Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 629(8012): 624-629, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632401

RESUMEN

The cost of drug discovery and development is driven primarily by failure1, with only about 10% of clinical programmes eventually receiving approval2-4. We previously estimated that human genetic evidence doubles the success rate from clinical development to approval5. In this study we leverage the growth in genetic evidence over the past decade to better understand the characteristics that distinguish clinical success and failure. We estimate the probability of success for drug mechanisms with genetic support is 2.6 times greater than those without. This relative success varies among therapy areas and development phases, and improves with increasing confidence in the causal gene, but is largely unaffected by genetic effect size, minor allele frequency or year of discovery. These results indicate we are far from reaching peak genetic insights to aid the discovery of targets for more effective drugs.


Asunto(s)
Ensayos Clínicos como Asunto , Aprobación de Drogas , Descubrimiento de Drogas , Resultado del Tratamiento , Humanos , Alelos , Ensayos Clínicos como Asunto/economía , Ensayos Clínicos como Asunto/estadística & datos numéricos , Aprobación de Drogas/economía , Descubrimiento de Drogas/economía , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/estadística & datos numéricos , Descubrimiento de Drogas/tendencias , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Terapia Molecular Dirigida , Probabilidad , Factores de Tiempo , Insuficiencia del Tratamiento
2.
J Biol Chem ; 300(8): 107560, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002681

RESUMEN

Lowering expression of prion protein (PrP) is a well-validated therapeutic strategy in prion disease, but additional modalities are urgently needed. In other diseases, small molecules have proven capable of modulating pre-mRNA splicing, sometimes by forcing inclusion of cryptic exons that reduce gene expression. Here, we characterize a cryptic exon located in human PRNP's sole intron and evaluate its potential to reduce PrP expression through incorporation into the 5' untranslated region. This exon is homologous to exon 2 in nonprimate species but contains a start codon that would yield an upstream open reading frame with a stop codon prior to a splice site if included in PRNP mRNA, potentially downregulating PrP expression through translational repression or nonsense-mediated decay. We establish a minigene transfection system and test a panel of splice site alterations, identifying mutants that reduce PrP expression by as much as 78%. Our findings nominate a new therapeutic target for lowering PrP.

3.
Science ; 384(6703): ado7082, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38935715

RESUMEN

Prion disease is caused by misfolding of the prion protein (PrP) into pathogenic self-propagating conformations, leading to rapid-onset dementia and death. However, elimination of endogenous PrP halts prion disease progression. In this study, we describe Coupled Histone tail for Autoinhibition Release of Methyltransferase (CHARM), a compact, enzyme-free epigenetic editor capable of silencing transcription through programmable DNA methylation. Using a histone H3 tail-Dnmt3l fusion, CHARM recruits and activates endogenous DNA methyltransferases, thereby reducing transgene size and cytotoxicity. When delivered to the mouse brain by systemic injection of adeno-associated virus (AAV), Prnp-targeted CHARM ablates PrP expression across the brain. Furthermore, we have temporally limited editor expression by implementing a kinetically tuned self-silencing approach. CHARM potentially represents a broadly applicable strategy to suppress pathogenic proteins, including those implicated in other neurodegenerative diseases.


Asunto(s)
Encéfalo , Metilación de ADN , Dependovirus , Silenciador del Gen , Histonas , Proteínas Priónicas , Animales , Humanos , Ratones , Encéfalo/metabolismo , Dependovirus/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Histonas/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Transgenes
4.
medRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38746398

RESUMEN

Neurofilament light (NfL) concentration in cerebrospinal fluid (CSF) and blood serves as an important biomarker in neurology drug development. Changes in NfL are generally assumed to reflect changes in neuronal damage, while little is known about the clearance of NfL from biofluids. We observed an NfL increase of 3.5-fold in plasma and 5.7-fold in CSF in an asymptomatic individual at risk for genetic prion disease following 6 weeks' treatment with oral minocycline for a dermatologic indication. Other biomarkers remained normal, and proteomic analysis of CSF revealed that the spike was exquisitely specific to neurofilaments. NfL dropped nearly to normal levels 5 weeks after minocycline cessation, and the individual remained free of disease 2 years later. Plasma NfL in dermatology patients was not elevated above normal controls. Dramatically high plasma NfL (>500 pg/mL) was variably observed in some hospitalized individuals receiving minocycline. In mice, treatment with minocycline resulted in variable increases of 1.3- to 4.0-fold in plasma NfL, with complete washout 2 weeks after cessation. In neuron-microglia co-cultures, minocycline increased NfL concentration in conditioned media by 3.0-fold without any visually obvious impact on neuronal health. We hypothesize that minocycline does not cause or exacerbate neuronal damage, but instead impacts the clearance of NfL from biofluids, a potential confounder for interpretation of this biomarker.

5.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187635

RESUMEN

Lowering expression of prion protein (PrP) is a well-validated therapeutic strategy in prion disease, but additional modalities are urgently needed. In other diseases, small molecules have proven capable of modulating pre-mRNA splicing, sometimes by forcing inclusion of cryptic exons that reduce gene expression. Here, we characterize a cryptic exon located in human PRNP's sole intron and evaluate its potential to reduce PrP expression through incorporation into the 5' untranslated region (5'UTR). This exon is homologous to exon 2 in non-primate species, but contains a start codon that would yield an upstream open reading frame (uORF) with a stop codon prior to a splice site if included in PRNP mRNA, potentially downregulating PrP expression through translational repression or nonsense-mediated decay. We establish a minigene transfection system and test a panel of splice site alterations, identifying mutants that reduce PrP expression by as much as 78%. Our findings nominate a new therapeutic target for lowering PrP.

6.
medRxiv ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38196583

RESUMEN

Importance: Genetic prion disease is a universally fatal and rapidly progressive neurodegenerative disease for which genetically targeted therapies are currently under development. Preclinical proofs of concept indicate that treatment before symptoms will offer outsize benefit. Though early treatment paradigms will be informed by the longitudinal biomarker trajectory of mutation carriers, to date limited cases have been molecularly tracked from the presymptomatic phase through symptomatic onset. Objective: To longitudinally characterize disease-relevant cerebrospinal fluid (CSF) and plasma biomarkers in individuals at risk for genetic prion disease up to disease conversion, alongside non-converters and healthy controls. Design setting and participants: This single-center longitudinal cohort study has followed 41 PRNP mutation carriers and 21 controls for up to 6 years. Participants spanned a range of known pathogenic PRNP variants; all subjects were asymptomatic at first visit and returned roughly annually. Four at-risk individuals experienced prion disease onset during the study. Main outcomes and measures: RT-QuIC prion seeding activity, prion protein (PrP), neurofilament light chain (NfL) total tau (t-tau), and beta synuclein were measured in CSF. Glial fibrillary acidic protein (GFAP) and NfL were measured in plasma. Results: We observed RT-QuIC seeding activity in the CSF of three E200K carriers prior to symptom onset and death, while the CSF of one P102L carrier remained RT-QuIC negative through symptom conversion. The prodromal window of RT-QuIC positivity was one year long in an E200K individual homozygous (V/V) at PRNP codon 129 and was longer than two years in two codon 129 heterozygotes (M/V). Other neurodegenerative and neuroinflammatory markers gave less consistent signal prior to symptom onset, whether analyzed relative to age or individual baseline. CSF PrP was longitudinally stable (mean CV 10%) across all individuals over up to 6 years, including at RT-QuIC positive timepoints. Conclusion and relevance: In this study, we demonstrate that at least for the E200K mutation, CSF prion seeding activity may represent the earliest detectable prodromal sign, and that its prognostic value may be modified by codon 129 genotype. Neuronal damage and neuroinflammation markers show limited sensitivity in the prodromal phase. CSF PrP levels remain stable even in the presence of RT-QuIC seeding activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA