Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555380

RESUMEN

Autosomal Recessive Spastic Ataxia of the Charlevoix Saguenay (ARSACS) is caused by mutation in the SACS gene resulting in loss of function of the protein sacsin. A key feature is the formation of abnormal bundles of neurofilaments (NF) in neurons and vimentin intermediate filaments (IF) in cultured fibroblasts, suggesting a role of sacsin in IF homeostasis. Sacsin contains a J domain (SacsJ) homologous to Hsp40, that can interact with Hsp70 chaperones. The SacsJ domain resolved NF bundles in cultured Sacs-/- neurons. Having studied the mechanism using NF assembled in vitro from purified NF proteins, we report that the SacsJ domain interacts with NF proteins to disassemble NFL filaments, and to inhibit their initial assembly. A cell-penetrating peptide derived from this domain, SacsJ-myc-TAT was efficient in disassembling NF bundles in cultured Sacs-/- motor neurons, restoring the NF network; however, there was some loss of vimentin IF and NF in cultured Sacs+/+ fibroblasts and motor neurons, respectively. These results suggest that sacsin through its SacsJ domain is a key regulator of NF and vimentin IF networks in cells.


Asunto(s)
Proteínas de Choque Térmico , Filamentos Intermedios , Humanos , Proteínas de Choque Térmico/metabolismo , Filamentos Intermedios/metabolismo , Neuronas Motoras/metabolismo , Espasticidad Muscular/genética , Espasticidad Muscular/metabolismo , Mutación , Vimentina/genética , Vimentina/metabolismo
2.
FASEB J ; 33(2): 2982-2994, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30332300

RESUMEN

Loss of sacsin, a large 520 kDa multidomain protein, causes autosomal recessive spastic ataxia of the Charlevoix-Saguenay, one of the most common childhood-onset recessive ataxias. A prominent feature is abnormal bundling of neurofilaments in many neuronal populations. This study shows the direct involvement of sacsin domains in regulating intermediate filament assembly and dynamics and identifies important domains for alleviating neurofilament bundles in neurons lacking sacsin. Peptides encoding sacsin internal repeat (SIRPT) 1, J-domains, and ubiquitin-like domain modified neurofilament assembly in vivo. The domains with chaperone homology, the SIRPT and the J-domain, had opposite effects, promoting and preventing filament assembly, respectively. In cultured Sacs-/- motor neurons, both the SIRPT1 and J-domain resolved preexisting neurofilament bundles. Increasing expression of heat shock proteins also resolved neurofilament bundles, indicating that this endogenous chaperone system can compensate to some extent for sacsin deficiency.-Gentil, B. J., Lai, G.-T., Menade, M., Larivière, R., Minotti, S., Gehring, K., Chapple, J.-P., Brais, B., Durham, H. D. Sacsin, mutated in the ataxia ARSACS, regulates intermediate filament assembly and dynamics.


Asunto(s)
Fibroblastos/patología , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/fisiología , Filamentos Intermedios/patología , Neuronas Motoras/patología , Espasticidad Muscular/patología , Mutación , Ataxias Espinocerebelosas/congénito , Animales , Células Cultivadas , Fibroblastos/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Filamentos Intermedios/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/metabolismo , Espasticidad Muscular/metabolismo , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología
3.
Hum Mol Genet ; 26(21): 4142-4152, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973294

RESUMEN

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease with paralysis resulting from dysfunction and loss of motor neurons. A common neuropathological finding is attrition of motor neuron dendrites, which make central connections vital to motor control. The chromatin remodelling complex, neuronal Brahma-related gene 1 (Brg1)-associated factor complex (nBAF), is critical for neuronal differentiation, dendritic extension and synaptic function. We have identified loss of the crucial nBAF subunits Brg1, Brg1-associated factor 53b and calcium responsive transactivator in cultured motor neurons expressing FUS or TAR-DNA Binding Protein 43 (TDP-43) mutants linked to familial ALS. When plasmids encoding wild-type or mutant human FUS or TDP-43 were expressed in motor neurons of dissociated spinal cord cultures prepared from E13 mice, mutant proteins in particular accumulated in the cytoplasm. Immunolabelling of nBAF subunits was reduced in proportion to loss of nuclear FUS or TDP-43 and depletion of Brg1 was associated with nuclear retention of Brg1 mRNA. Dendritic attrition (loss of intermediate and terminal dendritic branches) occurred in motor neurons expressing mutant, but not wild-type, FUS or TDP-43. This attrition was delayed by ectopic over-expression of Brg1 and was reproduced by inhibiting Brg1 activity either through genetic manipulation or treatment with the chemical inhibitor, (E)-1-(2-Hydroxyphenyl)-3-((1R, 4R)-5-(pyridin-2-yl)-2, 5-diazabicyclo[2.2.1]heptan-2-yl)prop-2-en-1-one, demonstrating the importance of Brg1 to maintenance of dendritic architecture. Loss of nBAF subunits was also documented in spinal motor neurons in autopsy tissue from familial amyotrophic sclerosis (chromosome 9 open reading frame 72 with G4C2 nucleotide expansion) and from sporadic cases with no identified mutation, pointing to dysfunction of nBAF chromatin remodelling in multiple forms of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Ensamble y Desensamble de Cromatina/fisiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Ensamble y Desensamble de Cromatina/genética , Citoplasma/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Neuronas Motoras/metabolismo , Mutación , Neuronas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Subunidades de Proteína , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Médula Espinal/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Hum Mol Genet ; 24(3): 773-86, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25274782

RESUMEN

Mutations in the RNA-binding protein FUS/TLS (FUS) have been linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Although predominantly nuclear, this heterogenous nuclear ribonuclear protein (hnRNP) has multiple functions in RNA processing including intracellular trafficking. In ALS, mutant or wild-type (WT) FUS can form neuronal cytoplasmic inclusions. Asymmetric arginine methylation of FUS by the class 1 arginine methyltransferase, protein arginine methyltransferase 1 (PRMT1), regulates nucleocytoplasmic shuttling of FUS. In motor neurons of primary spinal cord cultures, redistribution of endogenous mouse and that of ectopically expressed WT or mutant human FUS to the cytoplasm led to nuclear depletion of PRMT1, abrogating methylation of its nuclear substrates. Specifically, hypomethylation of arginine 3 of histone 4 resulted in decreased acetylation of lysine 9/14 of histone 3 and transcriptional repression. Distribution of neuronal PRMT1 coincident with FUS also was detected in vivo in the spinal cord of FUS(R495X) transgenic mice. However, nuclear PRMT1 was not stable postmortem obviating meaningful evaluation of ALS autopsy cases. This study provides evidence for loss of PRMT1 function as a consequence of cytoplasmic accumulation of FUS in the pathogenesis of ALS, including changes in the histone code regulating gene transcription.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Citoplasma/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteínas Represoras/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Metilación de ADN , Modelos Animales de Enfermedad , Histonas/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo
5.
Hum Mol Genet ; 24(3): 727-39, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25260547

RESUMEN

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS [MIM 270550]) is an early-onset neurodegenerative disorder caused by mutations in the SACS gene. Over 170 SACS mutations have been reported worldwide and are thought to cause loss of function of sacsin, a poorly characterized and massive 520 kDa protein. To establish an animal model and to examine the pathophysiological basis of ARSACS, we generated Sacs knockout (Sacs(-/-)) mice. Null animals displayed an abnormal gait with progressive motor, cerebellar and peripheral nerve dysfunctions highly reminiscent of ARSACS. These clinical features were accompanied by an early onset, progressive loss of cerebellar Purkinje cells followed by spinal motor neuron loss and peripheral neuropathy. Importantly, loss of sacsin function resulted in abnormal accumulation of non-phosphorylated neurofilament (NF) bundles in the somatodendritic regions of vulnerable neuronal populations, a phenotype also observed in an ARSACS brain. Moreover, motor neurons cultured from Sacs(-/-) embryos exhibited a similar NF rearrangement with significant reduction in mitochondrial motility and elongated mitochondria. The data points to alterations in the NF cytoskeleton and defects in mitochondrial dynamics as the underlying pathophysiological basis of ARSACS.


Asunto(s)
Proteínas de Choque Térmico/genética , Mitocondrias/patología , Neuronas Motoras/patología , Espasticidad Muscular/fisiopatología , Células de Purkinje/patología , Ataxias Espinocerebelosas/congénito , Animales , Modelos Animales de Enfermedad , Proteínas de Choque Térmico/metabolismo , Humanos , Filamentos Intermedios/patología , Ratones , Ratones Noqueados , Neuronas Motoras/citología , Espasticidad Muscular/genética , Células de Purkinje/metabolismo , Tractos Piramidales/patología , Columna Vertebral/patología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/fisiopatología , Técnicas de Cultivo de Tejidos
6.
Cell Stress Chaperones ; 29(3): 359-380, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570009

RESUMEN

Protein misfolding and mislocalization are common themes in neurodegenerative disorders, including motor neuron disease, and amyotrophic lateral sclerosis (ALS). Maintaining proteostasis is a crosscutting therapeutic target, including the upregulation of heat shock proteins (HSP) to increase chaperoning capacity. Motor neurons have a high threshold for upregulating stress-inducible HSPA1A, but constitutively express high levels of HSPA8. This study compared the expression of these HSPs in cultured motor neurons expressing three variants linked to familial ALS: TAR DNA binding protein 43 kDa (TDP-43)G348C, fused in sarcoma (FUS)R521G, or superoxide dismutase I (SOD1)G93A. All variants were poor inducers of Hspa1a, and reduced levels of Hspa8 mRNA and protein, indicating multiple compromises in chaperoning capacity. To promote HSP expression, cultures were treated with the putative HSP coinducer, arimoclomol, and class I histone deacetylase inhibitors, to promote active chromatin for transcription, and with the combination. Treatments had variable, often different effects on the expression of Hspa1a and Hspa8, depending on the ALS variant expressed, mRNA distribution (somata and dendrites), and biomarker of toxicity measured (histone acetylation, maintaining nuclear TDP-43 and the neuronal Brm/Brg-associated factor chromatin remodeling complex component Brg1, mitochondrial transport, FUS aggregation). Overall, histone deacetylase inhibition alone was effective on more measures than arimoclomol. As in the FUS model, arimoclomol failed to induce HSPA1A or preserve Hspa8 mRNA in the TDP-43 model, despite preserving nuclear TDP-43 and Brg1, indicating neuroprotective properties other than HSP induction. The data speak to the complexity of drug mechanisms against multiple biomarkers of ALS pathogenesis, as well as to the importance of HSPA8 for neuronal proteostasis in both somata and dendrites.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Proteínas de Unión al ADN , Inhibidores de Histona Desacetilasas , Neuronas Motoras , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Biomarcadores/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Animales , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas del Choque Térmico HSC70/genética , Hidroxilaminas/farmacología , Células Cultivadas , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/genética
7.
Neurotherapeutics ; : e00388, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38972779

RESUMEN

Protein misfolding and mislocalization are common to both familial and sporadic forms of amyotrophic lateral sclerosis (ALS). Maintaining proteostasis through induction of heat shock proteins (HSP) to increase chaperoning capacity is a rational therapeutic strategy in the treatment of ALS. However, the threshold for upregulating stress-inducible HSPs remains high in neurons, presenting a therapeutic obstacle. This study used mouse models expressing the ALS variants FUSR521G or SOD1G93A to follow up on previous work in cultured motor neurons showing varied effects of the HSP co-inducer, arimoclomol, and class I histone deacetylase (HDAC) inhibitors on HSP expression depending on the ALS variant being expressed. As in cultured neurons, neither expression of the transgene nor drug treatments induced expression of HSPs in cortex, spinal cord or muscle of FUSR521G mice, indicating suppression of the heat shock response. Nonetheless, arimoclomol, and RGFP963, restored performance on cognitive tests and improved cortical dendritic spine densities. In SOD1G93A mice, multiple HSPs were upregulated in hindlimb skeletal muscle, but not in lumbar spinal cord with the exception of HSPB1 associated with astrocytosis. Drug treatments improved contractile force but reduced the increase in HSPs in muscle rather than facilitating their expression. The data point to mechanisms other than amplification of the heat shock response underlying recovery of cognitive function in ALS-FUS mice by arimoclomol and class I HDAC inhibition and suggest potential benefits in counteracting cognitive impairment in ALS, frontotemporal dementia and related disorders.

8.
FASEB J ; 26(3): 1194-203, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22155564

RESUMEN

Intermediate filaments serve important structural roles, but other cellular functions are increasingly recognized. This study demonstrated normal function of the low-molecular-weight neurofilament protein (NFL) in mitochondrial dynamics and disruption in Charcot-Marie-Tooth disease (CMT) due to mutations in the Nefl gene. In motor neurons of spinal cord cultured from Nefl-knockout mice, mitochondrial length and the rate of fusion were decreased concomitant with increased motility. These parameters were normalized after expression of NFL(wt) on the Nefl(-/-) background, but not by overexpression of the profusion protein, mitofusin 2 (MFN2). The effects of CMT-causing NFL mutants bore similarities to and differences from Nefl knockout. In the early phase of toxicity before disruption of the neurofilament network, NFL(Q333P) and NFL(P8R) integrated into neurofilaments and had effects on mitochondria similar to those with Nefl knockout. The reduction of fusion rate by NFL(Q333P) was partly due to interference with the function of the profusion protein MFN2, which is mutated in CMT2A, functionally linking these forms of CMT. In the later phase of toxicity, mitochondria essentially stopped moving in neurons expressing NFL mutants, probably a consequence of cytoskeletal disruption. Overall, the data point to important functions of neurofilaments in mitochondrial dynamics as well as primary involvement in CMT2E/1F.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/metabolismo , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Proteínas de Neurofilamentos/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/genética , Embrión de Mamíferos , Femenino , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Ganglios Espinales , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Immunoblotting , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Mitocondrias/fisiología , Peso Molecular , Neuronas Motoras/citología , Mutación , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/fisiología , Factores de Tiempo
9.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873158

RESUMEN

Neurons are challenged to maintain proteostasis in neuronal projections, particularly with the physiological stress at synapses to support intercellular communication underlying important functions such as memory and movement control. Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. Using high-resolution fluorescent microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites, particularly more proximal regions, and increase this asymmetric localization following proteotoxic stress through microtubule-based transport from the soma. The most abundant chaperone mRNA in dendrites encodes the constitutive heat shock protein 70, HSPA8. Proteotoxic stress in cultured neurons, induced by inhibiting proteasome activity or inducing oxidative stress, enhanced transport of Hspa8 mRNAs to dendrites and the percentage of mRNAs engaged in translation on mono and polyribosomes. Knocking down the ALS-related protein Fused in Sarcoma (FUS) and a dominant mutation in the heterogenous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) impaired stress-mediated localization of Hspa8 mRNA to dendrites in cultured murine motor neurons and human iPSC-derived neurons, respectively, revealing the importance of these RNA-binding proteins in maintaining proteostasis. These results reveal the increased dendritic localization and translation of the constitutive HSP70 Hspa8 mRNA as a crucial neuronal stress response to uphold proteostasis and prevent neurodegeneration.

10.
Res Sq ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38168440

RESUMEN

Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress. The most abundant dendritic chaperone mRNA encodes a constitutive heat shock protein 70 family member (HSPA8). Proteotoxic stress also enhanced HSPA8 mRNA translation efficiency in dendrites. Stress-mediated HSPA8 mRNA localization to the dendrites was impaired by depleting fused in sarcoma-an amyotrophic lateral sclerosis-related protein-in cultured mouse motor neurons and expressing a pathogenic variant of heterogenous nuclear ribonucleoprotein A2/B1 in neurons derived from human induced pluripotent stem cells. These results reveal a crucial and unexpected neuronal stress response in which RNA-binding proteins increase the dendritic localization of HSPA8 mRNA to maintain proteostasis and prevent neurodegeneration.

11.
Neurobiol Dis ; 42(3): 265-75, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21296666

RESUMEN

The combination of Ca(2+) influx during neurotransmission and low cytosolic Ca(2+) buffering contributes to the preferential vulnerability of motor neurons in amyotrophic lateral sclerosis (ALS). This study investigated the relationship among Ca(2+) accumulation in intracellular compartments, mitochondrial abnormalities, and protein aggregation in a model of familial ALS (fALS1). Human SOD1, wild type (SOD1(WT)) or with the ALS-causing mutation G93A (SOD1(G93A)), was expressed in motor neurons of dissociated murine spinal cord-dorsal root ganglia (DRG) cultures. Elevation of mitochondrial Ca(2+) ([Ca(2+)](m)), decreased mitochondrial membrane potential (Δψ) and rounding of mitochondria occurred early, followed by increased endoplasmic reticular Ca(2+) ([Ca(2+)](ER)), elevated cytosolic Ca(2+) ([Ca(2+)](c)), and subsequent appearance of SOD1(G93A) inclusions (a consequence of protein aggregation). [Ca(2+)](c) was elevated to a greater extent in neurons with inclusions than in those with diffusely distributed SOD1(G93A) and promoted aggregation of mutant protein, not vice versa: both [Ca(2+)](c) and the percentage of neurons with SOD1(G93A) inclusions were reduced by co-expressing the cytosolic Ca(2+)-buffering protein, calbindin D-28K; treatment with the heat shock protein inducer, geldanamycin, prevented inclusions but not the increase in [Ca(2+)](c), [Ca(2+)](m) or loss of Δψ, and inhibiting proteasome activity with epoxomicin, known to promote aggregation of disease-causing mutant proteins including SOD1(G93A), had no effect on Ca(2+) levels. Both expression of SOD1(G93A) and epoxomicin-induced inhibition of proteasome activity caused mitochondrial rounding, independent of Ca(2+) dysregulation and reduced Δψ. That geldanamycin prevented inclusions and mitochondrial rounding, but not Ca(2+) dysregulation or loss of Δψ indicates that chaperone-based therapies to prevent protein aggregation may require co-therapy to address these other underlying mechanisms of toxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Microscopía Confocal , Mitocondrias/patología , Neuronas Motoras/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
12.
Cell Stress Chaperones ; 25(1): 173-191, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31900865

RESUMEN

Upregulation of heat shock proteins (HSPs) is an approach to treatment of neurodegenerative disorders with impaired proteostasis. Many neurons, including motor neurons affected in amyotrophic lateral sclerosis (ALS), are relatively resistant to stress-induced upregulation of HSPs. This study demonstrated that histone deacetylase (HDAC) inhibitors enable the heat shock response in cultured spinal motor neurons, in a stress-dependent manner, and can improve the efficacy of HSP-inducing drugs in murine spinal cord cultures subjected to thermal or proteotoxic stress. The effect of particular HDAC inhibitors differed with the stress paradigm. The HDAC6 (class IIb) inhibitor, tubastatin A, acted as a co-inducer of Hsp70 (HSPA1A) expression with heat shock, but not with proteotoxic stress induced by expression of mutant SOD1 linked to familial ALS. Certain HDAC class I inhibitors (the pan inhibitor, SAHA, or the HDAC1/3 inhibitor, RGFP109) were HSP co-inducers comparable to the hydroxyamine arimoclomol in response to proteotoxic stress, but not thermal stress. Regardless, stress-induced Hsp70 expression could be enhanced by combining an HDAC inhibitor with either arimoclomol or with an HSP90 inhibitor that constitutively induced HSPs. HDAC inhibition failed to induce Hsp70 in motor neurons expressing ALS-linked mutant FUS, in which the heat shock response was suppressed; yet SAHA, RGFP109, and arimoclomol did reduce loss of nuclear FUS, a disease hallmark, and HDAC inhibition rescued the DNA repair response in iPSC-derived motor neurons carrying the FUSP525Lmutation, pointing to multiple mechanisms of neuroprotection by both HDAC inhibiting drugs and arimoclomol.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Proteínas de Choque Térmico/efectos de los fármacos , Hidroxilaminas/farmacología , Neuronas Motoras/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Esclerosis Amiotrófica Lateral/genética , Animales , Células Cultivadas , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
13.
BMC Neurosci ; 10: 130, 2009 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-19860916

RESUMEN

BACKGROUND: Progranulin is a secreted high molecular weight growth factor bearing seven and one half copies of the cysteine-rich granulin-epithelin motif. While inappropriate over-expression of the progranulin gene has been associated with many cancers, haploinsufficiency leads to atrophy of the frontotemporal lobes and development of a form of dementia (frontotemporal lobar degeneration with ubiquitin positive inclusions, FTLD-U) associated with the formation of ubiquitinated inclusions. Recent reports indicate that progranulin has neurotrophic effects, which, if confirmed would make progranulin the only neuroprotective growth factor that has been associated genetically with a neurological disease in humans. Preliminary studies indicated high progranulin gene expression in spinal cord motor neurons. However, it is uncertain what the role of Progranulin is in normal or diseased motor neuron function. We have investigated progranulin gene expression and subcellular localization in cultured mouse embryonic motor neurons and examined the effect of progranulin over-expression and knockdown in the NSC-34 immortalized motor neuron cell line upon proliferation and survival. RESULTS: In situ hybridisation and immunohistochemical techniques revealed that the progranulin gene is highly expressed by motor neurons within the mouse spinal cord and in primary cultures of dissociated mouse embryonic spinal cord-dorsal root ganglia. Confocal microscopy coupled to immunocytochemistry together with the use of a progranulin-green fluorescent protein fusion construct revealed progranulin to be located within compartments of the secretory pathway including the Golgi apparatus. Stable transfection of the human progranulin gene into the NSC-34 motor neuron cell line stimulates the appearance of dendritic structures and provides sufficient trophic stimulus to survive serum deprivation for long periods (up to two months). This is mediated at least in part through an anti-apoptotic mechanism. Control cells, while expressing basal levels of progranulin do not survive in serum free conditions. Knockdown of progranulin expression using shRNA technology further reduced cell survival. CONCLUSION: Neurons are among the most long-lived cells in the body and are subject to low levels of toxic challenges throughout life. We have demonstrated that progranulin is abundantly expressed in motor neurons and is cytoprotective over prolonged periods when over-expressed in a neuronal cell line. This work highlights the importance of progranulin as neuroprotective growth factor and may represent a therapeutic target for neurodegenerative diseases including motor neuron disease.


Asunto(s)
Supervivencia Celular/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Línea Celular , Proliferación Celular , Supervivencia Celular/genética , Células Cultivadas , Clonación Molecular , Técnica del Anticuerpo Fluorescente , Ganglios Espinales/metabolismo , Ganglios Espinales/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Granulinas , Humanos , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Microscopía Confocal , Neuronas Motoras/ultraestructura , Progranulinas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/ultraestructura , Transfección
14.
J Neurochem ; 105(6): 2353-66, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18315558

RESUMEN

In amyotrophic lateral sclerosis caused by mutations in Cu/Zn-superoxide dismutase (SOD1), altered solubility and aggregation of the mutant protein implicates failure of pathways for detecting and catabolizing misfolded proteins. Our previous studies demonstrated early reduction of proteasome-mediated proteolytic activity in lumbar spinal cord of SOD1(G93A) transgenic mice, tissue particularly vulnerable to disease. The purpose of this study was to identify any underlying abnormalities in proteasomal structure. In lumbar spinal cord of pre-symptomatic mice [postnatal day 45 (P45) and P75], normal levels of structural 20S alpha subunits were incorporated into 20S/26S proteasomes; however, proteasomal complexes separated by native gel electrophoresis showed decreased immunoreactivity with antibodies to beta3, a structural subunit of the 20S proteasome core, and beta5, the subunit with chymotrypsin-like activity. This occurred prior to increase in beta5i immunoproteasomal subunit. mRNA levels were maintained and no association of mutant SOD1 with proteasomes was identified, implicating post-transcriptional mechanisms. mRNAs also were maintained in laser captured motor neurons at a later stage of disease (P100) in which multiple 20S proteins are reduced relative to the surrounding neuropil. Increase in detergent-insoluble, ubiquitinated proteins at P75 provided further evidence of stress on mechanisms of protein quality control in multiple cell types prior to significant motor neuron death.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/genética , Modelos Animales de Enfermedad , Complejo de la Endopetidasa Proteasomal/metabolismo , Alanina/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Glicina/genética , Humanos , Ratones , Ratones Transgénicos , Complejo de la Endopetidasa Proteasomal/genética , Médula Espinal/enzimología , Médula Espinal/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Ubiquitinación
15.
Cell Stress Chaperones ; 12(2): 151-62, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17688194

RESUMEN

Induction of heat shock proteins (Hsps) is under investigation as treatment for neurodegenerative disorders, yet many types of neurons, including motor neurons that degenerate in amyotrophic lateral sclerosis (ALS), have a high threshold for activation of the major transcription factor mediating stress-induced Hsp upregulation, heat shock transcription factor 1 (Hsf1). Hsf1 is tightly regulated by a series of inhibitory checkpoints that include sequestration in multichaperone complexes governed by Hsp90. This study examined the role of multichaperone complexes in governing the heat shock response in motor neurons. Hsp90 inhibitors induced expression of Hsp70 and Hsp40 and transactivation of a human inducible hsp70 promoter-green fluorescent protein (GFP) reporter construct in motor neurons of dissociated spinal cord-dorsal root ganglion (DRG) cultures. On the other hand, overexpression of activator of Hsp90 adenosine triphosphatase ([ATPase 1], Aha1), which should mobilize Hsf1 by accelerating turnover of mature, adenosine triphosphate-(ATP) bound Hsp90 complexes, and death domain-associated protein (Daxx), which in cell lines has been shown to promote transcription of heat shock genes by relieving inhibition exerted by interactions between nuclear Hsp90/multichaperone complexes and trimeric Hsf1, failed to induce Hsps in the absence or presence of heat shock. These results indicate that disruption of multichaperone complexes alone is not sufficient to activate the neuronal heat shock response. Furthermore, in motor neurons, induction of Hsp70 by Hsp90-inhibiting drugs was prevented by overexpression of wild-type Hsfl, contrary to what would be expected for a classical Hsf1-mediated pathway. These results point to additional differences in regulation of hsp genes in neuronal and nonneuronal cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Neuronas Motoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Portadoras/metabolismo , Proteínas Co-Represoras , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Factores de Transcripción del Choque Térmico , Humanos , Hipertermia Inducida , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Chaperonas Moleculares , Neuronas Motoras/citología , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Regulación hacia Arriba/genética
16.
J Neurosci Methods ; 163(1): 111-8, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17445905

RESUMEN

Neuron-glial interactions are important in development of the nervous system and pathogenesis of disease. Primary cell cultures prepared from nervous tissue are often used to study the properties of individual cell types and how they interact with each other. Isolation of pure populations of cells and their culture is challenging, particularly from murine spinal cord. The purpose of this study was to optimize various protocols to achieve efficient, parallel isolation and purification of primary motor neurons, microglia and astrocytes from the same mouse embryonic spinal cord sample. Following dissociation of E12 embryonic spinal cords, motor neurons were isolated at 97% purity by a single step centrifugation of the cell suspension through multiple discontinuous density gradients of NycoPrep. The residual mixed cell pellet was resuspended and cultured for 2 weeks. Mixed cultures were then shaken to release microglia, which were then harvested from the medium and subjected to another round of differential adhesion to achieve 99% purity. The astrocytes remaining in the mixed cultures were culled to 98% purity by treatment with leucine methyl ester and a subsequent vigorous shaking step to remove any remaining microglia and neurons. Furthermore, no cross contamination was observed in the glial cultures. This technique provides a simple, convenient, and reliable method of obtaining highly purified preparations of motor neurons, microglia and astrocytes from embryonic spinal cord for the study of spinal cord cell biology and motor neuron diseases.


Asunto(s)
Astrocitos/fisiología , Técnicas de Cultivo de Célula , Microglía/fisiología , Neuronas Motoras/fisiología , Médula Espinal/citología , Animales , Antígeno CD11b/metabolismo , Células Cultivadas , Colina O-Acetiltransferasa/metabolismo , Embrión de Mamíferos , Citometría de Flujo/métodos , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica/métodos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Factores de Transcripción/metabolismo
17.
J Neurosci ; 23(13): 5789-98, 2003 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-12843283

RESUMEN

Heat shock protein 70 (Hsp70) protects cultured motor neurons from the toxic effects of mutations in Cu/Zn-superoxide dismutase (SOD-1), which is responsible for a familial form of the disease, amyotrophic lateral sclerosis (ALS). Here, the endogenous heat shock response of motor neurons was investigated to determine whether a high threshold for activating this protective mechanism contributes to their vulnerability to stresses associated with ALS. When heat shocked, cultured motor neurons failed to express Hsp70 or transactivate a green fluorescent protein reporter gene driven by the Hsp70 promoter, although Hsp70 was induced in glial cells. No increase in Hsp70 occurred in motor neurons after exposure to excitotoxic glutamate or expression of mutant SOD-1 with a glycine--> alanine substitution at residue 93 (G93A), nor was Hsp70 increased in spinal cords of G93A SOD-1 transgenic mice or sporadic or familial ALS patients. In contrast, strong Hsp70 induction occurred in motor neurons with expression of a constitutively active form of heat shock transcription factor (HSF)-1 or when proteasome activity was sufficiently inhibited to induce accumulation of an alternative transcription factor HSF2. These results indicate that the high threshold for induction of the stress response in motor neurons stems from an impaired ability to activate the main heat shock-stress sensor, HSF1.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Respuesta al Choque Térmico , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Células Cultivadas , Cisteína Endopeptidasas/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Genes Reporteros , Ácido Glutámico/toxicidad , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Calor , Humanos , Técnicas In Vitro , Ratones , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal , Médula Espinal/citología , Médula Espinal/metabolismo , Médula Espinal/patología , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Factores de Transcripción/metabolismo
18.
Cell Stress Chaperones ; 10(3): 230-41, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16184768

RESUMEN

Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Mioblastos Esqueléticos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Células Cultivadas , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Fibroblastos/metabolismo , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico/genética , Humanos , Ratones , Plásmidos , Complejo de la Endopetidasa Proteasomal/química , Subunidades de Proteína/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transfección , Regulación hacia Arriba
19.
Neurotoxicology ; 25(5): 779-92, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15288509

RESUMEN

Mutations in Cu/Zn-superoxide dismutase 1 (SOD1) are responsible for a familial form of amyotrophic lateral sclerosis (FALS). It has been proposed that oxidative stress and abnormal metal homeostasis contribute to death of motor neurons in this disease. Also, inability of motor neurons to upregulate protective proteins under stress may contribute to their preferential vulnerability to toxicity. Metallothioneins (MT) are low molecular weight, metal-binding proteins with established antioxidant capabilities. This study investigated the ability of motor neurons to upregulate MT isoforms in response to expression of mutant SOD1(G93A) or exposure to other neurotoxicants, and the ability of MT-I gene transfer to protect motor neurons from these stresses. MT isoform-I and -II were expressed constitutively in astrocytes and other non-neuronal cells of dissociated spinal cord cultures, but not in motor neurons. MT-I/II was upregulated in astrocytes, but not motor neurons, following treatment with ZnCl(2) or excitotoxic concentrations of glutamate. MT-III expression was restricted to neurons and was unaffected by treatment with ZnCl(2), paraquat, or glutamate. Overexpression of MT-I in motor neurons by gene transfer reduced the toxicity of ZnCl(2) and paraquat, but failed to protect them against glutamate or SOD1(G93A). These data are evidence against metal-catalyzed, oxidative stress being the primary mechanisms of toxicity conferred by disease-causing mutations in SOD1.


Asunto(s)
Metalotioneína/biosíntesis , Neuronas Motoras/patología , Mutación/fisiología , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/inducido químicamente , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Western Blotting , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cloruros/toxicidad , Vectores Genéticos/genética , Herbicidas/toxicidad , Inmunohistoquímica , Cuerpos de Inclusión/metabolismo , Isoenzimas/biosíntesis , Isoenzimas/genética , Isomerismo , Ratones , Paraquat/toxicidad , Plásmidos/genética , Superóxido Dismutasa/biosíntesis , Compuestos de Zinc/toxicidad
20.
Cell Stress Chaperones ; 19(3): 421-35, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24092395

RESUMEN

Heat shock proteins (HSPs) are attractive therapeutic targets for neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), characterized by aberrant formation of protein aggregates. Although motor neurons have a high threshold for activation of HSP genes, HSP90 inhibitors are effective inducers. This study evaluated NXD30001, a novel, small molecule HSP90 inhibitor based on the radicicol backbone, for its ability to induce neuronal HSPs and for efficacy in an experimental model of ALS based on mutations in superoxide-dismutase 1 (SOD1). In motor neurons of dissociated murine spinal cord cultures, NXD30001-induced expression of HSP70/HSPA1 (iHSP70) and its co-chaperone HSP40/DNAJ through activation of HSF1 and exhibited a protective profile against SOD1(G93A) similar to geldanamycin, but with less toxicity. Treatment prevented protein aggregation, mitochondrial fragmentation, and motor neuron death, important features of mutant SOD1 toxicity, but did not effectively prevent aberrant intracellular Ca(2+) accumulation. NXD30001 distributed to brain and spinal cord of wild-type and SOD1(G93A) transgenic mice following intraperitoneal injection; however, unlike in culture, in vivo levels of SOD1 were not reduced. NXD30001-induced expression of iHSP70 in skeletal and cardiac muscle and, to a lesser extent, in kidney, but not in liver, spinal cord, or brain, with either single or repeated administration. NXD30001 is a very useful experimental tool in culture, but these data point to the complex nature of HSP gene regulation in vivo and the necessity for early evaluation of the efficacy of novel HSP inducers in target tissues in vivo.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/metabolismo , Lactonas/farmacología , Tejido Nervioso/metabolismo , Oximas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Homeostasis/efectos de los fármacos , Cuerpos de Inclusión/metabolismo , Lactonas/administración & dosificación , Lactonas/farmacocinética , Ratones Endogámicos C57BL , Ratones Transgénicos , Dinámicas Mitocondriales/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Tejido Nervioso/efectos de los fármacos , Oximas/administración & dosificación , Oximas/farmacocinética , Fosforilación/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/farmacocinética , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA