the hunting strategies and foraging habitats of this bat species. We used DNA metabarcoding to amplify two COI markers within 195 bat droppings collected in June, July and August, thereby identifying 512 prey taxa predominated by Diptera, Araneae and Lepidoptera. Overall, in 97% of the samples we detected at least one of the 58 potential pest taxa, 41 of which targeting trees. The June samples were marked by a diet rich in orb-weaver spiders, in accordance with the archetypal diet of M. emarginatus bats. However, during the highly energy demanding July-August parturition and lactation period, roughly 55% of the dropping samples contained two cattle fly pests (Stomoxys calcitrans and Musca domestica). Moreover, among the 88 Diptera species preyed upon by M. emarginatus in July and August, these flies accounted for around 50% of the taxa occurrences. This plasticity-the switch from a spider-rich to a fly-rich diet-seems providential considering the dramatic ongoing drop in insect populations but this involves ensuring bat-friendly cattle farming. Our results revealed that bats widely consume pest entomofauna, thereby highlighting their potential role as allies of forest managers and farmers.
Asunto(s)
Quirópteros , Conducta Predatoria , Arañas , Animales , Quirópteros/parasitología , Quirópteros/fisiología , Bovinos , Arañas/fisiología , Conducta Alimentaria , Estaciones del Año , Dieta , Dípteros/fisiología , Bélgica , EcosistemaRESUMEN
The African buffalo (Syncerus caffer) is a wild bovid with a historical distribution across much of sub-Saharan Africa. Genomic analysis can provide insights into the evolutionary history of the species, and the key selective pressures shaping populations, including assessment of population level differentiation, population fragmentation, and population genetic structure. In this study we generated the highest quality de novo genome assembly (2.65 Gb, scaffold N50 69.17 Mb) of African buffalo to date, and sequenced a further 195 genomes from across the species distribution. Principal component and admixture analyses provided little support for the currently described four subspecies. Estimating Effective Migration Surfaces analysis suggested that geographical barriers have played a significant role in shaping gene flow and the population structure. Estimated effective population sizes indicated a substantial drop occurring in all populations 5-10,000 years ago, coinciding with the increase in human populations. Finally, signatures of selection were enriched for key genes associated with the immune response, suggesting infectious disease exert a substantial selective pressure upon the African buffalo. These findings have important implications for understanding bovid evolution, buffalo conservation and population management.
Asunto(s)
Búfalos , Genoma , Genómica , Búfalos/genética , Animales , Genómica/métodos , Flujo Génico , África del Sur del Sahara , Genética de Población , Filogenia , Variación GenéticaRESUMEN
Black rats are major invasive vertebrate pests with severe ecological, economic and health impacts. Remarkably, their evolutionary history has received little attention, and there is no firm agreement on how many species should be recognized within the black rat complex. This species complex is native to India and Southeast Asia. According to current taxonomic classification, there are three taxa living in sympatry in several parts of Thailand, Cambodia and Lao People's Democratic Republic, where this study was conducted: two accepted species (Rattus tanezumi, Rattus sakeratensis) and an additional mitochondrial lineage of unclear taxonomic status referred to here as 'Rattus R3'. We used extensive sampling, morphological data and diverse genetic markers differing in rates of evolution and parental inheritance (two mitochondrial DNA genes, one nuclear gene and eight microsatellite loci) to assess the reproductive isolation of these three taxa. Two close Asian relatives, Rattus argentiventer and Rattus exulans, were also included in the genetic analyses. Genetic analyses revealed discordance between the mitochondrial and nuclear data. Mitochondrial phylogeny studies identified three reciprocally monophyletic clades in the black rat complex. However, studies of the phylogeny of the nuclear exon interphotoreceptor retinoid-binding protein gene and clustering and assignation analyses with eight microsatellites failed to separate R. tanezumi and R3. Morphometric analyses were consistent with nuclear data. The incongruence between mitochondrial and nuclear (and morphological) data rendered R. tanezumi/R3 paraphyletic for mitochondrial lineages with respect to R. sakeratensis. Various evolutionary processes, such as shared ancestral polymorphism and incomplete lineage sorting or hybridization with massive mitochondrial introgression between species, may account for this unusual genetic pattern in mammals.
Asunto(s)
Evolución Molecular , Filogenia , Ratas/genética , Aislamiento Reproductivo , Animales , Asia Sudoriental , Núcleo Celular/genética , ADN Mitocondrial/genética , Especiación Genética , Variación Genética , Repeticiones de Microsatélite , Modelos Genéticos , Análisis de Secuencia de ADNRESUMEN
Recognition of evolutionary units (species, populations) requires integrating several kinds of data, such as genetic or phenotypic markers or spatial information in order to get a comprehensive view concerning the differentiation of the units. We propose a statistical model with a double original advantage: (i) it incorporates information about the spatial distribution of the samples, with the aim to increase inference power and to relate more explicitly observed patterns to geography and (ii) it allows one to analyze genetic and phenotypic data within a unified model and inference framework, thus opening the way to robust comparisons between markers and possibly combined analyses. We show from simulated data as well as real data that our method estimates parameters accurately and is an improvement over alternative approaches in many situations. The power of this method is exemplified using an intricate case of inter- and intraspecies differentiation based on an original data set of georeferenced genetic and morphometric markers obtained on Myodes voles from Sweden. A computer program is made available as an extension of the R package Geneland.
Asunto(s)
Variación Genética , Modelos Genéticos , Fenotipo , Animales , Arvicolinae/clasificación , Arvicolinae/genética , Geografía , Modelos Estadísticos , Programas Informáticos , Especificidad de la EspecieRESUMEN
Recently, Balakirev et al. (2013) presented a taxonomic revision of the genus Leopoldamys based on phylogenetic analyses. They identified five main Leopoldamys genetic lineages and suggested to rename several of them. According to these authors, the genetic lineage previously thought to belong to L. edwardsi (lineage L1) should be assigned to L. revertens while L. neilli (lineage L2) should be considered as a junior synonym of L. herberti. Using molecular and morphological data from a large sampling of Leopoldamys specimens, the aim of the present study was to investigate the taxonomic status of L. herberti and L. neilli. This study reveals that, contrary to Balakirev et al.'s statement, both genetic lineages L1 and L2 occur in Nakhon Ratchasima Province, close to the type locality of L. herberti. We also show that the external measurements and color pattern of L. herberti are highly similar to those of L1 specimens but are not consistent with the morphology of L2 specimens. Therefore these results strongly suggest that L. herberti should be assigned to the genetic lineage L1. Consequently L. neilli should not be considered as a junior synonym of L. herberti and this study confirms that the appropriate name of the genetic lineage L2 is L. neilli. Moreover, as our results show that L. herberti should be assigned to the lineage L1, this name has nomenclatural priority over L. revertens, the species name suggested by Balakirev et al. (2013) for this lineage.
Asunto(s)
Muridae/anatomía & histología , Muridae/clasificación , Animales , Asia Sudoriental , Citocromos b/genética , Demografía , Complejo IV de Transporte de Electrones/genética , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Muridae/genética , Muridae/fisiología , Filogenia , Especificidad de la EspecieRESUMEN
DNA from the environment (eDNA) has been increasingly used as a new tool to conduct biodiversity assessment. Because of its noninvasive and less time-consuming nature, many studies of recent years solely rely on this information to establish a species inventory. eDNA metabarcoding has been shown to be an efficient method in aquatic ecosystems, especially for fish. However, detection efficiency is not clear for mammals. Using the existing literature, we conducted a meta-analysis to investigate if eDNA metabarcoding allows greater detection success compared to conventional surveys (such as field surveys, camera traps, etc.). Although only 28 articles were retrieved, showing the lack of comparative studies, still representing more than 900 taxa detected, we found that detection success was method dependent, but most importantly varies on the taxonomy of the targeted taxa. eDNA metabarcoding performed poorly for bats compared to the traditional mist nests. However, strong detection overlaps were found between conventional surveys and eDNA for large-bodied mammals such as ungulates, primates, and carnivores. Overall, we argue that using both molecular and field approaches can complement each other and can maximize the most accurate biodiversity assessment and there is much room for metabarcoding optimization to reach their full potential compared to traditional surveys.
RESUMEN
The alpine ecosystems and communities of central Asia are currently undergoing large-scale ecological and socio-ecological changes likely to affect wildlife-livestock-human disease interactions and zoonosis transmission risk. However, relatively little is known about the prevalence of pathogens in this region. Between 2012 and 2015 we screened 142 rodents in Mongolia's Gobi desert for exposure to important zoonotic and livestock pathogens. Rodent seroprevalence to Leptospira spp. was >1/3 of tested animals, Toxoplasma gondii and Coxiella burnetii approximately 1/8 animals, and the hantaviruses being between 1/20 (Puumala-like hantavirus) and <1/100 (Seoul-like hantavirus). Gerbils trapped inside local dwellings were one of the species seropositive to Puumala-like hantavirus, suggesting a potential zoonotic transmission pathway. Seventeen genera of zoonotic bacteria were also detected in the faeces and ticks collected from these rodents, with one tick testing positive to Yersinia. Our study helps provide baseline patterns of disease prevalence needed to infer potential transmission between source and target populations in this region, and to help shift the focus of epidemiological research towards understanding disease transmission among species and proactive disease mitigation strategies within a broader One Health framework.
RESUMEN
Although properly designed sampling in population genetic studies is of key importance for planning evidence-informed conservation measures, sampling strategies are rarely discussed. This is the case for the European mink Mustela lutreola, a critically endangered species. In order to address this problem, a meta-analysis aiming to examine the completeness of mtDNA haplotype sampling in recent studies of M. lutreola inter-population genetic diversity was conducted. The analysis was performed using the sample-size-based rarefaction and extrapolation sampling curve method for three populations-the Northeastern (Russia, Belarus and Estonia), the Western (France and Spain), and the Southeastern (Romania). The extrapolated values of the Shannon-Wiener index were determined, assuming full sample coverage. The gap between the measured and predicted inter-population genetic diversity was estimated, indicating that the identified level of sample coverage was the lowest for the NE population (87%), followed by the SE population (96%) and the W population (99%). A guide for sampling design and accounting for sampling uncertainty in future population genetic studies on European mink is provided. The relatively low sample coverage for the Russian population clearly indicates an urgent need to take conservation measures for European mink in this country.