Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
PLoS Biol ; 12(6): e1001882, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24937565

RESUMEN

How structure relates to function--across spatial scales, from the single molecule to the whole organism--is a central theme in biology. Bioengineers, however, wrestle with the converse question: will function follow form? That is, we struggle to approximate the architecture of living tissues experimentally, hoping that the structure we create will lead to the function we desire. A new means to explore the relationship between form and function in living tissue has arrived with three-dimensional printing, but the technology is not without limitations.


Asunto(s)
Bioimpresión , Impresión Tridimensional , Animales , Humanos
2.
Proc Natl Acad Sci U S A ; 110(3): 881-6, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23277584

RESUMEN

Recent methods have revealed that cells on planar substrates exert both shear (in-plane) and normal (out-of-plane) tractions against the extracellular matrix (ECM). However, the location and origin of the normal tractions with respect to the adhesive and cytoskeletal elements of cells have not been elucidated. We developed a high-spatiotemporal-resolution, multidimensional (2.5D) traction force microscopy to measure and model the full 3D nature of cellular forces on planar 2D surfaces. We show that shear tractions are centered under elongated focal adhesions whereas upward and downward normal tractions are detected on distal (toward the cell edge) and proximal (toward the cell body) ends of adhesions, respectively. Together, these forces produce significant rotational moments about focal adhesions in both protruding and retracting peripheral regions. Temporal 2.5D traction force microscopy analysis of migrating and spreading cells shows that these rotational moments are highly dynamic, propagating outward with the leading edge of the cell. Finally, we developed a finite element model to examine how rotational moments could be generated about focal adhesions in a thin lamella. Our model suggests that rotational moments can be generated largely via shear lag transfer to the underlying ECM from actomyosin contractility applied at the intracellular surface of a rigid adhesion of finite thickness. Together, these data demonstrate and probe the origin of a previously unappreciated multidimensional stress profile associated with adhesions and highlight the importance of new approaches to characterize cellular forces.


Asunto(s)
Adhesiones Focales/fisiología , Animales , Fenómenos Biofísicos , Fibroblastos/citología , Fibroblastos/fisiología , Análisis de Elementos Finitos , Proteínas Fluorescentes Verdes/metabolismo , Mecanotransducción Celular/fisiología , Ratones , Microscopía Fluorescente , Modelos Biológicos , Proteínas Recombinantes/metabolismo , Rotación
3.
Proc Natl Acad Sci U S A ; 110(19): 7586-91, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23610423

RESUMEN

Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned "cords" of endothelial cells triggered the formation of new capillaries along the length of the patterned cords. These vessels became perfused with host blood as early as 3 d post implantation and became progressively more mature through 28 d. Immunohistochemical analysis showed that the neovessels were composed of human and mouse endothelial cells and exhibited a mature phenotype, as indicated by the presence of alpha-smooth muscle actin-positive pericytes. Implantation of cords with a prescribed geometry demonstrated that they provided a template that defined the neovascular architecture in vivo. To explore the utility of this geometric control, we implanted primary rat and human hepatocyte constructs containing randomly organized endothelial networks vs. ordered cords. We found substantially enhanced hepatic survival and function in the constructs containing ordered cords following transplantation in mice. These findings demonstrate the importance of multicellular architecture in tissue integration and function, and our approach provides a unique strategy to engineer vascular architecture.


Asunto(s)
Endotelio Vascular/fisiología , Neovascularización Fisiológica , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Actinas/química , Animales , Biopsia , Colágeno/química , Endotelio Vascular/metabolismo , Hepatocitos/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C3H , Músculo Liso/metabolismo , Ratas , Regeneración , Factores de Tiempo
4.
Nat Methods ; 7(12): 969-71, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21076420

RESUMEN

Quantitative measurements of cell-generated forces have heretofore required that cells be cultured on two-dimensional substrates. We describe a technique to quantitatively measure three-dimensional traction forces exerted by cells fully encapsulated in well-defined elastic hydrogel matrices. Using this approach we measured traction forces for several cell types in various contexts and revealed patterns of force generation attributable to morphologically distinct regions of cells as they extend into the surrounding matrix.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas/fisiología , Células 3T3/citología , Células 3T3/efectos de los fármacos , Células 3T3/fisiología , Animales , Técnicas de Cultivo de Célula/métodos , División Celular , Células Cultivadas/citología , Medios de Cultivo , Módulo de Elasticidad/fisiología , Matriz Extracelular/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Proteínas Fluorescentes Verdes/genética , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Ratones , Proteínas Recombinantes/farmacología , Estrés Mecánico
5.
Nat Mater ; 11(9): 768-74, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22751181

RESUMEN

In the absence of perfusable vascular networks, three-dimensional (3D) engineered tissues densely populated with cells quickly develop a necrotic core. Yet the lack of a general approach to rapidly construct such networks remains a major challenge for 3D tissue culture. Here, we printed rigid 3D filament networks of carbohydrate glass, and used them as a cytocompatible sacrificial template in engineered tissues containing living cells to generate cylindrical networks that could be lined with endothelial cells and perfused with blood under high-pressure pulsatile flow. Because this simple vascular casting approach allows independent control of network geometry, endothelialization and extravascular tissue, it is compatible with a wide variety of cell types, synthetic and natural extracellular matrices, and crosslinking strategies. We also demonstrated that the perfused vascular channels sustained the metabolic function of primary rat hepatocytes in engineered tissue constructs that otherwise exhibited suppressed function in their core.


Asunto(s)
Vasos Sanguíneos/citología , Perfusión , Impresión/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/farmacología , Carbohidratos/química , Vidrio/química , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Ratas , Factores de Tiempo
6.
Exp Cell Res ; 317(13): 1860-71, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21640103

RESUMEN

Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.


Asunto(s)
Quinasa 2 de Adhesión Focal/metabolismo , Neovascularización Fisiológica , Animales , Adhesión Celular , Células Cultivadas , Células Endoteliales/metabolismo , Quinasa 2 de Adhesión Focal/deficiencia , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Regulación de la Expresión Génica , Humanos , Ligandos , Ratones , Ratones Noqueados , Neovascularización Fisiológica/genética , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
J Am Chem Soc ; 133(49): 19582-5, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21981330

RESUMEN

Mesoporous silica nanoparticles (MSNPs) have garnered a great deal of attention as potential carriers for therapeutic payloads. However, achieving triggered drug release from MSNPs in vivo has been challenging. Here, we describe the synthesis of stimulus-responsive polymer-coated MSNPs and the loading of therapeutics into both the core and shell domains. We characterize MSNP drug-eluting properties in vitro and demonstrate that the polymer-coated MSNPs release doxorubicin in response to proteases present at a tumor site in vivo, resulting in cellular apoptosis. These results demonstrate the utility of polymer-coated nanoparticles in specifically delivering an antitumor payload.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Preparaciones de Acción Retardada/química , Doxorrubicina/administración & dosificación , Nanopartículas/química , Dióxido de Silicio/química , Antibióticos Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada/metabolismo , Doxorrubicina/farmacología , Células HeLa , Humanos , Nanopartículas/ultraestructura , Neoplasias/tratamiento farmacológico , Péptido Hidrolasas/metabolismo , Polímeros/química , Polímeros/metabolismo , Porosidad , Dióxido de Silicio/metabolismo
8.
Adv Funct Mater ; 21(15): 2876-2888, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-29861708

RESUMEN

The implementation of engineered surfaces presenting micrometer-sized patterns of cell adhesive ligands against a biologically inert background has led to numerous discoveries in fundamental cell biology. While existing surface patterning strategies allow for pattering of a single ligand it is still challenging to fabricate surfaces displaying multiple patterned ligands. To address this issue we implemented Laser Scanning Lithography (LSL), a laser-based thermal desorption technique, to fabricate multifaceted, micropatterned surfaces that display independent arrays of subcellular-sized patterns of multiple adhesive ligands with each ligand confined to its own array. We demonstrate that LSL is a highly versatile "maskless" surface patterning strategy that provides the ability to create patterns with features ranging from 450 nm to 100 µm, topography ranging from -1 to 17 nm, and to fabricate both stepwise and smooth ligand surface density gradients. As validation for their use in cell studies, surfaces presenting orthogonally interwoven arrays of 1×8 µm elliptical patterns of Gly-Arg-Gly-Asp-terminated alkanethiol self-assembled monolayers and human plasma fibronectin are produced. Human umbilical vein endothelial cells cultured on these multifaceted surfaces form adhesion sites to both ligands simultaneously and utilize both ligands for lamella formation during migration. The ability to create multifaceted, patterned surfaces with tight control over pattern size, spacing, and topography provides a platform to simultaneously investigate the complex interactions of extracellular matrix geometry, biochemistry, and topography on cell adhesion and downstream cell behavior.

9.
PLoS One ; 16(6): e0245634, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34077425

RESUMEN

Self-organized patterning of mammalian embryonic stem cells on micropatterned surfaces has previously been established as an in vitro platform for early mammalian developmental studies, complimentary to in vivo studies. Traditional micropatterning methods, such as micro-contact printing (µCP), involve relatively complicated fabrication procedures, which restricts widespread adoption by biologists. Here, we demonstrate a rapid method of micropatterning by printing hydrogel micro-features onto a glass-bottomed culture vessel. The micro-features are printed using a projection stereolithography bioprinter yielding hydrogel structures that geometrically restrict the attachment of cells or proteins. Compared to traditional and physical photomasks, a digitally tunable virtual photomask is used in the projector to generate blue light patterns that enable rapid iteration with minimal cost and effort. We show that a protocol that makes use of this method together with LN521 coating, an extracellular matrix coating, creates a surface suitable for human embryonic stem cell (hESC) attachment and growth with minimal non-specific adhesion. We further demonstrate that self-patterning of hESCs following previously published gastrulation and ectodermal induction protocols achieves results comparable with those obtained with commercially available plates.


Asunto(s)
Células Madre Embrionarias Humanas/citología , Hidrogeles/química , Microtecnología/métodos , Estereolitografía/instrumentación , Células Madre Embrionarias Humanas/fisiología , Humanos , Propiedades de Superficie
10.
Nat Protoc ; 16(6): 3089-3113, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34031610

RESUMEN

As engineered tissues progress toward therapeutically relevant length scales and cell densities, it is critical to deliver oxygen and nutrients throughout the tissue volume via perfusion through vascular networks. Furthermore, seeding of endothelial cells within these networks can recapitulate the barrier function and vascular physiology of native blood vessels. In this protocol, we describe how to fabricate and assemble customizable open-source tissue perfusion chambers and catheterize tissue constructs inside them. Human endothelial cells are seeded along the lumenal surfaces of the tissue constructs, which are subsequently connected to fluid pumping equipment. The protocol is agnostic with respect to biofabrication methodology as well as cell and material composition, and thus can enable a wide variety of experimental designs. It takes ~14 h over the course of 3 d to prepare perfusion chambers and begin a perfusion experiment. We envision that this protocol will facilitate the adoption and standardization of perfusion tissue culture methods across the fields of biomaterials and tissue engineering.


Asunto(s)
Células Endoteliales , Perfusión/métodos , Ingeniería de Tejidos/métodos , Humanos , Perfusión/instrumentación , Ingeniería de Tejidos/instrumentación
11.
Sci Rep ; 11(1): 3171, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542283

RESUMEN

As a 3D bioprinting technique, hydrogel stereolithography has historically been limited in its ability to capture the spatial heterogeneity that permeates mammalian tissues and dictates structure-function relationships. This limitation stems directly from the difficulty of preventing unwanted material mixing when switching between different liquid bioinks. Accordingly, we present the development, characterization, and application of a multi-material stereolithography bioprinter that provides controlled material selection, yields precise regional feature alignment, and minimizes bioink mixing. Fluorescent tracers were first used to highlight the broad design freedoms afforded by this fabrication strategy, complemented by morphometric image analysis to validate architectural fidelity. To evaluate the bioactivity of printed gels, 344SQ lung adenocarcinoma cells were printed in a 3D core/shell architecture. These cells exhibited native phenotypic behavior as evidenced by apparent proliferation and formation of spherical multicellular aggregates. Cells were also printed as pre-formed multicellular aggregates, which appropriately developed invasive protrusions in response to hTGF-ß1. Finally, we constructed a simplified model of intratumoral heterogeneity with two separate sub-populations of 344SQ cells, which together grew over 14 days to form a dense regional interface. Together, these studies highlight the potential of multi-material stereolithography to probe heterotypic interactions between distinct cell types in tissue-specific microenvironments.

12.
Front Cardiovasc Med ; 8: 629313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34164438

RESUMEN

Recently developed biofabrication technologies are enabling the production of three-dimensional engineered tissues containing vascular networks which can deliver oxygen and nutrients across large tissue volumes. Tissues at this scale show promise for eventual regenerative medicine applications; however, the implantation and integration of these constructs in vivo remains poorly studied. Here, we introduce a surgical model for implantation and direct in-line vascular connection of 3D printed hydrogels in a porcine arteriovenous shunt configuration. Utilizing perfusable poly(ethylene glycol) diacrylate (PEGDA) hydrogels fabricated through projection stereolithography, we first optimized the implantation procedure in deceased piglets. Subsequently, we utilized the arteriovenous shunt model to evaluate blood flow through implanted PEGDA hydrogels in non-survivable studies. Connections between the host femoral artery and vein were robust and the patterned vascular channels withstood arterial pressure, permitting blood flow for 6 h. Our study demonstrates rapid prototyping of a biocompatible and perfusable hydrogel that can be implanted in vivo as a porcine arteriovenous shunt, suggesting a viable surgical approach for in-line implantation of bioprinted tissues, along with design considerations for future in vivo studies. We further envision that this surgical model may be broadly applicable for assessing whether biomaterials optimized for 3D printing and cell function can also withstand vascular cannulation and arterial blood pressure. This provides a crucial step toward generated transplantable engineered organs, demonstrating successful implantation of engineered tissues within host vasculature.

13.
PLoS One ; 16(12): e0260737, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34882719

RESUMEN

Modern ultrasound (US) imaging is increasing its clinical impact, particularly with the introduction of US-based quantitative imaging biomarkers. Continued development and validation of such novel imaging approaches requires imaging phantoms that recapitulate the underlying anatomy and pathology of interest. However, current US phantom designs are generally too simplistic to emulate the structure and variability of the human body. Therefore, there is a need to create a platform that is capable of generating well-characterized phantoms that can mimic the basic anatomical, functional, and mechanical properties of native tissues and pathologies. Using a 3D-printing technique based on stereolithography, we fabricated US phantoms using soft materials in a single fabrication session, without the need for material casting or back-filling. With this technique, we induced variable levels of stable US backscatter in our printed materials in anatomically relevant 3D patterns. Additionally, we controlled phantom stiffness from 7 to >120 kPa at the voxel level to generate isotropic and anisotropic phantoms for elasticity imaging. Lastly, we demonstrated the fabrication of channels with diameters as small as 60 micrometers and with complex geometry (e.g., tortuosity) capable of supporting blood-mimicking fluid flow. Collectively, these results show that projection-based stereolithography allows for customizable fabrication of complex US phantoms.


Asunto(s)
Fantasmas de Imagen , Impresión Tridimensional/instrumentación , Estereolitografía/instrumentación , Ultrasonografía/métodos , Hemodinámica , Humanos
14.
Cell Rep ; 35(3): 109009, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33882319

RESUMEN

Cancer cells function as primary architects of the tumor microenvironment. However, the molecular features of cancer cells that govern stromal cell phenotypes remain unclear. Here, we show that cancer-associated fibroblast (CAF) heterogeneity is driven by lung adenocarcinoma (LUAD) cells at either end of the epithelial-to-mesenchymal transition (EMT) spectrum. LUAD cells that have high expression of the EMT-activating transcription factor ZEB1 reprogram CAFs through a ZEB1-dependent secretory program and direct CAFs to the tips of invasive projections through a ZEB1-driven CAF repulsion process. The EMT, in turn, sensitizes LUAD cells to pro-metastatic signals from CAFs. Thus, CAFs respond to contextual cues from LUAD cells to promote metastasis.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Fibroblastos Asociados al Cáncer/metabolismo , Células Epiteliales/metabolismo , Neoplasias Renales/genética , Neoplasias Pulmonares/genética , Células Madre Mesenquimatosas/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/secundario , alfa-Globulinas/genética , alfa-Globulinas/metabolismo , Animales , Fibroblastos Asociados al Cáncer/patología , Comunicación Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Receptor con Dominio Discoidina 2/genética , Receptor con Dominio Discoidina 2/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/secundario , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Ratones Transgénicos , Transducción de Señal , Microambiente Tumoral/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
15.
Biofabrication ; 12(2): 025020, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-31739299

RESUMEN

The effect of disturbed flow profiles on the endothelium have been studied extensively in systemic vasculature, but less is known about the response of the blood-brain barrier (BBB) to these flow regimes. Here we investigate the effect of disturbed flow on the integrity of the BBB using a three-dimensional, perfusable bifurcation model consisting of a co-culture of endothelial cells with mural and glial cells. Experimental flow patterns predicted by computational fluid dynamics mimic in vivo flow regimes, specifically the presence of a recirculation zone immediately downstream of the bifurcation. Dextran permeability assays and immunostaining with markers for tight junctions show that barrier disruption is significantly greater in areas of disturbed flow compared to fully developed regions downstream of the bifurcation. Probing crosstalk between cell types suggests that disturbed flow causes barrier breakdown independent of endothelial-mural and endothelial-glial interaction. Overall, disturbed flow-induced disruption of the blood-brain barrier suggests that flow-mediated mechanisms may contribute to vascular pathologies in the central nervous system.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Técnicas de Cocultivo/métodos , Modelos Biológicos , Astrocitos/citología , Astrocitos/metabolismo , Línea Celular , Proliferación Celular , Supervivencia Celular , Técnicas de Cocultivo/instrumentación , Humanos , Dispositivos Laboratorio en un Chip , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Permeabilidad , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
16.
Sci Adv ; 6(40)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32998880

RESUMEN

Spatial patterns of gene expression in living organisms orchestrate cell decisions in development, homeostasis, and disease. However, most methods for reconstructing gene patterning in 3D cell culture and artificial tissues are restricted by patterning depth and scale. We introduce a depth- and scale-flexible method to direct volumetric gene expression patterning in 3D artificial tissues, which we call "heat exchangers for actuation of transcription" (HEAT). This approach leverages fluid-based heat transfer from printed networks in the tissues to activate heat-inducible transgenes expressed by embedded cells. We show that gene expression patterning can be tuned both spatially and dynamically by varying channel network architecture, fluid temperature, fluid flow direction, and stimulation timing in a user-defined manner and maintained in vivo. We apply this approach to activate the 3D positional expression of Wnt ligands and Wnt/ß-catenin pathway regulators, which are major regulators of development, homeostasis, regeneration, and cancer throughout the animal kingdom.


Asunto(s)
Calor , Vía de Señalización Wnt , Animales , Homeostasis , Ligandos , Vía de Señalización Wnt/genética
17.
Nat Biomed Eng ; 4(9): 916-932, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32601395

RESUMEN

Sacrificial templates for patterning perfusable vascular networks in engineered tissues have been constrained in architectural complexity, owing to the limitations of extrusion-based 3D printing techniques. Here, we show that cell-laden hydrogels can be patterned with algorithmically generated dendritic vessel networks and other complex hierarchical networks by using sacrificial templates made from laser-sintered carbohydrate powders. We quantified and modulated gradients of cell proliferation and cell metabolism emerging in response to fluid convection through these networks and to diffusion of oxygen and metabolites out of them. We also show scalable strategies for the fabrication, perfusion culture and volumetric analysis of large tissue-like constructs with complex and heterogeneous internal vascular architectures. Perfusable dendritic networks in cell-laden hydrogels may help sustain thick and densely cellularized engineered tissues, and assist interrogations of the interplay between mass transport and tissue function.


Asunto(s)
Vasos Sanguíneos/citología , Carbohidratos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Vasos Sanguíneos/fisiología , Proliferación Celular , Diseño de Equipo , Hepatocitos/citología , Humanos , Hidrogeles/química , Consumo de Oxígeno , Perfusión , Impresión Tridimensional , Ingeniería de Tejidos/instrumentación
18.
Sci Rep ; 9(1): 4819, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894630

RESUMEN

Lung cancer is the foremost cause of cancer related deaths in the U.S. It is a heterogeneous disease composed of genetically and phenotypically distinct tumor cells surrounded by heterotypic cells and extracellular matrix dynamically interacting with the tumor cells. Research in lung cancer is often restricted to patient-derived tumor specimens, in vitro cell cultures and limited animal models, which fail to capture the cellular or microenvironment heterogeneity of the tumor. Therefore, our knowledge is primarily focused on cancer-cell autonomous aberrations. For a fundamental understanding of lung cancer progression and an exploration of therapeutic options, we focused our efforts to develop an Ex Vivo Tumor platform to culture tumors in 3D matrices, which retains tumor cell heterogeneity arising due to in vivo selection pressure and environmental influences and recapitulate responses of tumor cells to external manipulations. To establish this model, implanted syngeneic murine tumors from a mutant KRAS/p53 model were harvested to yield multicellular tumor aggregates followed by culture in 3D extracellular matrices. Using this system, we identified Src signaling as an important driver of invasion and metastasis in lung cancer and demonstrate that EVTs are a robust experimental tool bridging the gap between conventional in vitro and in vivo models.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Transición Epitelial-Mesenquimal/genética , Genes src/genética , Neoplasias Pulmonares/genética , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Matriz Extracelular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/patología , Ratones , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Ratas , Transducción de Señal/genética , Esferoides Celulares/patología , Microambiente Tumoral/genética
19.
Science ; 364(6439): 458-464, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31048486

RESUMEN

Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels by using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels, produced in minutes, comprising efficient intravascular 3D fluid mixers and functional bicuspid valves. We further elaborate entangled vascular networks from space-filling mathematical topologies and explore the oxygenation and flow of human red blood cells during tidal ventilation and distension of a proximate airway. In addition, we deploy structured biodegradable hydrogel carriers in a rodent model of chronic liver injury to highlight the potential translational utility of this materials innovation.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biomiméticos/química , Vasos Sanguíneos , Hidrogeles/química , Absorción Fisicoquímica , Animales , Colorantes/química , Modelos Animales de Enfermedad , Eritrocitos/metabolismo , Humanos , Luz , Hígado , Lesión Pulmonar/terapia , Ratones , Ratones Desnudos , Polimerizacion/efectos de la radiación , Estereolitografía
20.
Biomaterials ; 28(20): 3163-70, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17395258

RESUMEN

We have developed collagenase-sensitive hydrogels by incorporating a collagenase-sensitive fluorogenic substrate (CS-FS) within the backbone of a polyethylene glycol (PEG) copolymer to visualize collagenase activity during three-dimensional cell migration. CS-FS was synthesized by conjugating Bodipy dyes to a peptide with collagenase-sensitive sequence, Leu-Gly-Pro-Ala (LGPA), and the products were grafted into the collagenase-sensitive PEG hydrogels. CS-FS both in solution and hydrogels had an increase in the fluorescence intensity after proteolytic degradation by collagenase, but not by non-targeted proteases nor in the absence of an enzyme. Fibroblasts inside the hydrogels conjugated with CS-FS spread and extended lamellipodia in three dimensions over several days, and their pericellular collagenase-mediated proteolysis of the hydrogel was visualized via confocal microscopy. A matrix metalloproteinase inhibitor, served as a negative control, significantly reduced the degradation rate of CS-FS by collagenase and prevented cell migration and cell-mediated collagenase activity inside these hydrogels. In summary, we have fabricated collagenase-sensitive hydrogels incorporated with CS-FS and successfully visualized the collagenase activity during three-dimensional cell migration.


Asunto(s)
Movimiento Celular/fisiología , Colagenasas/metabolismo , Hidrogeles/química , Polietilenglicoles/química , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Endopeptidasa K/metabolismo , Activación Enzimática/efectos de los fármacos , Fibrinolisina/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Colorantes Fluorescentes/química , Humanos , Hidrogeles/síntesis química , Hidrogeles/farmacología , Metaloproteinasas de la Matriz/metabolismo , Microscopía Confocal , Modelos Químicos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA