Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(1): 219-235.e21, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31522890

RESUMEN

Although clonal neo-antigen burden is associated with improved response to immune therapy, the functional basis for this remains unclear. Here we study this question in a novel controlled mouse melanoma model that enables us to explore the effects of intra-tumor heterogeneity (ITH) on tumor aggressiveness and immunity independent of tumor mutational burden. Induction of UVB-derived mutations yields highly aggressive tumors with decreased anti-tumor activity. However, single-cell-derived tumors with reduced ITH are swiftly rejected. Their rejection is accompanied by increased T cell reactivity and a less suppressive microenvironment. Using phylogenetic analyses and mixing experiments of single-cell clones, we dissect two characteristics of ITH: the number of clones forming the tumor and their clonal diversity. Our analysis of melanoma patient tumor data recapitulates our results in terms of overall survival and response to immune checkpoint therapy. These findings highlight the importance of clonal mutations in robust immune surveillance and the need to quantify patient ITH to determine the response to checkpoint blockade.


Asunto(s)
Heterogeneidad Genética/efectos de la radiación , Melanoma/genética , Melanoma/inmunología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Rayos Ultravioleta/efectos adversos , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Humanos , Linfocitos Infiltrantes de Tumor , Melanoma/mortalidad , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Mutación/efectos de la radiación , Filogenia , Neoplasias Cutáneas/mortalidad , Tasa de Supervivencia , Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación
2.
Cell ; 170(5): 927-938.e20, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28841418

RESUMEN

We present an exceptional case of a patient with high-grade serous ovarian cancer, treated with multiple chemotherapy regimens, who exhibited regression of some metastatic lesions with concomitant progression of other lesions during a treatment-free period. Using immunogenomic approaches, we found that progressing metastases were characterized by immune cell exclusion, whereas regressing and stable metastases were infiltrated by CD8+ and CD4+ T cells and exhibited oligoclonal expansion of specific T cell subsets. We also detected CD8+ T cell reactivity against predicted neoepitopes after isolation of cells from a blood sample taken almost 3 years after the tumors were resected. These findings suggest that multiple distinct tumor immune microenvironments co-exist within a single individual and may explain in part the heterogeneous fates of metastatic lesions often observed in the clinic post-therapy. VIDEO ABSTRACT.


Asunto(s)
Cistadenocarcinoma Seroso/patología , Metástasis de la Neoplasia/inmunología , Neoplasias Ováricas/patología , Microambiente Tumoral , Antígenos de Neoplasias/inmunología , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/inmunología , Cistadenocarcinoma Seroso/terapia , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/terapia , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/terapia , Linfocitos T/inmunología , Transcriptoma
3.
Immunity ; 54(6): 1107-1109, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34107269

RESUMEN

The determinants of T cell infiltration in tumors remain largely unknown. In a recent issue of Cancer Cell, Hornburg et al. use single-cell RNA sequencing to characterize the cellular compartments of the ovarian cancer microenvironment and shed light on how tumor, immune, and stromal cells interact and shape T cell infiltration.


Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Linfocitos Infiltrantes de Tumor , Análisis de Secuencia de ARN , Células del Estroma , Microambiente Tumoral
4.
EMBO J ; 38(14): e101082, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31304626

RESUMEN

Centrioles are core structural elements of both centrosomes and cilia. Although cytoplasmic granules called centriolar satellites have been observed around these structures, lack of a comprehensive inventory of satellite proteins impedes our understanding of their ancestry. To address this, we performed mass spectrometry (MS)-based proteome profiling of centriolar satellites obtained by affinity purification of their key constituent, PCM1, from sucrose gradient fractions. We defined an interactome consisting of 223 proteins, which showed striking enrichment in centrosome components. The proteome also contained new structural and regulatory factors with roles in ciliogenesis. Quantitative MS on whole-cell and centriolar satellite proteomes of acentriolar cells was performed to reveal dependencies of satellite composition on intact centrosomes. Although most components remained associated with PCM1 in acentriolar cells, reduced cytoplasmic and satellite levels were observed for a subset of centrosomal proteins. These results demonstrate that centriolar satellites and centrosomes form independently but share a substantial fraction of their proteomes. Dynamic exchange of proteins between these organelles could facilitate their adaptation to changing cellular environments during development, stress response and tissue homeostasis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Linfocitos/metabolismo , Animales , Autoantígenos/metabolismo , Pollos , Células HEK293 , Homeostasis , Humanos , Células Jurkat , Linfocitos/citología , Proteómica
5.
Br J Cancer ; 124(11): 1759-1776, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33782566

RESUMEN

Cancer is a leading cause of death worldwide and, despite new targeted therapies and immunotherapies, many patients with advanced-stage- or high-risk cancers still die, owing to metastatic disease. Adoptive T-cell therapy, involving the autologous or allogeneic transplant of tumour-infiltrating lymphocytes or genetically modified T cells expressing novel T-cell receptors or chimeric antigen receptors, has shown promise in the treatment of cancer patients, leading to durable responses and, in some cases, cure. Technological advances in genomics, computational biology, immunology and cell manufacturing have brought the aspiration of individualised therapies for cancer patients closer to reality. This new era of cell-based individualised therapeutics challenges the traditional standards of therapeutic interventions and provides opportunities for a paradigm shift in our approach to cancer therapy. Invited speakers at a 2020 symposium discussed three areas-cancer genomics, cancer immunology and cell-therapy manufacturing-that are essential to the effective translation of T-cell therapies in the treatment of solid malignancies. Key advances have been made in understanding genetic intratumour heterogeneity, and strategies to accurately identify neoantigens, overcome T-cell exhaustion and circumvent tumour immunosuppression after cell-therapy infusion are being developed. Advances are being made in cell-manufacturing approaches that have the potential to establish cell-therapies as credible therapeutic options. T-cell therapies face many challenges but hold great promise for improving clinical outcomes for patients with solid tumours.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias/terapia , Linfocitos T/trasplante , Animales , Humanos , Tolerancia Inmunológica/genética , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/tendencias , Linfocitos Infiltrantes de Tumor/fisiología , Neoplasias/inmunología , Neoplasias/patología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/fisiología
6.
Nucleic Acids Res ; 44(D1): D986-91, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26590264

RESUMEN

The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects.


Asunto(s)
Bases de Datos Genéticas , Mutación , Neoplasias/genética , Estructura Terciaria de Proteína/genética , Genómica , Humanos , Alineación de Secuencia , Programas Informáticos
7.
J Immunol ; 194(5): 2089-98, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25624453

RESUMEN

During primary Ag encounter, T cells receive numerous positive and negative signals that control their proliferation, function, and differentiation, but how these signals are integrated to modulate T cell memory has not been fully characterized. In these studies, we demonstrate that combining seemingly opposite signals, CTLA-4 blockade and rapamycin-mediated mammalian target of rapamycin inhibition, during in vivo T cell priming leads to both an increase in the frequency of memory CD8(+) T cells and improved memory responses to tumors and bacterial challenges. This enhanced efficacy corresponds to increased early expansion and memory precursor differentiation of CD8(+) T cells and increased mitochondrial biogenesis and spare respiratory capacity in memory CD8(+) T cells in mice treated with anti-CTLA-4 and rapamycin during immunization. Collectively, these results reveal that mammalian target of rapamycin inhibition cooperates with rather than antagonizes blockade of CTLA-4, promoting unrestrained effector function and proliferation, and an optimal metabolic program for CD8(+) T cell memory.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Antígeno CTLA-4/inmunología , Memoria Inmunológica , Listeriosis/inmunología , Linfoma/inmunología , Serina-Treonina Quinasas TOR/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Linfocitos T CD8-positivos/microbiología , Linfocitos T CD8-positivos/patología , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/genética , Diferenciación Celular , Proliferación Celular , Regulación de la Expresión Génica , Listeria monocytogenes/inmunología , Listeriosis/genética , Listeriosis/microbiología , Listeriosis/patología , Activación de Linfocitos , Linfoma/genética , Linfoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovalbúmina/genética , Ovalbúmina/inmunología , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética
8.
Nat Methods ; 10(8): 768-73, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23817070

RESUMEN

We report a technique to selectively and continuously label the proteomes of individual cell types in coculture, named cell type-specific labeling using amino acid precursors (CTAP). Through transgenic expression of exogenous amino acid biosynthesis enzymes, vertebrate cells overcome their dependence on supplemented essential amino acids and can be selectively labeled through metabolic incorporation of amino acids produced from heavy isotope-labeled precursors. When testing CTAP in several human and mouse cell lines, we could differentially label the proteomes of distinct cell populations in coculture and determine the relative expression of proteins by quantitative mass spectrometry. In addition, using CTAP we identified the cell of origin of extracellular proteins secreted from cells in coculture. We believe that this method, which allows linking of proteins to their cell source, will be useful in studies of cell-cell communication and potentially for discovery of biomarkers.


Asunto(s)
Lisina/metabolismo , Proteoma/biosíntesis , Proteómica/métodos , Animales , Secuencia de Bases , Línea Celular , Técnicas de Cocultivo/métodos , Humanos , Marcaje Isotópico/métodos , Ratones , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Organismos Modificados Genéticamente , Proteoma/genética , ARN Mensajero/química , ARN Mensajero/genética , Análisis de Secuencia de ADN , Espectrometría de Masas en Tándem
9.
PLoS Comput Biol ; 9(12): e1003290, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24367245

RESUMEN

We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology.


Asunto(s)
Modelos Biológicos , Transducción de Señal , Biología de Sistemas , Línea Celular Tumoral , Humanos , Método de Montecarlo , Probabilidad
10.
Cancer Cell ; 42(2): 209-224.e9, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215748

RESUMEN

Although immunotherapy with PD-(L)1 blockade is routine for lung cancer, little is known about acquired resistance. Among 1,201 patients with non-small cell lung cancer (NSCLC) treated with PD-(L)1 blockade, acquired resistance is common, occurring in >60% of initial responders. Acquired resistance shows differential expression of inflammation and interferon (IFN) signaling. Relapsed tumors can be separated by upregulated or stable expression of IFNγ response genes. Upregulation of IFNγ response genes is associated with putative routes of resistance characterized by signatures of persistent IFN signaling, immune dysfunction, and mutations in antigen presentation genes which can be recapitulated in multiple murine models of acquired resistance to PD-(L)1 blockade after in vitro IFNγ treatment. Acquired resistance to PD-(L)1 blockade in NSCLC is associated with an ongoing, but altered IFN response. The persistently inflamed, rather than excluded or deserted, tumor microenvironment of acquired resistance may inform therapeutic strategies to effectively reprogram and reverse acquired resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Transducción de Señal , Inmunoterapia , Presentación de Antígeno , Antígeno B7-H1/metabolismo , Microambiente Tumoral
11.
PNAS Nexus ; 2(4): pgad107, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37091541

RESUMEN

The ability to assign cellular origin to low-abundance secreted factors in extracellular vesicles (EVs) would greatly facilitate the analysis of paracrine-mediated signaling. Here, we report a method, named selective isolation of extracellular vesicles (SIEVE), which uses cell type-specific proteome labeling via stochastic orthogonal recoding of translation (SORT) to install bioorthogonal reactive groups into the proteins derived from the cells targeted for labeling. We establish the native purification of intact EVs from a target cell, via a bioorthogonal tetrazine ligation, leading to copurification of the largely unlabeled EV proteome from the same cell. SIEVE enables capture of EV proteins at levels comparable with those obtained by antibody-based methods, which capture all EVs regardless of cellular origin, and at levels 20× higher than direct capture of SORT-labeled proteins. Using proteomic analysis, we analyze nonlabeled cargo proteins of EVs and show that the enhanced sensitivity of SIEVE allows for unbiased and comprehensive analysis of EV proteins from subpopulations of cells as well as for cell-specific EV proteomics in complex coculture systems. SIEVE can be applied with high efficiency in a diverse range of existing model systems for cell-cell communication and has direct applications for cell-of-origin EV analysis and for protein biomarker discovery.

13.
Cell Rep ; 35(7): 109155, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34010657

RESUMEN

Somatic DNA copy number variations (CNVs) are prevalent in cancer and can drive cancer progression, albeit with often uncharacterized roles in altering cell signaling states. Here, we integrate genomic and proteomic data for 5,598 tumor samples to identify CNVs leading to aberrant signal transduction. The resulting associations recapitulate known kinase-substrate relationships, and further network analysis prioritizes likely causal genes. Of the 303 significant associations we identify from the pan-tumor analysis, 43% are replicated in cancer cell lines, including 44 robust gene-phosphosite associations identified across multiple tumor types. Several predicted regulators of hippo signaling are experimentally validated. Using RNAi, CRISPR, and drug screening data, we find evidence of kinase addiction in cancer cell lines, identifying inhibitors for targeting of kinase-dependent cell lines. We propose copy number status of genes as a useful predictor of differential impact of kinase inhibition, a strategy that may be of use in the future for anticancer therapies.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genómica/métodos , Neoplasias/genética , Proteómica/métodos , Humanos
14.
Cancers (Basel) ; 12(11)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212885

RESUMEN

Purpose: Develop an integrated intra-site and inter-site radiomics-clinical-genomic marker of high grade serous ovarian cancer (HGSOC) outcomes and explore the biological basis of radiomics with respect to molecular signaling pathways and the tumor microenvironment (TME). Method: Seventy-five stage III-IV HGSOC patients from internal (N = 40) and external factors via the Cancer Imaging Archive (TCGA) (N = 35) with pre-operative contrast enhanced CT, attempted primary cytoreduction, at least two disease sites, and molecular analysis performed within TCGA were retrospectively analyzed. An intra-site and inter-site radiomics (cluDiss) measure was combined with clinical-genomic variables (iRCG) and compared against conventional (volume and number of sites) and average radiomics (N = 75) for prognosticating progression-free survival (PFS) and platinum resistance. Correlation with molecular signaling and TME derived using a single sample gene set enrichment that was measured. Results: The iRCG model had the best platinum resistance classification accuracy (AUROC of 0.78 [95% CI 0.77 to 0.80]). CluDiss was associated with PFS (HR 1.03 [95% CI: 1.01 to 1.05], p = 0.002), negatively correlated with Wnt signaling, and positively to immune TME. Conclusions: CluDiss and the iRCG prognosticated HGSOC outcomes better than conventional and average radiomic measures and could better stratify patient outcomes if validated on larger multi-center trials.

15.
Nat Commun ; 11(1): 4306, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32855398

RESUMEN

Metastatic melanoma carries a poor prognosis despite modern systemic therapies. Understanding the evolution of the disease could help inform patient management. Through whole-genome sequencing of 13 melanoma metastases sampled at autopsy from a treatment naïve patient and by leveraging the analytical power of multi-sample analyses, we reveal evidence of diversification among metastatic lineages. UV-induced mutations dominate the trunk, whereas APOBEC-associated mutations are found in the branches of the evolutionary tree. Multi-sample analyses from a further seven patients confirmed that lineage diversification was pervasive, representing an important mode of melanoma dissemination. Our analyses demonstrate that joint analysis of cancer cell fraction estimates across multiple metastases can uncover previously unrecognised levels of tumour heterogeneity and highlight the limitations of inferring heterogeneity from a single biopsy.


Asunto(s)
Evolución Clonal , Heterogeneidad Genética , Melanoma/genética , Neoplasias Cutáneas/genética , Anciano , Biopsia , Análisis Mutacional de ADN , Humanos , Masculino , Melanoma/secundario , Estudios Prospectivos , Piel/patología , Neoplasias Cutáneas/patología , Secuenciación Completa del Genoma
16.
Nat Genet ; 52(6): 582-593, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32483290

RESUMEN

In metastatic cancer, the degree of heterogeneity of the tumor microenvironment (TME) and its molecular underpinnings remain largely unstudied. To characterize the tumor-immune interface at baseline and during neoadjuvant chemotherapy (NACT) in high-grade serous ovarian cancer (HGSOC), we performed immunogenomic analysis of treatment-naive and paired samples from before and after treatment with chemotherapy. In treatment-naive HGSOC, we found that immune-cell-excluded and inflammatory microenvironments coexist within the same individuals and within the same tumor sites, indicating ubiquitous variability in immune cell infiltration. Analysis of TME cell composition, DNA copy number, mutations and gene expression showed that immune cell exclusion was associated with amplification of Myc target genes and increased expression of canonical Wnt signaling in treatment-naive HGSOC. Following NACT, increased natural killer (NK) cell infiltration and oligoclonal expansion of T cells were detected. We demonstrate that the tumor-immune microenvironment of advanced HGSOC is intrinsically heterogeneous and that chemotherapy induces local immune activation, suggesting that chemotherapy can potentiate the immunogenicity of immune-excluded HGSOC tumors.


Asunto(s)
Cistadenocarcinoma Seroso/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/tratamiento farmacológico , Microambiente Tumoral/inmunología , Animales , Cisplatino/inmunología , Cisplatino/farmacología , Estudios de Cohortes , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/inmunología , Variaciones en el Número de Copia de ADN , Femenino , Perfilación de la Expresión Génica/estadística & datos numéricos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes myc , Humanos , Células Asesinas Naturales/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Ratones , Mutación , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Análisis de Componente Principal , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Vía de Señalización Wnt
17.
Methods Mol Biol ; 527: 299-310, x, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19241022

RESUMEN

As extensive mass spectrometry-based mapping of the phosphoproteome progresses, computational analysis of phosphorylation-dependent signaling becomes increasingly important. The linear sequence motifs that surround phosphorylated residues have successfully been used to characterize kinase-substrate specificity. Here, we briefly describe the available resources for predicting kinase-specific phosphorylation from sequence properties. We address the strengths and weaknesses of these resources, which are based on methods ranging from simple consensus patterns to more advanced machine-learning algorithms. Furthermore, a protocol for the use of the artificial neural network based predictors, NetPhos and NetPhosK, is provided. Finally, we point to possible developments with the intention of providing the community with improved and additional phosphorylation predictors for large-scale modeling of cellular signaling networks.


Asunto(s)
Biología Computacional/métodos , Proteínas Quinasas/metabolismo , Análisis de Secuencia de Proteína/métodos , Animales , Sitios de Unión , Predicción/métodos , Humanos , Fosforilación , Programas Informáticos , Especificidad por Sustrato
18.
Cancer Res ; 79(24): 6238-6246, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31641033

RESUMEN

Various computational approaches have been developed for estimating the relative abundance of different cell types in the tumor microenvironment (TME) using bulk tumor RNA data. However, a comprehensive comparison across diverse datasets that objectively evaluates the performance of these approaches has not been conducted. Here, we benchmarked seven widely used tools and gene sets and introduced ConsensusTME, a method that integrates gene sets from all the other methods for relative TME cell estimation of 18 cell types. We collected a comprehensive benchmark dataset consisting of pan-cancer data (DNA-derived purity, leukocyte methylation, and hematoxylin and eosin-derived lymphocyte counts) and cell-specific benchmark datasets (peripheral blood cells and tumor tissues). Although none of the methods outperformed others in every benchmark, ConsensusTME ranked top three in all cancer-related benchmarks and was the best performing tool overall. We provide a Web resource to interactively explore the benchmark results and an objective evaluation to help researchers select the most robust and accurate method to further investigate the role of the TME in cancer (www.consensusTME.org). SIGNIFICANCE: This work shows an independent and comprehensive benchmarking of recently developed and widely used tumor microenvironment cell estimation methods based on bulk expression data and integrates the tools into a consensus approach.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Modelos Genéticos , Neoplasias/genética , Microambiente Tumoral/genética , Algoritmos , Biología Computacional/métodos , Conjuntos de Datos como Asunto , Humanos , Neoplasias/inmunología , Neoplasias/patología , Transcriptoma/genética , Microambiente Tumoral/inmunología
19.
Nat Genet ; 51(12): 1741-1748, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31768072

RESUMEN

Somatic mutations can result in the formation of neoantigens, immunogenic peptides that are presented on the tumor cell surface by HLA molecules. These mutations are expected to be under negative selection pressure, but the extent of the resulting neoantigen depletion remains unclear. On the basis of HLA affinity predictions, we annotated the human genome for its translatability to HLA binding peptides and screened for reduced single nucleotide substitution rates in large genomic data sets from untreated cancers. Apparent neoantigen depletion signals become negligible when taking into consideration trinucleotide-based mutational signatures, owing to lack of power or to efficient immune evasion mechanisms that are active early during tumor evolution.


Asunto(s)
Antígenos de Neoplasias/genética , Antígenos HLA/metabolismo , Mutación , Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Sitios de Unión , Codón , Bases de Datos Factuales , Genoma Humano , Humanos , Tasa de Mutación , Selección Genética , Linfocitos T Citotóxicos/inmunología
20.
Bioinformatics ; 23(7): 895-7, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17282998

RESUMEN

UNLABELLED: We here present a neural network-based method for the prediction of protein phosphorylation sites in yeast--an important model organism for basic research. Existing protein phosphorylation site predictors are primarily based on mammalian data and show reduced sensitivity on yeast phosphorylation sites compared to those in humans, suggesting the need for an yeast-specific phosphorylation site predictor. NetPhosYeast achieves a correlation coefficient close to 0.75 with a sensitivity of 0.84 and specificity of 0.90 and outperforms existing predictors in the identification of phosphorylation sites in yeast. AVAILABILITY: The NetPhosYeast prediction service is available as a public web server at http://www.cbs.dtu.dk/services/NetPhosYeast/.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas/métodos , Fosforilación , Análisis de Secuencia de Proteína/métodos , Levaduras/metabolismo , Algoritmos , Sitios de Unión , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA