RESUMEN
Gene editing technologies hold promise for enabling the next generation of adoptive cellular therapies. In conventional gene editing platforms that rely on nuclease activity, such as clustered regularly interspaced short palindromic repeats CRISPR-associated protein 9 (CRISPR-Cas9), allow efficient introduction of genetic modifications; however, these modifications occur via the generation of DNA double-strand breaks (DSBs) and can lead to unwanted genomic alterations and genotoxicity. Here, we apply a novel modular RNA aptamer-mediated Pin-point base editing platform to simultaneously introduce multiple gene knockouts and site-specific integration of a transgene in human primary T cells. We demonstrate high editing efficiency and purity at all target sites and significantly reduced frequency of chromosomal translocations compared with the conventional CRISPR-Cas9 system. Site-specific knockin of a chimeric antigen receptor and multiplex gene knockout are achieved within a single intervention and without the requirement for additional sequence-targeting components. The ability to perform complex genome editing efficiently and precisely highlights the potential of the Pin-point platform for application in a range of advanced cell therapies.
Asunto(s)
Aptámeros de Nucleótidos , Sistemas CRISPR-Cas , Edición Génica , Técnicas de Inactivación de Genes , Linfocitos T , Humanos , Edición Génica/métodos , Aptámeros de Nucleótidos/genética , Linfocitos T/metabolismo , Linfocitos T/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Técnicas de Sustitución del Gen/métodos , TransgenesRESUMEN
Driven by the necessity to survive environmental pathogens, the human immune system has evolved exceptional diversity and plasticity, to which several factors contribute including inheritable structural polymorphism of the underlying genes. Characterizing this variation is challenging due to the complexity of these loci, which contain extensive regions of paralogy, segmental duplication and high copy-number repeats, but recent progress in long-read sequencing and optical mapping techniques suggests this problem may now be tractable. Here we assess this by using long-read sequencing platforms from PacBio and Oxford Nanopore, supplemented with short-read sequencing and Bionano optical mapping, to sequence DNA extracted from CD14+ monocytes and peripheral blood mononuclear cells from a single European individual identified as HV31. We use this data to build a de novo assembly of eight genomic regions encoding four key components of the immune system, namely the human leukocyte antigen, immunoglobulins, T cell receptors, and killer-cell immunoglobulin-like receptors. Validation of our assembly using k-mer based and alignment approaches suggests that it has high accuracy, with estimated base-level error rates below 1 in 10 kb, although we identify a small number of remaining structural errors. We use the assembly to identify heterozygous and homozygous structural variation in comparison to GRCh38. Despite analyzing only a single individual, we find multiple large structural variants affecting core genes at all three immunoglobulin regions and at two of the three T cell receptor regions. Several of these variants are not accurately callable using current algorithms, implying that further methodological improvements are needed. Our results demonstrate that assessing haplotype variation in these regions is possible given sufficiently accurate long-read and associated data. Continued reductions in the cost of these technologies will enable application of these methods to larger samples and provide a broader catalogue of germline structural variation at these loci, an important step toward making these regions accessible to large-scale genetic association studies.
Asunto(s)
Variación Genética , Genoma Humano/inmunología , Sistema Inmunológico , Algoritmos , Biología Computacional , Variaciones en el Número de Copia de ADN , Genómica/métodos , Genómica/estadística & datos numéricos , Antígenos HLA/genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Fenómenos Inmunogenéticos , Inmunoglobulinas/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores KIR/genética , Análisis de Secuencia de ADN/estadística & datos numéricosRESUMEN
Circadian clocks provide a competitive advantage in an environment that is heavily influenced by the rotation of the Earth, by driving daily rhythms in behaviour, physiology and metabolism in bacteria, fungi, plants and animals. Circadian clocks comprise transcription-translation feedback loops, which are entrained by environmental signals such as light and temperature to adjust the phase of rhythms to match the local environment. The production of sugars by photosynthesis is a key metabolic output of the circadian clock in plants. Here we show that these rhythmic, endogenous sugar signals can entrain circadian rhythms in Arabidopsis thaliana by regulating the gene expression of circadian clock components early in the photoperiod, thus defining a 'metabolic dawn'. By inhibiting photosynthesis, we demonstrate that endogenous oscillations in sugar levels provide metabolic feedback to the circadian oscillator through the morning-expressed gene PSEUDO-RESPONSE REGULATOR 7 (PRR7), and we identify that prr7 mutants are insensitive to the effects of sucrose on the circadian period. Thus, photosynthesis has a marked effect on the entrainment and maintenance of robust circadian rhythms in A. thaliana, demonstrating that metabolism has a crucial role in regulation of the circadian clock.
Asunto(s)
Arabidopsis/fisiología , Relojes Circadianos/fisiología , Fotosíntesis/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos/genética , Relojes Circadianos/efectos de la radiación , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fotoperiodo , Fotosíntesis/efectos de la radiación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Sacarosa/metabolismo , Sacarosa/farmacología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/efectos de la radiaciónRESUMEN
Circadian clocks drive rhythmic physiology and metabolism to optimize plant growth and performance under daily environmental fluctuations caused by the rotation of the planet. Photosynthesis is a key metabolic process that must be appropriately timed to the light-dark cycle. The circadian clock contributes to the regulation of photosynthesis, and in turn the daily accumulation of sugars from photosynthesis also feeds back to regulate the circadian oscillator. We have previously shown that GIGANTEA (GI) is required to sustain Suc-dependent circadian rhythms in darkness. The mechanism by which Suc affects the circadian oscillator in a GI-dependent manner was unknown. Here, we identify that Suc sustains rhythms in the dark by stabilizing GI protein, dependent on the F-box protein ZEITLUPE, and implicate CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), a negative regulator of ethylene signaling. Our identification of a role for CTR1 in the response to Suc prompted a reinvestigation of the effects of ethylene on the circadian oscillator. We demonstrate that ethylene shortens the circadian period, conditional on the effects of Suc and requiring GI These findings reveal that Suc affects the stability of circadian oscillator proteins and can mask the effects of ethylene on the circadian system, identifying novel molecular pathways for input of sugar to the Arabidopsis (Arabidopsis thaliana) circadian network.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos , Etilenos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Quinasas/metabolismo , Sacarosa/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Oscuridad , Luz , Fotosíntesis , Proteínas Quinasas/genética , Transducción de SeñalRESUMEN
To produce a diverse antibody repertoire, immunoglobulin heavy-chain (Igh) loci undergo large-scale alterations in structure to facilitate juxtaposition and recombination of spatially separated variable (VH), diversity (DH), and joining (JH) genes. These chromosomal alterations are poorly understood. Uncovering their patterns shows how chromosome dynamics underpins antibody diversity. Using tiled Capture Hi-C, we produce a comprehensive map of chromatin interactions throughout the 2.8-Mb Igh locus in progenitor B cells. We find that the Igh locus folds into semi-rigid subdomains and undergoes flexible looping of the VH genes to its 3' end, reconciling two views of locus organization. Deconvolution of single Igh locus conformations using polymer simulations identifies thousands of different structures. This heterogeneity may underpin the diversity of V(D)J recombination events. All three immunoglobulin loci also participate in a highly specific, developmentally regulated network of interchromosomal interactions with genes encoding B cell-lineage factors. This suggests a model of interchromosomal coordination of B cell development.
Asunto(s)
Linfocitos B , Inmunoglobulinas , Recombinación V(D)J/genética , Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Células Precursoras de Linfocitos BRESUMEN
Ankylosing spondylitis (AS) is a common, highly heritable inflammatory arthritis characterized by enthesitis of the spine and sacroiliac joints. Genome-wide association studies (GWASs) have revealed more than 100 genetic associations whose functional effects remain largely unresolved. Here, we present a comprehensive transcriptomic and epigenomic map of disease-relevant blood immune cell subsets from AS patients and healthy controls. We find that, while CD14+ monocytes and CD4+ and CD8+ T cells show disease-specific differences at the RNA level, epigenomic differences are only apparent upon multi-omics integration. The latter reveals enrichment at disease-associated loci in monocytes. We link putative functional SNPs to genes using high-resolution Capture-C at 10 loci, including PTGER4 and ETS1, and show how disease-specific functional genomic data can be integrated with GWASs to enhance therapeutic target discovery. This study combines epigenetic and transcriptional analysis with GWASs to identify disease-relevant cell types and gene regulation of likely pathogenic relevance and prioritize drug targets.
Asunto(s)
Displasia Fibrosa Poliostótica/complicaciones , Displasia Fibrosa Poliostótica/diagnóstico por imagen , Órbita , Adulto , Displasia Fibrosa Poliostótica/cirugía , Humanos , Inflamación/etiología , Imagen por Resonancia Magnética , Masculino , Órbita/diagnóstico por imagen , Recurrencia , Tomografía Computarizada por Rayos XRESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARSCoV2) disease (COVID-19) pandemic has caused millions of deaths worldwide. Genome-wide association studies identified the 3p21.31 region as conferring a twofold increased risk of respiratory failure. Here, using a combined multiomics and machine learning approach, we identify the gain-of-function risk A allele of an SNP, rs17713054G>A, as a probable causative variant. We show with chromosome conformation capture and gene-expression analysis that the rs17713054-affected enhancer upregulates the interacting gene, leucine zipper transcription factor like 1 (LZTFL1). Selective spatial transcriptomic analysis of lung biopsies from patients with COVID-19 shows the presence of signals associated with epithelial-mesenchymal transition (EMT), a viral response pathway that is regulated by LZTFL1. We conclude that pulmonary epithelial cells undergoing EMT, rather than immune cells, are likely responsible for the 3p21.31-associated risk. Since the 3p21.31 effect is conferred by a gain-of-function, LZTFL1 may represent a therapeutic target.
Asunto(s)
COVID-19/complicaciones , Cromosomas Humanos Par 3/genética , Transición Epitelial-Mesenquimal , Pulmón/virología , Polimorfismo de Nucleótido Simple , SARS-CoV-2/aislamiento & purificación , Factores de Transcripción/genética , COVID-19/transmisión , COVID-19/virología , Estudios de Casos y Controles , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Pulmón/metabolismo , Pulmón/patología , Masculino , Factores de Transcripción/metabolismoRESUMEN
A functional adaptive immune system must generate enormously diverse antigen receptor (AgR) repertoires from a limited number of AgR genes, using a common mechanism, V(D)J recombination. The AgR loci are among the largest in the genome, and individual genes must overcome huge spatial and temporal challenges to co-localize with optimum variability. Our understanding of the complex mechanisms involved has increased enormously, due in part to new technologies for high resolution mapping of AgR structure and dynamic movement, underpinning mechanisms, and resulting repertoires. This review will examine these advances using the paradigm of the mouse immunoglobulin heavy chain (Igh) locus. We will discuss the key regulatory elements implicated in Igh locus structure. Recent next generation repertoire sequencing methods have shown that local chromatin state at V genes contribute to recombination efficiency. Next on the multidimensional scale, we will describe imaging studies that provided the first picture of the large-scale dynamic looping and contraction the Igh locus undergoes during recombination. We will discuss chromosome conformation capture (3C)-based technologies that have provided higher resolution pictures of Igh locus structure, including the different models that have evolved. We will consider the key transcription factors (PAX5, YY1, E2A, Ikaros), and architectural factors, CTCF and cohesin, that regulate these processes. Lastly, we will discuss a plethora of recent exciting mechanistic findings. These include Rag recombinase scanning for convergent RSS sequences within DNA loops; identification of Igh loop extrusion, and its putative role in Rag scanning; the roles of CTCF, cohesin and cohesin loading factor, WAPL therein; a new phase separation model for Igh locus compartmentalization. We will draw these together and conclude with some horizon-scanning and unresolved questions.