Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(23): e2309788121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814868

RESUMEN

Glacier flow modulates sea level and is governed largely by the viscous deformation of ice. Multiple molecular-scale mechanisms facilitate viscous deformation, but it remains unclear how each contributes to glacier-scale deformation. Here, we present a model of ice deformation that bridges laboratory and glacier scales, unifies existing estimates of the viscous parameters, and provides a framework for estimating the parameters from observations and incorporating flow laws derived from laboratory observations into glacier-flow models. Our results yield a map of the dominant deformation mechanisms in the Antarctic Ice Sheet, showing that, contrary to long-standing assumptions, dislocation creep, characterized by a value of the stress exponent [Formula: see text], likely dominates in all fast-flowing areas. This increase from the canonical value of [Formula: see text] dramatically alters the climate conditions under which marine ice sheets may become unstable and drive rapid rates of sea-level rise.

2.
Nat Commun ; 15(1): 1526, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378722

RESUMEN

Mantle melt generation in response to glacial unloading has been linked to enhanced magmatic volatile release in Iceland and global eruptive records. It is unclear whether this process is important in systems lacking evidence of enhanced eruptions. The deglaciation of the Yellowstone ice cap did not observably enhance volcanism, yet Yellowstone emits large volumes of CO2 due to melt crystallization at depth. Here we model mantle melting and CO2 release during the deglaciation of Yellowstone (using Iceland as a benchmark). We find mantle melting is enhanced 19-fold during deglaciation, generating an additional 250-620 km3. These melts segregate an additional 18-79 Gt of CO2 from the mantle, representing a ~3-15% increase in the global volcanic CO2 flux (if degassed immediately). We suggest deglaciation-enhanced mantle melting is important in continental settings with partially molten mantle - including Greenland and West Antarctica - potentially implying positive feedbacks between deglaciation and climate warming.

3.
Nat Commun ; 13(1): 6022, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224175

RESUMEN

The Greenland Ice Sheet discharges ice to the ocean through hundreds of outlet glaciers. Recent acceleration of Greenland outlet glaciers has been linked to both oceanic and atmospheric drivers. Here, we leverage temporally dense observations, regional climate model output, and newly developed time series analysis tools to assess the most important forcings causing ice flow variability at one of the largest Greenland outlet glaciers, Helheim Glacier, from 2009 to 2017. We find that ice speed correlates most strongly with catchment-integrated runoff at seasonal to interannual scales, while multi-annual flow variability correlates most strongly with multi-annual terminus variability. The disparate time scales and the influence of subglacial topography on Helheim Glacier's dynamics highlight different regimes that can inform modeling and forecasting of its future. Notably, our results suggest that the recent terminus history observed at Helheim is a response to, rather than the cause of, upstream changes.


Asunto(s)
Cubierta de Hielo , Groenlandia , Océanos y Mares
4.
Science ; 363(6427)2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30733388

RESUMEN

Stearns and van der Veen (Reports, 20 July 2018, p. 273) conclude that fast glacier sliding is independent of basal drag (friction), even where drag balances most of the driving stress. This conclusion raises fundamental physical issues, the most striking of which is that sliding velocity would be independent of stresses imparted through the ice column, including gravitational driving stress.

5.
Science ; 368(6486): 29-30, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32241936
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA