Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Food Chem ; 410: 135383, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36638629

RESUMEN

A nanosensor is designed for rapid detection of the gluten content of wheat-containing samples. Gluten is a plant protein that causes allergy in individuals and leads to celiac disease. Since in a celiac diet trace amounts of gluten are able to prompt allergic reactions, a food-allergen label must be provided on foodstuffs and be seriously considered by food industries. Various analytical methods and commercial immunoassays are used for such analyses but prices per test, especially for low-income countries are high. Thus, a rapid, sensitive, simple, and inexpensive detecting tool seems essential. A solution can be designing a gluten optical nanosensor. The nanosensor is made of folic-acid-carbon dots and gluten molecularly templates embedded simultaneously in a silicate matrix. Adding gluten to the solution of this nanostructure and its adsorbing on the blank templated space on the nanostructure causes fluorescence enhancement. The concentration range of gluten detection was 0.36 to 2.20 µM.


Asunto(s)
Enfermedad Celíaca , Hipersensibilidad a los Alimentos , Humanos , Glútenes/análisis , Carbono/química , Triticum , Dieta , Colorantes Fluorescentes/química
2.
J Hazard Mater ; 158(2-3): 621-7, 2008 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-18359561

RESUMEN

A very simple and powerful microextraction procedure, the dispersive liquid-liquid microextraction (DLLME), was used for the determination of the content of 10 polychlorinated biphenyls (PCBs) in water samples, using gas chromatography coupled with electron-capture detection (GC-ECD). The appropriate amount of acetone (disperser solvent) and chlorobenzene (extraction solvent) at the microlevel volume was used for this procedure. The conditions for the microextraction performance were investigated and optimized. The optimized method exhibited a good linearity (R(2)>0.996) over the studied range (0.005-2 microg L(-1)), illustrating a satisfactory precision level with R.S.D. values between 4.1% and 11.0%. The values of the detection limit (S/N=3) were found to be lower than 0.002 microg L(-1). Furthermore, a large enrichment factor for the analytes (up to a 540-fold) was achieved in a very short time for only a 5.00-mL water sample. The effectiveness of the method towards real samples was tested by analyzing well, river and seawater samples. The relative recoveries of the well, river and seawater samples, which had been spiked with different levels of PCBs were equal to 92.0-114.0%, 97.0-102.0% and 96.0-103.0%, respectively. The attained results demonstrated that DLLME combined with GC-ECD was a fast and inexpensive technique for the PCBs determination in water samples.


Asunto(s)
Bifenilos Policlorados/análisis , Contaminantes Químicos del Agua/análisis , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
J Chromatogr A ; 1123(1): 1-9, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16716329

RESUMEN

A new method was used for the extraction of organophosphorus pesticides (OPPs) from water samples: dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-flame photometric detection (GC-FPD). In this extraction method, a mixture of 12.0 microL chlorobenzene (extraction solvent) and 1.00 mL acetone (disperser solvent) is rapidly injected into the 5.00 mL water sample by syringe. Thereby, a cloudy solution is formed. In fact, the cloudy state is because of the formation of fine droplets of chlorobenzene, which has been dispersed among the sample solution. In this step, the OPPs in water sample are extracted into the fine droplets of chlorobenzene. After centrifuging (2 min at 5000 rpm), the fine droplets of chlorobenzene are sedimented in the bottom of the conical test tube (5.0+/-0.3 microL). Sedimented phase (0.50 microl) is injected into the GC for separation and determination of OPPs. Some important parameters, such as kind of extraction and disperser solvent and volume of them, extraction time, temperature and salt effect were investigated. Under the optimum conditions, the enrichment factors and extraction recoveries were high and ranged between 789-1070 and 78.9-107%, respectively. The linear range was wide (10-100,000 pg/mL, four orders of magnitude) and limit of detections were very low and were between 3 to 20 pg/mL for most of the analytes. The relative standard deviations (RSDs) for 2.00 microg/L of OPPs in water with internal standard were in the range of 1.2-5.6% (n=5) and without internal standard were in the range of 4.6-6.5%. The relative recoveries of OPPs from river, well and farm water at spiking levels of 50, 500 and 5000 pg/mL were 84-125, 88-123 and 93-118%, respectively. The performance of proposed method was compared with solid-phase microextraction (SPME) and single drop microextraction. DLLME is a very simple and rapid (less than 3 min) method, which requires low volume of sample (5 mL). It also has high enrichment factor and recoveries for extraction of OPPs from water.


Asunto(s)
Cromatografía de Gases/métodos , Compuestos Organofosforados/análisis , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Estándares de Referencia , Sensibilidad y Especificidad
4.
J Chromatogr A ; 1116(1-2): 1-9, 2006 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-16574135

RESUMEN

A new microextraction technique termed dispersive liquid-liquid microextraction (DLLME) was developed. DLLME is a very simple and rapid method for extraction and preconcentration of organic compounds from water samples. In this method, the appropriate mixture of extraction solvent (8.0 microL C2Cl4) and disperser solvent (1.00 mL acetone) are injected into the aqueous sample (5.00 mL) by syringe, rapidly. Therefore, cloudy solution is formed. In fact, it is consisted of fine particles of extraction solvent which is dispersed entirely into aqueous phase. After centrifuging, the fine particles of extraction solvent are sedimented in the bottom of the conical test tube (5.0 +/- 0.2 microL). The performance of DLLME is illustrated with the determination of polycyclic aromatic hydrocarbons (PAHs) in water samples by using gas chromatography-flame ionization detection (GC-FID). Some important parameters, such as kind of extraction and disperser solvent and volume of them, and extraction time were investigated. Under the optimum conditions the enrichment factor ranged from 603 to 1113 and the recovery ranged from 60.3 to 111.3%. The linear range was 0.02-200 microg/L (four orders of magnitude) and limit of detection was 0.007-0.030 microg/L for most of analytes. The relative standard deviations (RSDs) for 2 microg/L of PAHs in water by using internal standard were in the range 1.4-10.2% (n = 5). The recoveries of PAHs from surface water at spiking level of 5.0 microg/L were 82.0-111.0%. The ability of DLLME technique in the extraction of other organic compounds such as organochlorine pesticides, organophosphorus pesticides and substituted benzene compounds (benzene, toluene, ethyl benzene, and xylenes) from water samples were studied. The advantages of DLLME method are simplicity of operation, rapidity, low cost, high recovery, and enrichment factor.


Asunto(s)
Compuestos Policíclicos/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Cromatografía de Gases , Compuestos Policíclicos/análisis , Estándares de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Solventes , Contaminantes Químicos del Agua/análisis
5.
Talanta ; 129: 309-14, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25127600

RESUMEN

Continuous sample drop flow-based microextraction (CSDF-ME) is an improved version of continuous-flow microextraction (CFME) and a novel technique developed for extraction and preconcentration of benzene, toluene, ethyl benzene, m-xylene and o-xylene (BTEXs) from aqueous samples prior to gas chromatography-flame ionization detection (GC-FID). In this technique, a small amount (a few microliters) of organic solvent is transferred to the bottom of a conical bottom test tube and a few mL of aqueous solution is moved through the organic solvent at relatively slow flow rate. The aqueous solution transforms into fine droplets while passing through the organic solvent. After extraction, the enriched analyte in the extraction solvent is determined by GC-FID. The type of extraction solvent, its volume, needle diameter, and aqueous sample flow rate were investigated. The enrichment factor was 221-269 under optimum conditions and the recovery was 89-102%. The linear ranges and limits of detection for BTEXs were 2-500 and 1.4-3.1 µg L(-1), respectively. The relative standard deviations for 10 µg L(-1) of BTEXs in water were 1.8-6.2% (n=5). The advantages of CSDF-ME are its low cost, relatively short sample preparation time, low solvent consumption, high recovery, and high enrichment factor.


Asunto(s)
Microextracción en Fase Líquida/métodos , Compuestos Orgánicos/química , Contaminantes Químicos del Agua/química , Automatización , Benceno/química , Derivados del Benceno/química , Cloroformo/química , Cromatografía de Gases/métodos , Monitoreo del Ambiente , Ionización de Llama/métodos , Irán , Reproducibilidad de los Resultados , Ríos/química , Solventes/química , Tolueno/química , Agua/química , Xilenos/química
6.
Anal Chim Acta ; 585(2): 305-11, 2007 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-17386679

RESUMEN

Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 microL methanol (disperser solvent) containing 34 microL carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25+/-1 microL). Then a 20 microL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L(-1) with detection limit of 0.6 ng L(-1). The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L(-1) of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L(-1) are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).


Asunto(s)
Cadmio/análisis , Técnicas de Química Analítica/métodos , Grafito/química , Espectrofotometría Atómica/métodos , Agua/química , Argón/química , Cadmio/química , Tetracloruro de Carbono/química , Quelantes/farmacología , Concentración de Iones de Hidrógeno , Metanol/química , Compuestos de Amonio Cuaternario/química , Solventes/química , Temperatura , Tiocarbamatos/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA