Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant J ; 115(5): 1443-1457, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37248633

RESUMEN

Plant immune receptors, known as NOD-like receptors (NLRs), possess unique integrated decoy domains that enable plants to attract pathogen effectors and initiate a specific immune response. The present study aimed to create a library of these integrated domains (IDs) and screen them with pathogen effectors to identify targets for effector virulence and NLR-effector interactions. This works compiles IDs found in NLRs from seven different plant species and produced a library of 78 plasmid clones containing a total of 104 IDs, representing 43 distinct InterPro domains. A yeast two-hybrid assay was conducted, followed by an in planta interaction test, using 32 conserved effectors from Ralstonia pseudosolanacearum type III. Through these screenings, three interactions involving different IDs (kinase, DUF3542, WRKY) were discovered interacting with two unrelated type III effectors (RipAE and PopP2). Of particular interest was the interaction between PopP2 and ID#85, an atypical WRKY domain integrated into a soybean NLR gene (GmNLR-ID#85). Using a Förster resonance energy transfer-fluorescence lifetime imaging microscopy technique to detect protein-protein interactions in living plant cells, PopP2 was demonstrated to physically associate with ID#85 in the nucleus. However, unlike the known WRKY-containing Arabidopsis RRS1-R NLR receptor, GmNLR-ID#85 could not be acetylated by PopP2 and failed to activate RPS4-dependent immunity when introduced into the RRS1-R immune receptor. The generated library of 78 plasmid clones, encompassing these screenable IDs, is publicly available through Addgene. This resource is expected to be valuable for the scientific community with respect to discovering targets for effectors and potentially engineering plant immune receptors.


Asunto(s)
Proteínas NLR , Proteínas de Plantas , Plantas , Productos Agrícolas , Técnicas del Sistema de Dos Híbridos , Núcleo Celular , Factores de Transcripción , Proteínas NLR/metabolismo , Plantas/metabolismo , Plantas/microbiología , Proteínas de Plantas/metabolismo , Biblioteca de Genes
2.
New Phytol ; 222(2): 820-836, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30511456

RESUMEN

Ethylene is the main hormone controlling climacteric fruit ripening; however, the mechanisms underlying the developmental transition leading to the initiation of the ripening process remain elusive, although the presumed role of active hormone interplay has often been postulated. To unravel the putative role of auxin in the unripe-to-ripe transition, we investigated the dynamics of auxin activity in tomato fruit and addressed the physiological significance of Sl-SAUR69, previously identified as a RIN target gene, using reverse genetics approaches. Auxin signalling undergoes dramatic decline at the onset of ripening in wild-type fruit, but not in the nonripening rin mutant. Sl-SAUR69 exhibits reduced expression in rin and its up-regulation results in premature initiation of ripening, whereas its down-regulation extends the time to ripening. Overexpression of Sl-SAUR69 reduces proton pump activity and polar auxin transport, and ectopic expression in Arabidopsis alters auxin transporter abundance, further arguing for its active role in the regulation of auxin transport. The data support a model in which Sl-SAUR69 represses auxin transport, thus generating auxin minima, which results in enhanced ethylene sensitivity. This defines a regulation loop, fed by ethylene and auxin as the main hormonal signals and by RIN and Sl-SAUR69 as modulators of the balance between the two hormones.


Asunto(s)
Etilenos/farmacología , Frutas/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , ARN de Planta/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Frutas/efectos de los fármacos , Frutas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Bombas de Protones/metabolismo , Transducción de Señal , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
3.
New Phytol ; 219(2): 631-640, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29701899

RESUMEN

Plant growth and development is coordinated by complex networks of interacting hormones, and cross-talk between ethylene and auxin signaling is essential for a wide range of plant developmental processes. Nevertheless, the molecular links underlying the interaction between the two hormones remain poorly understood. In order to decipher the cross-talk between the Ethylene Response Factor Sl-ERF.B3 and Sl-IAA27, mediating ethylene and auxin signaling, respectively, we combined reverse genetic approaches, physiological methods, transactivation experiments and electrophoretic mobility shift assays. Sl-ERF.B3 is responsive to both ethylene and auxin and ectopic expression of its dominant repressor version (ERF.B3-SRDX) results in impaired sensitivity to auxin with phenotypes recalling those previously reported for Sl-IAA27 downregulated tomato lines. The expression of Sl-IAA27 is dramatically reduced in the ERF.B3-SRDX lines and Sl-ERF.B3 is shown to regulate the expression of Sl-IAA27 via direct binding to its promoter. The data support a model in which the ethylene-responsive Sl-ERF.B3 integrates ethylene and auxin signaling via regulation of the expression of the auxin signaling component Sl-IAA27. The study uncovers a molecular mechanism that links ethylene and auxin signaling in tomato.


Asunto(s)
Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Solanum lycopersicum/metabolismo , Clorofila/metabolismo , Cruzamientos Genéticos , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Etilenos/farmacología , Fertilización , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Dominantes , Genes de Plantas , Ácidos Indolacéticos/farmacología , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Plantones/metabolismo
4.
PLoS Genet ; 11(12): e1005649, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26716451

RESUMEN

Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato.


Asunto(s)
Frutas/fisiología , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/fisiología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Etilenos/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Interferencia de ARN
5.
Plant Physiol ; 170(3): 1732-44, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26739234

RESUMEN

Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripening-associated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening. Among the 19 ERFs exhibiting the most consistent up-regulation during ripening, the expression of 11 ERFs is strongly down-regulated in rin, nor, and Nr tomato ripening mutants, while only three are consistently up-regulated. Members of subclass E, SlERF.E1, SlERF.E2, and SlERF.E4, show dramatic down-regulation in the ripening mutants, suggesting that their expression might be instrumental in fruit ripening. This study illustrates the high complexity of the regulatory network connecting RIN and ERFs and identifies subclass E members as the most active ERFs in ethylene- and RIN/NOR-dependent ripening.


Asunto(s)
Etilenos/farmacología , Frutas/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Elementos de Respuesta/genética , Solanum lycopersicum/genética , Análisis por Conglomerados , Frutas/fisiología , Redes Reguladoras de Genes , Genes de Plantas/genética , Genes Reguladores/genética , Solanum lycopersicum/fisiología , Mutación , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
J Exp Bot ; 68(17): 4869-4884, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-28992179

RESUMEN

MADS-box transcription factors are key elements of the genetic networks controlling flower and fruit development. Among these, the class D clade gathers AGAMOUS-like genes which are involved in seed, ovule, and funiculus development. The tomato genome comprises two class D genes, Sl-AGL11 and Sl-MBP3, both displaying high expression levels in seeds and in central tissues of young fruits. The potential effects of Sl-AGL11 on fruit development were addressed through RNAi silencing and ectopic expression strategies. Sl-AGL11-down-regulated tomato lines failed to show obvious phenotypes except a slight reduction in seed size. In contrast, Sl-AGL11 overexpression triggered dramatic modifications of flower and fruit structure that include: the conversion of sepals into fleshy organs undergoing ethylene-dependent ripening, a placenta hypertrophy to the detriment of locular space, starch and sugar accumulation, and an extreme softening that occurs well before the onset of ripening. RNA-Seq transcriptomic profiling highlighted substantial metabolic reprogramming occurring in sepals and fruits, with major impacts on cell wall-related genes. While several Sl-AGL11-related phenotypes are reminiscent of class C MADS-box genes (TAG1 and TAGL1), the modifications observed on the placenta and cell wall and the Sl-AGL11 expression pattern suggest an action of this class D MADS-box factor on early fleshy fruit development.


Asunto(s)
Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Expresión Génica , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Flores/genética , Frutas/genética , Perfilación de la Expresión Génica , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/metabolismo
7.
Plant Cell Physiol ; 56(4): 700-14, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25577568

RESUMEN

Auxin plays a pivotal role in various plant growth and development processes, including vascular differentiation. The modulation of auxin responsiveness through the auxin perception and signaling machinery is believed to be a major regulatory mechanism controlling cambium activity and wood formation. To gain more insights into the roles of key Aux/IAA gene regulators of the auxin response in these processes, we identified and characterized members of the Aux/IAA family in the genome of Eucalyptus grandis, a tree of worldwide economic importance. We found that the gene family in Eucalyptus is slightly smaller than that in Populus and Arabidopsis, but all phylogenetic groups are represented. High-throughput expression profiling of different organs and tissues highlighted several Aux/IAA genes expressed in vascular cambium and/or developing xylem, some showing differential expression in response to developmental (juvenile vs. mature) and/or to environmental (tension stress) cues. Based on the expression profiles, we selected a promising candidate gene, EgrIAA4, for functional characterization. We showed that EgrIAA4 protein is localized in the nucleus and functions as an auxin-responsive repressor. Overexpressing a stabilized version of EgrIAA4 in Arabidopsis dramatically impeded plant growth and fertility and induced auxin-insensitive phenotypes such as inhibition of primary root elongation, lateral root emergence and agravitropism. Interestingly, the lignified secondary walls of the interfascicular fibers appeared very late, whereas those of the xylary fibers were virtually undetectable, suggesting that EgrIAA4 may play crucial roles in fiber development and secondary cell wall deposition.


Asunto(s)
Eucalyptus/crecimiento & desarrollo , Eucalyptus/genética , Genoma de Planta , Ácidos Indolacéticos/metabolismo , Familia de Multigenes , Proteínas de Plantas/genética , Madera/crecimiento & desarrollo , Arabidopsis/genética , Diferenciación Celular , Núcleo Celular/metabolismo , Cromosomas de las Plantas/genética , Ambiente , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudios de Asociación Genética , Gravitropismo , Especificidad de Órganos/genética , Fenotipo , Filogenia , Desarrollo de la Planta , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transporte de Proteínas , Análisis de Secuencia de ADN , Especificidad de la Especie , Fracciones Subcelulares/metabolismo , Transcripción Genética , Madera/genética , Xilema/citología
8.
Plant J ; 76(3): 406-19, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23931552

RESUMEN

Ethylene Response Factors (ERFs) are downstream components of the ethylene signal transduction pathway, although their role in ethylene-dependent developmental processes remains poorly understood. As the ethylene-inducible tomato Sl-ERF.B3 has been shown previously to display a strong binding affinity to GCC-box-containing promoters, its physiological significance was addressed here by a reverse genetics approach. However, classical up- and down-regulation strategies failed to give clear clues to its roles in planta, probably due to functional redundancy among ERF family members. Expression of a dominant repressor ERF.B3-SRDX version of Sl-ERF.B3 in the tomato resulted in pleiotropic ethylene responses and vegetative and reproductive growth phenotypes. The dominant repressor etiolated seedlings displayed partial constitutive ethylene response in the absence of ethylene and adult plants exhibited typical ethylene-related alterations such as leaf epinasty, premature flower senescence and accelerated fruit abscission. The multiple symptoms related to enhanced ethylene sensitivity correlated with the altered expression of ethylene biosynthesis and signaling genes and suggested the involvement of Sl-ERF.B3 in a feedback mechanism that regulates components of ethylene production and response. Moreover, Sl-ERF.B3 was shown to modulate the transcription of a set of ERFs and revealed the existence of a complex network interconnecting different ERF genes. Overall, the study indicated that Sl-ERF.B3 had a critical role in the regulation of multiple genes and identified a number of ERFs among its primary targets, consistent with the pleiotropic phenotypes displayed by the dominant repression lines.


Asunto(s)
Etilenos/biosíntesis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas Represoras/genética , Solanum lycopersicum/genética , Pleiotropía Genética , Fenotipo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Receptores de Superficie Celular/metabolismo , Plantones/metabolismo , Transducción de Señal
9.
Plant Cell Physiol ; 55(11): 1969-76, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25231966

RESUMEN

Auxin is known to regulate cell division and cell elongation, thus controlling plant growth and development. Part of the auxin signaling pathway depends on the fine-tuned degradation of the auxin/indole acetic acid (Aux/IAA) transcriptional repressors. Recent evidence indicates that Aux/IAA proteins play a role in fruit development in tomato (Solanum lycopersicum Mill.), a model species for fleshy fruit development. We report here on the functional characterization of Sl-IAA17 during tomato fruit development. Silencing of Sl-IAA17 by an RNA interference (RNAi) strategy resulted in the production of larger fruit than the wild type. Histological analyses of the fruit organ and tissues demonstrated that this phenotype was associated with a thicker pericarp, rather than larger locules and/or a larger number of seeds. Microscopic analysis demonstrated that the higher pericarp thickness in Sl-IAA17 RNAi fruits was not due to a larger number of cells, but to the increase in cell size. Finally, we observed that the cell expansion in the transgenic fruits is tightly coupled with higher ploidy levels than in the wild type, suggesting a stimulation of the endoreduplication process. In conclusion, this work provides new insights into the function of the Aux/IAA pathway in fleshy fruit development, especially fruit size and cell size determination in tomato.


Asunto(s)
Endorreduplicación , Frutas/citología , Proteínas de Plantas/metabolismo , Proteínas Represoras/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Frutas/fisiología , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/citología , Tamaño de los Órganos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Poliploidía , Proteínas Represoras/genética
10.
Plant Physiol ; 161(3): 1362-74, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23341361

RESUMEN

Successful completion of fruit developmental programs depends on the interplay between multiple phytohormones. However, besides ethylene, the impact of other hormones on fruit quality traits remains elusive. A previous study has shown that down-regulation of SlARF4, a member of the tomato (Solanum lycopersicum) auxin response factor (ARF) gene family, results in a dark-green fruit phenotype with increased chloroplasts (Jones et al., 2002). This study further examines the role of this auxin transcriptional regulator during tomato fruit development at the level of transcripts, enzyme activities, and metabolites. It is noteworthy that the dark-green phenotype of antisense SlARF4-suppressed lines is restricted to fruit, suggesting that SlARF4 controls chlorophyll accumulation specifically in this organ. The SlARF4 underexpressing lines accumulate more starch at early stages of fruit development and display enhanced chlorophyll content and photochemical efficiency, which is consistent with the idea that fruit photosynthetic activity accounts for the elevated starch levels. SlARF4 expression is high in pericarp tissues of immature fruit and then undergoes a dramatic decline at the onset of ripening concomitant with the increase in sugar content. The higher starch content in developing fruits of SlARF4 down-regulated lines correlates with the up-regulation of genes and enzyme activities involved in starch biosynthesis, suggesting their negative regulation by SlARF4. Altogether, the data uncover the involvement of ARFs in the control of sugar content, an essential feature of fruit quality, and provide insight into the link between auxin signaling, chloroplastic activity, and sugar metabolism in developing fruit.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Frutas/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Vías Biosintéticas/genética , Regulación hacia Abajo/genética , Frutas/enzimología , Frutas/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genoma de Planta/genética , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Represoras/metabolismo , Almidón/metabolismo
11.
J Exp Bot ; 65(18): 5205-15, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24996652

RESUMEN

Ethylene has long been considered the key regulator of ripening in climacteric fruit. Recent evidence showed that auxin also plays an important role during fruit ripening, but the nature of the interaction between the two hormones has remained unclear. To understand the differences in ethylene- and auxin-related behaviours that might reveal how the two hormones interact, we compared two plum (Prunus salicina L.) cultivars with widely varying fruit development and ripening ontogeny. The early-ripening cultivar, Early Golden (EG), exhibited high endogenous auxin levels and auxin hypersensitivity during fruit development, while the late-ripening cultivar, V98041 (V9), displayed reduced auxin content and sensitivity. We show that exogenous auxin is capable of dramatically accelerating fruit development and ripening in plum, indicating that this hormone is actively involved in the ripening process. Further, we demonstrate that the variations in auxin sensitivity between plum cultivars could be partially due to PslAFB5, which encodes a TIR1-like auxin receptor. Two different PslAFB5 alleles were identified, one (Pslafb5) inactive due to substitution of the conserved F-box amino acid residue Pro61 to Ser. The early-ripening cultivar, EG, exhibited homozygosity for the inactive allele; however, the late cultivar, V9, displayed a PslAFB5/afb5 heterozygous genotype. Our results highlight the impact of auxin in stimulating fruit development, especially the ripening process and the potential for differential auxin sensitivity to alter important fruit developmental processes.


Asunto(s)
Frutas/metabolismo , Prunus/metabolismo , Etilenos/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Prunus/genética
12.
J Exp Bot ; 65(22): 6359-71, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25205575

RESUMEN

As food crop, wheat is of prime importance for human society. Nevertheless, our understanding of the genetic and molecular mechanisms controlling wheat productivity conditions has been, so far, hampered by the lack of sufficient genomic resources. The present work describes the isolation and characterization of TdERF1, an ERF gene from durum wheat (Triticum turgidum L. subsp. durum). The structural features of TdERF1 supported the hypothesis that it is a novel member of the ERF family in durum wheat and, considering its close similarity to TaERF1 of Triticum aestivum, it probably plays a similar role in mediating responses to environmental stresses. TdERF1 displayed an expression pattern that discriminated between two durum wheat genotypes contrasted with regard to salt-stress tolerance. The high number of cis-regulatory elements related to stress responses present in the TdERF1 promoter and the ability of TdERF1 to regulate the transcription of ethylene and drought-responsive promoters clearly indicated its potential role in mediating plant responses to a wide variety of environmental constrains. TdERF1 was also regulated by abscisic acid, ethylene, auxin, and salicylic acid, suggesting that it may be at the crossroads of multiple hormone signalling pathways. Four TdERF1 allelic variants have been identified in durum wheat genome, all shown to be transcriptionally active. Interestingly, the expression of one allelic form is specific to the tolerant genotype, further supporting the hypothesis that this gene is probably associated with the susceptibility/tolerance mechanism to salt stress. In this regard, the TdERF1 gene may provide a discriminating marker between tolerant and sensitive wheat varieties.


Asunto(s)
Etilenos/metabolismo , Genes de Plantas , Proteínas de Plantas/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Triticum/genética , Triticum/fisiología , Alelos , Secuencia de Aminoácidos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Cromosomas Artificiales Bacterianos/metabolismo , ADN Complementario/genética , Sequías , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genotipo , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Transporte de Proteínas/efectos de los fármacos , Tolerancia a la Sal , Alineación de Secuencia , Análisis de Secuencia de ADN , Estrés Fisiológico/genética , Transcripción Genética/efectos de los fármacos , Triticum/efectos de los fármacos
13.
J Exp Bot ; 65(4): 1013-23, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24399174

RESUMEN

Members of the TOPLESS gene family emerged recently as key players in gene repression in several mechanisms, especially in auxin perception. The TOPLESS genes constitute, in 'higher-plant' genomes, a small multigenic family comprising four to 11 members. In this study, this family was investigated in tomato, a model plant for Solanaceae species and fleshy fruits. Six open reading frames predicted to encode topless-like proteins (SlTPLs) containing the canonical domains (LisH, CTLH, and two WD40 repeats) were identified in the tomato genome. Nuclear localization was confirmed for all members of the SlTPL family with the exception SlTPL6, which localized at the cytoplasm and was excluded from the nucleus. SlTPL genes displayed distinctive expression patterns in different tomato organs, with SlTPL1 showing the highest levels of transcript accumulation in all tissues tested except in ripening fruit where SlTPL3 and SlTPL4 were the most prominently expressed. To gain insight into the specificity of the different TOPLESS paralogues, a protein-protein interaction map between TOPLESS and auxin/indole-3-acetic acid (Aux/IAA) proteins was built using a yeast two-hybrid approach. The PPI map enabled the distinction of two patterns: TOPLESS isoforms interacting with the majority of Aux/IAA, and isoforms with limited capacity for interaction with these protein partners. Interestingly, evolutionary analyses of the TOPLESS gene family revealed that the highly expressed isoforms (SlTPL1, SlTPL3, and SlTPL4) corresponded to the three TPL-related genes undergoing the strongest purifying selection, while the selection was much weaker for SlTPL6, which was expressed at a low level and encoded a protein lacking the capacity to interact with Aux/IAAs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Evolución Molecular , Perfilación de la Expresión Génica , Genes Reporteros , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , ARN de Planta/genética , Proteínas Recombinantes de Fusión , Nicotiana/genética , Nicotiana/metabolismo , Técnicas del Sistema de Dos Híbridos
14.
Plant Cell Physiol ; 53(9): 1583-95, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22764281

RESUMEN

The phytohormone auxin is known to regulate several aspects of plant development, and Aux/IAA transcription factors play a pivotal role in auxin signaling. To extend our understanding of the multiple functions of Aux/IAAs further, the present study describes the functional characterization of Sl-IAA27, a member of the tomato Aux/IAA gene family. Sl-IAA27 displays a distinct behavior compared with most Aux/IAA genes regarding the regulation of its expression by auxin, and the Sl-IAA27-encoded protein harbors a unique motif of unknown function also present in Sl-IAA9 and remarkably conserved in monocot and dicot species. Tomato transgenic plants underexpressing the Sl-IAA27 gene revealed multiple phenotypes related to vegetative and reproductive growth. Silencing of Sl-IAA27 results in higher auxin sensitivity, altered root development and reduced Chl content in leaves. Both ovule and pollen display a dramatic loss of fertility in Sl-IAA27 down-regulated lines, and the internal anatomy of the flower and the fruit are modified, with an enlarged placenta in smaller fruits. In line with the reduced Chl content in Sl-IAA27 RNA interference (RNAi) leaves, genes involved in Chl synthesis display lower expression at the level of transcript accumulation. Even though Sl-IAA27 is closely related to Sl-IAA9 in terms of sequence homology and the encoded proteins share common structural features, the data indicate that the two genes regulate tomato fruit initiation and development in a distinct manner.


Asunto(s)
Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/genética , Secuencia de Aminoácidos , Clorofila/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Fertilización/efectos de los fármacos , Flores/efectos de los fármacos , Flores/genética , Frutas/anatomía & histología , Frutas/efectos de los fármacos , Frutas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Ácidos Indolacéticos/farmacología , Solanum lycopersicum/metabolismo , Datos de Secuencia Molecular , Fenotipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polinización/efectos de los fármacos , Interferencia de ARN , Semillas/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Transcripción Genética/efectos de los fármacos
15.
Plant Cell Physiol ; 53(4): 659-72, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22368074

RESUMEN

Auxin is a central hormone that exerts pleiotropic effects on plant growth including the development of roots, shoots, flowers and fruit. The perception and signaling of the plant hormone auxin rely on the cooperative action of several components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play a pivotal role. In this study, we identified and comprehensively analyzed the entire Aux/IAA gene family in tomato (Solanum lycopersicum), a reference species for Solanaceae plants, and the model plant for fleshy fruit development. Functional characterization using a dedicated single cell system revealed that tomato Aux/IAA proteins function as active repressors of auxin-dependent gene transcription, with, however, different Aux/IAA members displaying varying levels of repression. Phylogenetic analysis indicated that the Aux/IAA gene family is slightly contracted in tomato compared with Arabidopsis, with a lower representation of non-canonical proteins. Sl-IAA genes display distinctive expression pattern in different tomato organs and tissues, and some of them display differential responses to auxin and ethylene, suggesting that Aux/IAAs may play a role in linking both hormone signaling pathways. The data presented here shed more light on Sl-IAA genes and provides new leads towards the elucidation of their function during plant development and in mediating hormone cross-talk.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Secuencia de Aminoácidos , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Datos de Secuencia Molecular , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Homología de Secuencia de Aminoácido
16.
BMC Plant Biol ; 12: 190, 2012 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23057995

RESUMEN

BACKGROUND: The phytohormone ethylene is involved in a wide range of developmental processes and in mediating plant responses to biotic and abiotic stresses. Ethylene signalling acts via a linear transduction pathway leading to the activation of Ethylene Response Factor genes (ERF) which represent one of the largest gene families of plant transcription factors. How an apparently simple signalling pathway can account for the complex and widely diverse plant responses to ethylene remains yet an unanswered question. Building on the recent release of the complete tomato genome sequence, the present study aims at gaining better insight on distinctive features among ERF proteins. RESULTS: A set of 28 cDNA clones encoding ERFs in the tomato (Solanum lycopersicon) were isolated and shown to fall into nine distinct subclasses characterised by specific conserved motifs most of which with unknown function. In addition of being able to regulate the transcriptional activity of GCC-box containing promoters, tomato ERFs are also shown to be active on promoters lacking this canonical ethylene-responsive-element. Moreover, the data reveal that ERF affinity to the GCC-box depends on the nucleotide environment surrounding this cis-acting element. Site-directed mutagenesis revealed that the nature of the flanking nucleotides can either enhance or reduce the binding affinity, thus conferring the binding specificity of various ERFs to target promoters.Based on their expression pattern, ERF genes can be clustered in two main clades given their preferential expression in reproductive or vegetative tissues. The regulation of several tomato ERF genes by both ethylene and auxin, suggests their potential contribution to the convergence mechanism between the signalling pathways of the two hormones. CONCLUSIONS: The data reveal that regions flanking the core GCC-box sequence are part of the discrimination mechanism by which ERFs selectively bind to their target promoters. ERF tissue-specific expression combined to their responsiveness to both ethylene and auxin bring some insight on the complexity and fine regulation mechanisms involving these transcriptional mediators. All together the data support the hypothesis that ERFs are the main component enabling ethylene to regulate a wide range of physiological processes in a highly specific and coordinated manner.


Asunto(s)
Etilenos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/fisiología , Familia de Multigenes , Mutagénesis Sitio-Dirigida , Filogenia , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Transducción de Señal , Factores de Transcripción/genética
17.
New Phytol ; 194(2): 379-390, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22409484

RESUMEN

The Aux/IAA genes encode a large family of short-lived proteins known to regulate auxin signalling in plants. Functional characterization of SlIAA15, a member of the tomato (Solanum lycopersicum) Aux/IAA family, shows that the encoded protein acts as a strong repressor of auxin-dependent transcription. The physiological significance of SlIAA15 was addressed by a reverse genetics approach, revealing that SlIAA15 plays multiple roles in plant developmental processes. The SlIAA15 down-regulated lines display lower trichome number, reduced apical dominance with associated modified pattern of axillary shoot development, increased lateral root formation and decreased fruit set. Moreover, the leaves of SlIAA15-inhibited plants are dark green and thick, with larger pavement cells, longer palisade cells and larger intercellular space of spongy mesophyll cells. The SlIAA15-suppressed plants exhibit a strong reduction in type I, V and VI trichome formation, suggesting that auxin-dependent transcriptional regulation is required for trichome initiation. Concomitant with reduced trichome formation, the expression of some R2R3 MYB genes, putatively involved in the control of trichome differentiation, is altered. These phenotypes uncover novel and specialized roles for Aux/IAAs in plant developmental processes, clearly indicating that members of the Aux/IAA gene family in tomato perform both overlapping and specific functions.


Asunto(s)
Hojas de la Planta/anatomía & histología , Proteínas de Plantas/metabolismo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/crecimiento & desarrollo , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/crecimiento & desarrollo , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/ultraestructura , Datos de Secuencia Molecular , Familia de Multigenes/genética , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/ultraestructura , Proteínas de Plantas/química , Proteínas de Plantas/genética , Brotes de la Planta/genética , Brotes de la Planta/ultraestructura , Regiones Promotoras Genéticas/genética , Transporte de Proteínas , Proteínas Represoras/metabolismo , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo
18.
Nat Plants ; 8(4): 419-433, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35422080

RESUMEN

Understanding the mechanisms underlying differentiation of inflorescence and flower meristems is essential towards enlarging our knowledge of reproductive organ formation and to open new prospects for improving yield traits. Here, we show that SlDOF9 is a new modulator of floral differentiation in tomato. CRISPR/Cas9 knockout strategy uncovered the role of SlDOF9 in controlling inflorescence meristem and floral meristem differentiation via the regulation of cell division genes and inflorescence architecture regulator LIN. Tomato dof9-KO lines have more flowers in both determinate and indeterminate cultivars and produce more fruit upon vibration-assisted fertilization. SlDOF9 regulates inflorescence development through an auxin-dependent ARF5-DOF9 module that seems to operate, at least in part, differently in Arabidopsis and tomato. Our findings add a new actor to the complex mechanisms underlying reproductive organ differentiation in flowering plants and provide leads towards addressing the diversity of factors controlling the transition to reproductive organs.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Flores , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Inflorescencia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mutación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
J Exp Bot ; 60(4): 1349-62, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19213814

RESUMEN

Whereas the interplay of multiple hormones is essential for most plant developmental processes, the key integrating molecular players remain largely undiscovered or uncharacterized. It is shown here that a member of the tomato auxin/indole-3-acetic acid (Aux/IAA) gene family, Sl-IAA3, intersects the auxin and ethylene signal transduction pathways. Aux/IAA genes encode short-lived transcriptional regulators central to the control of auxin responses. Their functions have been defined primarily by dominant, gain-of-function mutant alleles in Arabidopsis. The Sl-IAA3 gene encodes a nuclear-targeted protein that can repress transcription from auxin-responsive promoters. Sl-IAA3 expression is auxin and ethylene dependent, is regulated on a tight tissue-specific basis, and is associated with tissues undergoing differential growth such as in epinastic petioles and apical hook. Antisense down-regulation of Sl-IAA3 results in auxin and ethylene-related phenotypes, including altered apical dominance, lower auxin sensitivity, exaggerated apical hook curvature in the dark and reduced petiole epinasty in the light. The results provide novel insights into the roles of Aux/IAAs and position the Sl-IAA3 protein at the crossroads of auxin and ethylene signalling in tomato.


Asunto(s)
Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Etilenos/farmacología , Frutas/efectos de los fármacos , Frutas/genética , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Glucuronidasa/metabolismo , Ácidos Indolacéticos/farmacología , Solanum lycopersicum/genética , Especificidad de Órganos/efectos de los fármacos , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , ARN sin Sentido/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Transducción de Señal/efectos de los fármacos , Supresión Genética/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
J Plant Physiol ; 228: 39-46, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29852333

RESUMEN

Barley (Hordeum vulgare L.) is the fourth major cereal crop and shows high adaptive capabilities to diverse environments. Thus, it might represent a potential reservoir of novel genes to improve abiotic stress tolerance. In this study, a novel AP2/ERF transcription factor gene designated as HvSHN1 was isolated from barley. Protein sequence analysis showed that the HvSHN1 protein contained a nuclear localization signal and the conserved AP2/ERF domain. Phylogenetic analysis showed that HvSHN1 belongs to the group Va protein in the ERF subfamily which contains the Arabidopsis genes (SHN1, 2 and 3) and the wheat gene TdSHN1 with which it has 94.7% protein sequence identity. Expression profile analysis revealed that HvSHN1 is strongly induced by heat, cold, salt and drought. Transient expression using tobacco BY-2 protoplast coupled to confocal microscopy analysis revealed that HvSHN1 is exclusively targeted to the nucleus. Interestingly, when constitutively expressed in transgenic tobacco, HvSHN1 up-regulated stress responsive genes known to harbor GCC or DRE motif in their promoter regions. Therefore, HvSHN1 might represent a potential candidate for improvement of abiotic stress tolerance in economically important crops.


Asunto(s)
Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Hordeum/genética , Calor , Proteínas de Plantas/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA