Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 42(12): e111272, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37143403

RESUMEN

Patients with chronic obstructive pulmonary disease (COPD) are still waiting for curative treatments. Considering its environmental cause, we hypothesized that COPD will be associated with altered epigenetic signaling in lung cells. We generated genome-wide DNA methylation maps at single CpG resolution of primary human lung fibroblasts (HLFs) across COPD stages. We show that the epigenetic landscape is changed early in COPD, with DNA methylation changes occurring predominantly in regulatory regions. RNA sequencing of matched fibroblasts demonstrated dysregulation of genes involved in proliferation, DNA repair, and extracellular matrix organization. Data integration identified 110 candidate regulators of disease phenotypes that were linked to fibroblast repair processes using phenotypic screens. Our study provides high-resolution multi-omic maps of HLFs across COPD stages. We reveal novel transcriptomic and epigenetic signatures associated with COPD onset and progression and identify new candidate regulators involved in the pathogenesis of chronic lung diseases. The presence of various epigenetic factors among the candidates demonstrates that epigenetic regulation in COPD is an exciting research field that holds promise for novel therapeutic avenues for patients.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Transcriptoma , Humanos , Epigénesis Genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Pulmón/patología , Perfilación de la Expresión Génica , Metilación de ADN
2.
JCI Insight ; 6(6)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33630765

RESUMEN

Complexity of lung microenvironment and changes in cellular composition during disease make it exceptionally hard to understand molecular mechanisms driving development of chronic lung diseases. Although recent advances in cell type-resolved approaches hold great promise for studying complex diseases, their implementation relies on local access to fresh tissue, as traditional tissue storage methods do not allow viable cell isolation. To overcome these hurdles, we developed a versatile workflow that allows storage of lung tissue with high viability, permits thorough sample quality check before cell isolation, and befits sequencing-based profiling. We demonstrate that cryopreservation enables isolation of multiple cell types from both healthy and diseased lungs. Basal cells from cryopreserved airways retain their differentiation ability, indicating that cellular identity is not altered by cryopreservation. Importantly, using RNA sequencing and EPIC Array, we show that gene expression and DNA methylation signatures are preserved upon cryopreservation, emphasizing the suitability of our workflow for omics profiling of lung cells. Moreover, we obtained high-quality single-cell RNA-sequencing data of cells from cryopreserved human lungs, demonstrating that cryopreservation empowers single-cell approaches. Overall, thanks to its simplicity, our workflow is well suited for prospective tissue collection by academic collaborators and biobanks, opening worldwide access to viable human tissue.


Asunto(s)
Criopreservación , Epigénesis Genética , Pulmón/metabolismo , Transcripción Genética , Metilación de ADN , Expresión Génica , Humanos , Pulmón/citología , Análisis de Secuencia de ARN/métodos , Flujo de Trabajo
3.
J Innate Immun ; 8(5): 464-78, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27423489

RESUMEN

Endoplasmic reticulum (ER) stress is associated with chronic pulmonary inflammatory diseases. We hypothesized that the combined activation of both Toll-like receptor (TLR) signaling and ER stress might increase inflammatory reactions in otherwise tolerant airway epithelial cells. Indeed, ER stress resulted in an increased response of BEAS-2B and human primary bronchial epithelial cells to pathogen-associated molecular pattern stimulation with respect to IL6 and IL8 production. ER stress elevated p38 and ERK MAP kinase activation, and pharmacological inhibition of these kinases could inhibit the boosting effect. Knockdown of unfolded protein response signaling indicated that mainly PERK and ATF6 were responsible for the synergistic activity. Specifically, PERK and ATF6 mediated increased MAPK activation, which is needed for effective cytokine secretion. We conclude that within airway epithelial cells the combined activation of TLR signaling and ER stress-mediated MAPK activation results in synergistic proinflammatory activity. We speculate that ER stress, present in various chronic pulmonary diseases, boosts TLR signaling and therefore proinflammatory cytokine production, thus acting as a costimulatory danger signal.


Asunto(s)
Bronquios/patología , Fibrosis Quística/inmunología , Estrés del Retículo Endoplásmico/inmunología , Células Epiteliales/inmunología , Inflamación/inmunología , Factor de Transcripción Activador 6/metabolismo , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Inmunidad Innata , Interleucina-6/metabolismo , Interleucina-8/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal , Receptores Toll-Like/metabolismo , Respuesta de Proteína Desplegada/inmunología , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Immunobiology ; 220(11): 1240-5, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26153873

RESUMEN

Airway epithelial cells (AEC) are the first line of defense against airborne infectious microbes and play an important role in regulating the local immune response. However, the interplay of epithelial cells and professional immune cells during both homeostasis and infection has only been partially studied. The present study was performed to determine how bronchial epithelial cells affect the activation of monocytes. Under healthy conditions, AECs were shown to inhibit reactivity of monocytes. We hypothesized that upon infection, monocytes might be released from inhibition by AECs. We report that direct contact of monocytes with unstimulated BEAS2B epithelial cells results in inhibition of TNF secretion by activated monocytes. In addition to the known soluble modulators, we show that cell contacts between epithelial cells and monocytes or macrophages also contribute to homeostatic inhibitory actions. We find AECs to express the inhibitory molecule PD-L1 and blockade of PD-L1 results in increased secretion of pro-inflammatory cytokines from monocytes. Contrary to the inhibitory activities during homeostasis, epithelial cells infected with Respiratory Syncitial Virus (RSV) induce a significant release of inhibition. However, release of inhibition was not due to modulation of PD-L1 expression in AECs. We conclude that airway epithelial cells control the reactivity of monocytes through direct and indirect interactions; however tonic inhibition can be reverted upon stimulation of AECs with RSV and thereof derived molecular patterns. The study confirms the important role of airway epithelial cells for local immune reactions.


Asunto(s)
Comunicación Celular , Células Epiteliales/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Virus Sincitial Respiratorio Humano/inmunología , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Células Cultivadas , Expresión Génica , Homeostasis , Humanos , Inmunidad Innata , Inmunomodulación , Mucosa Respiratoria/virología , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA