Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sensors (Basel) ; 20(3)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013245

RESUMEN

For biomagnetical applications exploiting physical properties of magnetic nanoparticles (MNP), e.g., magnetic hyperthermia, knowledge about the quantitative spatial MNP distribution is crucial, which can be extracted by magnetorelaxometry (MRX) imaging. In this paper, we present quantification, quantitative 1D reconstruction, and quantitative 2D imaging of MNP by exploiting optically pumped magnetometers for MRX. While highlighting the potential of commercially available optically pumped magnetometers (OPM) for MRXI, we discuss current limitations of the used OPM. We show, that with our OPM setup, MNP can be precisely quantified with iron amounts down to ≈ 6 g , which can be improved easily. With a 1D-reconstruction setup, point-like and complex MNP phantoms can be reconstructed quantitatively with high precision and accuracy. We show that with our developed 2D MRX imaging setup, which measures 12 c m by 8 c m , point-like MNP distributions with clinically relevant iron concentrations can be reconstructed precisely and accurately. Our 2D setup has the potential to be easily extended to a tomography styled (and thus slice-selective) 3D scanner, by adding a mechanical axis to the phantom.

2.
Sci Rep ; 13(1): 22157, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092937

RESUMEN

Optically pumped magnetometers (OPM) are quantum sensors that offer new possibilities to measure biomagnetic signals. Compared to the current standard surface electromyography (EMG), in magnetomyography (MMG), OPM sensors offer the advantage of contactless measurements of muscle activity. However, little is known about the relative performance of OPM-MMG and EMG, e.g. in their ability to detect and classify finger movements. To address this in a proof-of-principle study, we recorded simultaneous OPM-MMG and EMG of finger flexor muscles for the discrimination of individual finger movements on a single human participant. Using a deep learning model for movement classification, we found that both sensor modalities were able to discriminate finger movements with above 89% accuracy. Furthermore, model predictions for the two sensor modalities showed high agreement in movement detection (85% agreement; Cohen's kappa: 0.45). Our findings show that OPM sensors can be employed for contactless discrimination of finger movements and incentivize future applications of OPM in magnetomyography.


Asunto(s)
Dedos , Músculo Esquelético , Humanos , Dedos/fisiología , Electromiografía , Músculo Esquelético/fisiología , Movimiento/fisiología , Magnetoencefalografía
3.
Phys Rev Lett ; 109(26): 263004, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23368558

RESUMEN

We have determined the frequency shift that blackbody radiation is inducing on the 5s2 (1)S0-5s5p (3)P0 clock transition in strontium. Previously its uncertainty limited the uncertainty of strontium lattice clocks to 1×10(-16). Now the uncertainty associated with the blackbody radiation shift correction translates to a 5×10(-18) relative frequency uncertainty at room temperature. Our evaluation is based on a measurement of the differential dc polarizability of the two clock states and on a modeling of the dynamic contribution using this value and experimental data for other atomic properties.

4.
Front Neurosci ; 16: 1010242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523432

RESUMEN

Optically pumped magnetometers (OPM) are quantum sensors that enable the contactless, non-invasive measurement of biomagnetic muscle signals, i.e., magnetomyography (MMG). Due to the contactless recording, OPM-MMG might be preferable to standard electromyography (EMG) for patients with neuromuscular diseases, particularly when repetitive recordings for diagnostic and therapeutic monitoring are mandatory. OPM-MMG studies have focused on recording physiological muscle activity in healthy individuals, whereas research on neuromuscular patients with pathological altered muscle activity is non-existent. Here, we report a proof-of-principle study on the application of OPM-MMG in patients with neuromuscular diseases. Specifically, we compare the muscular activity during maximal isometric contraction of the left rectus femoris muscle in three neuromuscular patients with severe (Transthyretin Amyloidosis in combination with Pompe's disease), mild (Charcot-Marie-Tooth disease, type 2), and without neurogenic, but myogenic, damage (Myotonia Congenita). Seven healthy young participants served as the control group. As expected, and confirmed by using simultaneous surface electromyography (sEMG), a time-series analysis revealed a dispersed interference pattern during maximal contraction with high amplitudes. Furthermore, both patients with neurogenic damage (ATTR and CMT2) showed a reduced variability of the MMG signal, quantified as the signal standard deviation of the main component of the frequency spectrum, highlighting the reduced possibility of motor unit recruitment due to the loss of motor neurons. Our results show that recording pathologically altered voluntary muscle activity with OPM-MMG is possible, paving the way for the potential use of OPM-MMG in larger studies to explore the potential benefits in clinical neurophysiology.

5.
J Electromyogr Kinesiol ; 56: 102490, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33259993

RESUMEN

AIM: Aiming at analysing the signal conduction in muscular fibres, the spatio-temporal dynamics of the magnetic field generated by the propagating muscle action potential (MAP) is studied. METHOD: In this prospective, proof of principle study, the magnetic activity of the intrinsic foot muscle after electric stimulation of the tibial nerve was measured using optically pumped magnetometers (OPMs). A classical biophysical electric dipole model of the propagating MAP was implemented to model the source of the data. In order to account for radial currents of the muscular tubules system, a magnetic dipole oriented along the direction of the muscle was added. RESULTS: The signal profile generated by the activity of the intrinsic foot muscles was measured by four OPM devices. Three OPM sensors captured the spatio-temporal magnetic field pattern of the longitudinal intrinsic foot muscles. Changes of the activation pattern reflected the propagating muscular action potential along the muscle. A combined electric and magnetic dipole model could explain the recorded magnetic activity. INTERPRETATION: OPM devices allow for a new, non-invasive way to study MAP patterns. Since magnetic fields are less altered by the tissue surrounding the dipole source compared to electric activity, a precise analysis of the spatial characteristics and temporal dynamics of the MAP is possible. The classic electric dipole model explains major but not all aspects of the magnetic field. The field has longitudinal components generated by intrinsic structures of the muscle fibre. By understanding these magnetic components, new methods could be developed to analyse the muscular signal transduction pathway in greater detail. The approach has the potential to become a promising diagnostic tool in peripheral neurological motor impairments.


Asunto(s)
Potenciales de Acción/fisiología , Campos Magnéticos , Magnetometría/métodos , Músculo Esquelético/fisiología , Adulto , Estimulación Eléctrica/métodos , Pie/inervación , Pie/fisiología , Humanos , Masculino , Prueba de Estudio Conceptual , Estudios Prospectivos , Nervio Tibial/fisiología
6.
J Electromyogr Kinesiol ; 59: 102571, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34242929

RESUMEN

AIM: This study aims to simultaneously record the magnetic and electric components of the propagating muscular action potential. METHOD: A single-subject study of the monosynaptic stretch reflex of the musculus rectus femoris was performed; the magnetic field generated by the muscular activity was recorded in all three spatial directions by five optically pumped magnetometers. In addition, the electric field was recorded by four invasive fine-wire needle electrodes. The magnetic and electric fields were compared by modelling the muscular anatomy of the rectus femoris muscle and by simulating the corresponding magnetic field vectors. RESULTS: The magnetomyography (MMG) signal can reliably be recorded following the stimulation of the monosynaptic stretch reflex. The MMG signal shows several phases of activity inside the muscle, the first of which is the propagating muscular action potential. As predicted by the finite wire model, the magnetic field vectors of the propagating muscular action potential are generated by the current flowing along the muscle fiber. Based on the magnetic field vectors, it was possible to reconstruct the pinnation angle of the muscle fibers. The later magnetic field components are linked to the activation of the contractile apparatus. Interpretation MMG allows to analyze the muscle physiology from the propagating muscular action potential to the initiation of the contractile apparatus. At the same time, this methods reveals information about muscle fiber direction and extend. With the development of high-resolution magnetic cameras, that are based on OPM technology, it will be possible to image the function and structure of the biomagnetic field of any skeletal muscle with high precision. This method could be used both, in clinical medicine and also in sports science.


Asunto(s)
Campos Magnéticos , Músculo Esquelético , Potenciales de Acción , Humanos , Magnetismo
7.
Clin Neurophysiol ; 132(10): 2681-2684, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34274216

RESUMEN

OBJECTIVE: This proof-of-principle-study evaluated the extent to which spontaneous activity (SA) of the muscle can be detected via non-invasive magnetomyography (MMG) with optically pumped magnetometers (OPM). METHODS: Five patients, who together exhibited all forms of SA (fibrillations, positive sharp waves, fasciculations, myotonic discharges, complex-repetitive discharges) with conventional needle electromyography (EMG), were studied by OPM-MMG and simultaneous surface EMG (sEMG) while at rest, during light muscle activation, and when a muscle stretch reflex was elicited. Three healthy subjects were measured as controls. SA was considered apparent in the OPM-MMG if a signal could be visually detected that corresponded in shape and frequency to the SA in the respective needle EMG. RESULTS: SA in the context of fasciculations could be detected in 2 of 5 patients by simultaneous OPM-MMG/sEMG. Other forms of SA could not be detected at rest, during light muscle activation, or after provocation of a muscle stretch reflex. CONCLUSIONS: Results show that fasciculations could be detected non-invasively via a new method (OPM). SIGNIFICANCE: We show that other forms of SA are not detectable with current OPM and propose necessary technical solutions to overcome this circumstance. Our results motivate to pursue OPM-MMG as a new clinical neurophysiological diagnostic.


Asunto(s)
Electromiografía/métodos , Fasciculación/diagnóstico , Fasciculación/fisiopatología , Magnetoencefalografía/métodos , Magnetometría/métodos , Adulto , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/fisiopatología , Prueba de Estudio Conceptual
8.
Front Physiol ; 12: 724755, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975515

RESUMEN

So far, surface electromyography (sEMG) has been the method of choice to detect and evaluate muscle fatigue. However, recent advancements in non-cryogenic quantum sensors, such as optically pumped magnetometers (OPMs), enable interesting possibilities to flexibly record biomagnetic signals. Yet, a magnetomyographic investigation of muscular fatigue is still missing. Here, we simultaneously used sEMG (4 surface electrode) and OPM-based magnetomyography (OPM-MMG, 4 sensors) to detect muscle fatigue during a 3 × 1-min isometric contractions of the left rectus femoris muscle in 7 healthy participants. Both signals exhibited the characteristic spectral compression distinctive for muscle fatigue. OPM-MMG and sEMG slope values, used to quantify the spectral compression of the signals, were positively correlated, displaying similarity between the techniques. Additionally, the analysis of the different components of the magnetic field vector enabled speculations regarding the propagation of the muscle action potentials (MAPs). Altogether these results show the feasibility of the magnetomyographic approach with OPMs and propose a potential alternative to sEMG for the study of muscle fatigue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA