Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Circ Res ; 126(10): e97-e113, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32138615

RESUMEN

RATIONALE: Efficient communication between heart cells is vital to ensure the anisotropic propagation of electrical impulses, a function mainly accomplished by gap junctions (GJ) composed of Cx43 (connexin 43). Although the molecular mechanisms remain unclear, altered distribution and function of gap junctions have been associated with acute myocardial infarction and heart failure. OBJECTIVE: A recent proteomic study from our laboratory identified EHD1 (Eps15 [endocytic adaptor epidermal growth factor receptor substrate 15] homology domain-containing protein 1) as a novel interactor of Cx43 in the heart. METHODS AND RESULTS: In the present work, we demonstrate that knockdown of EHD1 impaired the internalization of Cx43, preserving gap junction-intercellular coupling in cardiomyocytes. Interaction of Cx43 with EHD1 was mediated by Eps15 and promoted by phosphorylation and ubiquitination of Cx43. Overexpression of wild-type EHD1 accelerated internalization of Cx43 and exacerbated ischemia-induced lateralization of Cx43 in isolated adult cardiomyocytes. In addition, we show that EHDs associate with Cx43 in human and murine failing hearts. CONCLUSIONS: Overall, we identified EHDs as novel regulators of endocytic trafficking of Cx43, participating in the pathological remodeling of gap junctions, paving the way to innovative therapeutic strategies aiming at preserving intercellular communication in the heart.


Asunto(s)
Comunicación Celular , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Insuficiencia Cardíaca/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Anciano , Animales , Línea Celular , Conexina 43/genética , Modelos Animales de Enfermedad , Endocitosis , Femenino , Uniones Comunicantes/patología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Preparación de Corazón Aislado , Masculino , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocitos Cardíacos/patología , Fosforilación , Transporte de Proteínas , Ratas Wistar , Transducción de Señal , Ubiquitinación , Proteínas de Transporte Vesicular/genética
2.
Heart Fail Rev ; 26(3): 453-478, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33411091

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a multifaceted syndrome with a complex aetiology often associated with several comorbidities, such as left ventricle pressure overload, diabetes mellitus, obesity, and kidney disease. Its pathophysiology remains obscure mainly due to the complex phenotype induced by all these associated comorbidities and to the scarcity of animal models that adequately mimic HFpEF. Increased oxidative stress, inflammation, and endothelial dysfunction are currently accepted as key players in HFpEF pathophysiology. However, we have just started to unveil HFpEF complexity and the role of calcium handling, energetic metabolism, and mitochondrial function remain to clarify. Indeed, the enlightenment of such cellular and molecular mechanisms represents an opportunity to develop novel therapeutic approaches and thus to improve HFpEF treatment options. In the last decades, the number of research groups dedicated to studying HFpEF has increased, denoting the importance and the magnitude achieved by this syndrome. In the current technological and web world, the amount of information is overwhelming, driving us not only to compile the most relevant information about the theme but also to explore beyond the tip of the iceberg. Thus, this review aims to encompass the most recent knowledge related to HFpEF or HFpEF-associated comorbidities, focusing mainly on myocardial metabolism, oxidative stress, and energetic pathways.


Asunto(s)
Insuficiencia Cardíaca , Animales , Calcio , Comorbilidad , Humanos , Estrés Oxidativo , Volumen Sistólico
3.
J Mol Cell Cardiol ; 144: 66-75, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32422321

RESUMEN

AIMS: The metabolic syndrome and associated comorbidities, like diabetes, hypertension and obesity, have been implicated in the development of heart failure with preserved ejection fraction (HFpEF). The molecular mechanisms underlying the development of HFpEF remain to be elucidated. We developed a cardiome-directed network analysis and applied this to high throughput cardiac RNA-sequencing data from a well-established rat model of HFpEF, the obese and hypertensive ZSF1 rat. With this novel system biology approach, we explored the mechanisms underlying HFpEF. METHODS AND RESULTS: Unlike ZSF1-Lean, ZSF1-Obese and ZSF1-Obese rats fed with a high-fat diet (HFD) developed diastolic dysfunction and reduced exercise capacity. The number of differentially expressed genes amounted to 1591 and 1961 for the ZSF1-Obese vs. Lean and ZSF1-Obese+HFD vs. Lean comparison, respectively. For the cardiome-directed network analysis (CDNA) eleven biological processes related to cardiac disease were selected and used as input for the STRING protein-protein interaction database. The resulting STRING network comprised 3.460 genes and 186.653 edges. Subsequently differentially expressed genes were projected onto this network. The connectivity between the core processes within the network was assessed and important bottleneck and hub genes were identified based on their network topology. Classical gene enrichment analysis highlighted many processes related to mitochondrial oxidative metabolism. The CDNA indicated high interconnectivity between five core processes: endothelial function, inflammation, apoptosis/autophagy, sarcomere/cytoskeleton and extracellular matrix. The transcription factors Myc and Peroxisome Proliferator-Activated Receptor-α (Ppara) were identified as important bottlenecks in the overall network topology, with Ppara acting as important link between cardiac metabolism, inflammation and endothelial function. CONCLUSIONS: This study presents a novel systems biology approach, directly applicable to other cardiac disease-related transcriptome data sets. The CDNA approach enabled the identification of critical processes and genes, including Myc and Ppara, that are putatively involved in the development of HFpEF.


Asunto(s)
Susceptibilidad a Enfermedades , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico , Animales , Biología Computacional/métodos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/diagnóstico , Masculino , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Ratas , Volumen Sistólico/genética , Transcriptoma , Disfunción Ventricular/genética , Disfunción Ventricular/metabolismo , Función Ventricular Izquierda
4.
Cell Physiol Biochem ; 54(3): 384-400, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32319743

RESUMEN

BACKGROUND/AIMS: Heart failure with preserved ejection fraction (HFpEF) is recognised as an important cause of cardiovascular mortality and morbidity, accounting for approximately 50% of heart failure cases. Metabolic-related complications, such as obesity, have been associated with the pathophysiology of this complex syndrome. The anatomic proximity between cardiac visceral adipose tissue (CVAT) and the myocardium has been drawing attention due to its potential pathogenic role in cardiac diseases. Thus, we aimed to characterise the phenotypic and proteomic differences between CVAT from ZSF1 lean (control) and ZSF1 obese (HFpEF) rats as well as to evaluate the myocardial impact of conditioned media derived from CVAT of these 2 groups. METHODS: CVAT of 20-weeks-old lean and obese ZSF1 rats was collected for: 1) 24h DMEM incubation to obtain conditioned media, 2) separation of proteins to mass spectrometry identification, 3) adipokines' expression, 4) adipocytes cross-sectional area assessment. Organotypic cultures were prepared from 7 days-old Wistar Han cardiac explants and incubated for 24h with the conditioned media. After incubation, cross-section area of cardiomyocytes and fibrosis were evaluated. Cardiomyocytes were isolated from Wistar Han and incubated with conditioned media for viability studies. RESULTS: CVAT from lean rats presented a higher expression of uncoupling protein-1 (UCP-1) protein, associated with a multilocular appearance and an increased expression of brown adipose tissue markers. Contrarily, CVAT from obese rats revealed a white adipose tissue-like phenotype accompanied by hypertrophy of adipocytes. The analysis of the CVAT proteome reinforced the phenotypic differences between lean and obese CVAT, showing enrichment of proteins involved in triglyceride metabolic processes in obese CVAT. In contrast, mitochondrial proteins were prominent in lean CVAT, further suggesting a brown adipose tissue-like phenotype. The twenty-four hours-long incubation of myocardial organo-cultures with conditioned media obtained from CVAT obese (CM-obese) rats significantly reduced cell viability, induced cardiomyocytes hypertrophy and fibrosis, in stark contrast with the incubation with the conditioned media from lean rats CVAT (CM-lean). Furthermore, the deleterious effect imposed by CM-obese was associated with a pro-inflammatory profile, characterised by an increased expression of several pro-inflammatory adipokines. CONCLUSION: Obesity promotes alterations in CVAT proteome signature, structure, composition and secretome, translating into dramatic myocardial consequences.


Asunto(s)
Grasa Intraabdominal/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Obesidad/metabolismo , Proteoma/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Supervivencia Celular/genética , Fibrosis/metabolismo , Inflamación/metabolismo , Grasa Intraabdominal/fisiopatología , Espectrometría de Masas , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Mitocondrias/metabolismo , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/patología , Obesidad/genética , Obesidad/fisiopatología , Organoides , Proteoma/genética , Proteómica , Ratas , Ratas Wistar , Triglicéridos/metabolismo , Proteína Desacopladora 1/metabolismo
5.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353134

RESUMEN

This study aims to provide new insights into transcriptome and miRome modifications occurring in cardiac reverse remodelling (RR) upon left ventricle pressure-overload relief in mice. Pressure-overload was established in seven-week-old C57BL/6J-mice by ascending aortic constriction. A debanding (DEB) surgery was performed seven weeks later in half of the banding group (BA). Two weeks later, cardiac function was evaluated through hemodynamics and echocardiography, and the hearts were collected for histology and small/bulk-RNA-sequencing. Pressure-overload relief was confirmed by the normalization of left-ventricle-end-systolic-pressure. DEB animals were separated into two subgroups according to the extent of cardiac remodelling at seven weeks and RR: DEB1 showed an incomplete RR phenotype confirmed by diastolic dysfunction persistence (E/e' ≥ 16 ms) and increased myocardial fibrosis. At the same time, DEB2 exhibited normal diastolic function and fibrosis, presenting a phenotype closer to myocardial recovery. Nevertheless, both subgroups showed the persistence of cardiomyocytes hypertrophy. Notably, the DEB1 subgroup presented a more severe diastolic dysfunction at the moment of debanding than the DEB2, suggesting a different degree of cardiac remodelling. Transcriptomic and miRomic data, as well as their integrated analysis, revealed significant downregulation in metabolic and hypertrophic related pathways in DEB1 when compared to DEB2 group, including fatty acid ß-oxidation, mitochondria L-carnitine shuttle, and nuclear factor of activated T-cells pathways. Moreover, extracellular matrix remodelling, glycan metabolism and inflammation-related pathways were up-regulated in DEB1. The presence of a more severe diastolic dysfunction at the moment of pressure overload-relief on top of cardiac hypertrophy was associated with an incomplete RR. Our transcriptomic approach suggests that a cardiac inflammation, fibrosis, and metabolic-related gene expression dysregulation underlies diastolic dysfunction persistence after pressure-overload relief, despite left ventricular mass regression, as echocardiographically confirmed.


Asunto(s)
Hipertrofia Ventricular Izquierda/genética , MicroARNs , Miocitos Cardíacos/metabolismo , Transcriptoma , Remodelación Ventricular/genética , Animales , Hipertrofia Ventricular Izquierda/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/citología
6.
Am J Physiol Heart Circ Physiol ; 316(3): H459-H475, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30525890

RESUMEN

Several studies have demonstrated that administration of doxorubicin (DOXO) results in cardiotoxicity, which eventually progresses to dilated cardiomyopathy. The present work aimed to evaluate the early myocardial changes of DOXO-induced cardiotoxicity. Male New Zealand White rabbits were injected intravenously with DOXO twice weekly for 8 wk [DOXO-induced heart failure (DOXO-HF)] or with an equivolumetric dose of saline (control). Echocardiographic evaluation was performed, and myocardial samples were collected to evaluate myocardial cellular and molecular modifications. The DOXO-HF group presented cardiac hypertrophy and higher left ventricular cavity diameters, showing a dilated phenotype but preserved ejection fraction. Concerning cardiomyocyte function, the DOXO-HF group presented a trend toward increased active tension without significant differences in passive tension. The myocardial GSSG-to-GSH ratio and interstitial fibrosis were increased and Bax-to- Bcl-2 ratio presented a trend toward an increase, suggesting the activation of apoptosis signaling pathways. The macromolecule titin shifted toward the more compliant isoform (N2BA), whereas the stiffer one (N2B) was shown to be hypophosphorylated. Differential protein analysis from the aggregate-enriched fraction through gel liquid chromatography-tandem mass spectrometry revealed an increase in the histidine-rich glycoprotein fragment in DOXO-HF animals. This work describes novel and early myocardial effects of DOXO-induced cardiotoxicity. Thus, tracking these changes appears to be of extreme relevance for the early detection of cardiac damage (as soon as ventricular dilation becomes evident) before irreversible cardiac function deterioration occurs (reduced ejection fraction). Moreover, it allows for the adjustment of the therapeutic approach and thus the prevention of cardiomyopathy progression. NEW & NOTEWORTHY Identification of early myocardial effects of doxorubicin in the heart is essential to hinder the development of cardiac complications and adjust the therapeutic approach. This study describes doxorubicin-induced cellular and molecular modifications before the onset of dilated cardiomyopathy. Myocardial samples from doxorubicin-treated rabbits showed a tendency for higher cardiomyocyte active tension, titin isoform shift from N2B to N2BA, hypophosphorylation of N2B, increased apoptotic genes, left ventricular interstitial fibrosis, and increased aggregation of histidine-rich glycoprotein.


Asunto(s)
Antineoplásicos/toxicidad , Cardiomiopatía Dilatada/metabolismo , Doxorrubicina/toxicidad , Miocitos Cardíacos/metabolismo , Animales , Apoptosis , Cardiomiopatía Dilatada/inducido químicamente , Cardiomiopatía Dilatada/diagnóstico por imagen , Cardiotoxicidad , Células Cultivadas , Conectina/metabolismo , Ecocardiografía , Fibrosis , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/efectos de los fármacos , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Conejos , Proteína X Asociada a bcl-2/metabolismo
7.
Thyroid ; 33(8): 983-996, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37140469

RESUMEN

Background: Low levels of triiodothyronine (T3) are common in patients with heart failure (HF). Our aim was to evaluate the effects of supplementation with low and replacement doses of T3 in an animal model of HF with preserved ejection fraction (HFpEF). Methods: We evaluated four groups: ZSF1 Lean (n = 8, Lean-Ctrl), ZSF1 Obese (rat model of metabolic-induced HFpEF, n = 13, HFpEF), ZSF1 Obese treated with a replacement dose of T3 (n = 8, HFpEF-T3high), and ZSF1 Obese treated with a low-dose of T3 (n = 8, HFpEF-T3low). T3 was administered in drinking water from weeks 13 to 24. The animals underwent anthropometric and metabolic assessments, echocardiography, and peak effort testing with maximum O2 consumption (VO2max) determination at 22 weeks, and a terminal hemodynamic evaluation at 24 weeks. Afterwhile myocardial samples were collected for single cardiomyocyte evaluation and molecular studies. Results: HFpEF animals showed lower serum and myocardial thyroid hormone levels than Lean-Ctrl. Treatment with T3 did not normalize serum T3 levels, but increased myocardial T3 levels to normal levels in the HFpEF-T3high group. Body weight was significantly decreased in both the T3-treated groups, comparing with HFpEF. An improvement in glucose metabolism was observed only in HFpEF-T3high. Both the treated groups had improved diastolic and systolic function in vivo, as well as improved Ca2+ transients and sarcomere shortening and relaxation in vitro. Comparing with HFpEF animals, HFpEF-T3high had increased heart rate and a higher rate of premature ventricular contractions. Animals treated with T3 had higher myocardial expression of calcium transporter ryanodine receptor 2 (RYR2) and α-myosin heavy chain (MHC), with a lower expression of ß-MHC. VO2max was not influenced by treatment with T3. Myocardial fibrosis was reduced in both the treated groups. Three animals died in the HFpEF-T3high group. Conclusions: Treatment with T3 was shown to improve metabolic profile, myocardial calcium handling, and cardiac function. While the low dose was well-tolerated and safe, the replacement dose was associated with increased heart rate, and increased risk of arrhythmias and sudden death. Modulation of thyroid hormones may be a potential therapeutic target in HFpEF; however, it is important to take into account the narrow therapeutic window of T3 in this condition.


Asunto(s)
Insuficiencia Cardíaca , Ratas , Animales , Insuficiencia Cardíaca/tratamiento farmacológico , Volumen Sistólico , Triyodotironina/farmacología , Triyodotironina/uso terapéutico , Calcio/metabolismo , Modelos Animales de Enfermedad , Obesidad/complicaciones
8.
Basic Res Cardiol ; 106(5): 801-14, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21533831

RESUMEN

Chronic pressure-overload and diabetes mellitus are two frequent disorders affecting the heart. We aimed to characterize myocardial structural and functional changes induced by both conditions. Pressure-overload was established in Wistar-han male rats by supra-renal aortic banding. Six-weeks later, diabetes was induced by streptozotocin (65 mg/kg,ip), resulting in four groups: SHAM, banding (BA), diabetic (DM) and diabetic-banding (DB). Six-weeks later, pressure-volume loops were obtained and left ventricular samples were collected to evaluate alterations in insulin signalling pathways, extracellular matrix as well as myofilament function and phosphorylation. Pressure-overload increased cardiomyocyte diameter (BA 22.0 ± 0.4 µm, SHAM 18.2 ± 0.3 µm) and myofilament maximal force (BA 25.7 ± 3.6 kN/m(2), SHAM 18.6 ± 1.4 kN/m(2)), Ca(2+) sensitivity (BA 5.56 ± 0.02, SHAM 5.50 ± 0.02) as well as MyBP-C, Akt and Erk phosphorylation, while decreasing rate of force redevelopment (K (tr); BA 14.9 ± 1.1 s(-1), SHAM 25.2 ± 1.5 s(-1)). At the extracellular matrix level, fibrosis (BA 10.8 ± 0.9%, SHAM 5.3 ± 0.6%), pro-MMP-2 and MMP-9 activities increased and, in vivo, relaxation was impaired (τ; BA 14.0 ± 0.9 ms, SHAM 12.9 ± 0.4 ms). Diabetes increased cardiomyocyte diameter, fibrosis (DM 21.4 ± 0.4 µm, 13.9 ± 1.8%, DB 20.6 ± 0.4 µm, 13.8 ± 0.8%, respectively), myofilament Ca(2+)sensitivity (DM 5.57 ± 0.02, DB 5.57 ± 0.01), advanced glycation end-product deposition (DM 4.9 ± 0.6 score/mm(2), DB 5.1 ± 0.4 score/mm(2), SHAM 2.1 ± 0.3 score/mm(2)), and apoptosis, while decreasing K (tr) (DM 13.5 ± 1.9 s(-1), DB 15.2 ± 1.4 s(-1)), Akt phosphorylation and MMP-9/TIMP-1 and MMP-1/TIMP-1 ratios. Diabetic hearts were stiffer (higher end-diastolic-pressure: DM 7.0 ± 1.2 mmHg, DB 6.7 ± 0.7 mmHg, SHAM 5.3 ± 0.4 mmHg, steeper end-diastolic-pressure-volume relation: DM 0.59 ± 0.18, DB 0.83 ± 0.17, SHAM 0.41 ± 0.10), and hypo-contractile (decreased end-systolic-pressure-volume-relation). DB animals presented further pulmonary congestion (Lungs/body-weight: DB 5.23 ± 0.21 g/kg, SHAM 3.80 ± 0.14 g/kg) as this group combined overload-induced relaxation abnormalities and diabetes-induced stiffness. Diabetes mellitus and pressure overload led to distinct diastolic dysfunction phenotypes: while diabetes promoted myocardial stiffening, pressure overload impaired relaxation. The association of these damages accelerates the progression of diastolic heart failure progression in diabetic-banded animals.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Progresión de la Enfermedad , Insuficiencia Cardíaca Diastólica/fisiopatología , Hipertensión/fisiopatología , Animales , Estenosis de la Válvula Aórtica/complicaciones , Diabetes Mellitus Experimental/inducido químicamente , Modelos Animales de Enfermedad , Matriz Extracelular/fisiología , Ventrículos Cardíacos/patología , Hipertensión/etiología , Insulina/fisiología , Masculino , Miofibrillas/fisiología , Ratas , Ratas Wistar , Estreptozocina/efectos adversos
9.
Front Physiol ; 12: 751326, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35811573

RESUMEN

Heart failure (HF) triggered by cardiovascular and non-cardiovascular diseases is a leading cause of death worldwide and translational research is urgently needed to better understand the mechanisms of the failing heart. For this purpose, rodent models of heart disease combined with in vivo cardiac functional assessment have provided valuable insights into the physiological significance of a given genetic or pharmacological modification. In small animals, cardiac function and structure can be evaluated by methods such as echocardiography, telemetry or hemodynamics using conductance catheters. Indeed, hemodynamic analysis of pressure-volume loops (PV-loops) has become the gold standard methodology to study in vivo cardiac function in detail. This method provides simultaneous measurement of both pressure and volume signals from rodents intact beating hearts. On the one hand, PV-loop analysis has deeply expanded the knowledge on molecular cardiac physiology by allowing establishing important functional correlations. On the other hand, these measurements allow dissecting the cardiovascular functional impact of certain therapeutic interventions or specific signaling pathways using transgenic models of disease. However, a detailed assessment of cardiac function and structure in vivo still warrants proper standardization and optimization to boost the progress of HF research. With increasing concerns over data accuracy and reproducibility, guidelines and best practices for cardiac physiology measurements in experimental settings are needed. This article aims to review the best practices for carrying out cardiac hemodynamic assessment using PV-loops in vivo in rodents intact beating hearts, also providing an overview of its advantages, disadvantages and applications in cardiovascular research.

10.
J Vis Exp ; (173)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34338663

RESUMEN

To better understand the left ventricular (LV) reverse remodeling (RR), we describe a rodent model wherein, after aortic banding-induced LV remodeling, mice undergo RR upon removal of the aortic constriction. In this paper, we describe a step-by-step procedure to perform a minimally invasive surgical aortic debanding in mice. Echocardiography was subsequently used to assess the degree of cardiac hypertrophy and dysfunction during LV remodeling and RR and to determine the best timing for aortic debanding. At the end of the protocol, terminal hemodynamic evaluation of the cardiac function was conducted, and samples were collected for histological studies. We showed that debanding is associated with surgical survival rates of 70-80%. Moreover, two weeks after debanding, the significant reduction of ventricular afterload triggers the regression of ventricular hypertrophy (~20%) and fibrosis (~26%), recovery of diastolic dysfunction as assessed by the normalization of left ventricular filling and end-diastolic pressures (E/e' and LVEDP). Aortic debanding is a useful experimental model to study LV RR in rodents. The extent of myocardial recovery is variable between subjects, therefore, mimicking the diversity of RR that occurs in the clinical context, such as aortic valve replacement. We conclude that the aortic banding/debanding model represents a valuable tool to unravel novel insights into the mechanisms of RR, namely the regression of cardiac hypertrophy and the recovery of diastolic dysfunction.


Asunto(s)
Hipertrofia Ventricular Izquierda , Roedores , Animales , Diástole , Ratones , Miocardio , Función Ventricular Izquierda , Remodelación Ventricular
11.
Cardiovasc Res ; 117(1): 43-59, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32365197

RESUMEN

Echocardiography is a reliable and reproducible method to assess non-invasively cardiac function in clinical and experimental research. Significant progress in the development of echocardiographic equipment and transducers has led to the successful translation of this methodology from humans to rodents, allowing for the scoring of disease severity and progression, testing of new drugs, and monitoring cardiac function in genetically modified or pharmacologically treated animals. However, as yet, there is no standardization in the procedure to acquire echocardiographic measurements in small animals. This position paper focuses on the appropriate acquisition and analysis of echocardiographic parameters in adult mice and rats, and provides reference values, representative images, and videos for the accurate and reproducible quantification of left ventricular function in healthy and pathological conditions.


Asunto(s)
Investigación Biomédica/normas , Enfermedades Cardiovasculares/diagnóstico por imagen , Ecocardiografía/normas , Función Ventricular Izquierda , Animales , Enfermedades Cardiovasculares/fisiopatología , Consenso , Diástole , Modelos Animales de Enfermedad , Ratones , Ratas , Sístole
12.
Sci Rep ; 10(1): 15701, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973263

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is currently untreated. Therapeutics development demands effective diagnosis of diastolic dysfunction in animal models mimicking human pathology, which requires appropriate anaesthetics. Here, we investigated which anaesthetic, ketamine/xylazine or isoflurane, could be used to reveal diastolic dysfunction in HFpEF-diseased obese ZSF1 rats by echocardiography. First, diastolic dysfunction was confirmed by pressure-volume loops in obese compared to lean control ZSF1 rats. In echocardiography, ketamine/xylazine, unlike isoflurane, was able to demonstrate impaired relaxation in obese ZSF1 rats, as reflected by impaired early (E) and late (A) filling peak velocities, decreased E/A ratio, and a prolonged deceleration and isovolumic relaxation time. Interestingly, ketamine/xylazine induced a wider separation of both tissue and pulsed wave Doppler-derived echocardiographic waves required for diastolic dysfunction diagnosis, potentially by reducing the heart rate (HR), while isoflurane resulted in merged waves. To assess whether HR-lowering alone explained the differences between the anaesthetics, echocardiography measurements under isoflurane with and without the HR-lowering drug ivabradine were compared. However, diastolic dysfunction could not be diagnosed in ivabradine-treated obese ZSF1 rats. In summary, ketamine/xylazine compared to isoflurane is the anaesthetic of choice to detect diastolic dysfunction by echocardiography in rodent HFpEF, which was only partly mediated by HR-lowering.


Asunto(s)
Anestésicos/administración & dosificación , Diástole/efectos de los fármacos , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Isoflurano/administración & dosificación , Ketamina/administración & dosificación , Xilazina/administración & dosificación , Animales , Diástole/fisiología , Ecocardiografía , Frecuencia Cardíaca/fisiología , Masculino , Obesidad/fisiopatología , Ratas , Disfunción Ventricular Izquierda/fisiopatología
13.
Circ Heart Fail ; 13(11): e006170, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176457

RESUMEN

BACKGROUND: Often, pressure overload-induced myocardial remodeling does not undergo complete reverse remodeling after decreasing afterload. Recently, mitochondrial abnormalities and oxidative stress have been successively implicated in the pathogenesis of several chronic pressure overload cardiac diseases. Therefore, we aim to clarify the myocardial energetic dysregulation in (reverse) remodeling, mainly focusing on the mitochondria. METHODS: Thirty-five Wistar Han male rats randomly underwent sham or ascending (supravalvular) aortic banding procedure. Echocardiography revealed that banding induced concentric hypertrophy and diastolic dysfunction (early diastolic transmitral flow velocity to peak early-diastolic annular velocity ratio, E/E': sham, 13.6±2.1, banding, 18.5±4.1, P=0.014) accompanied by increased oxidative stress (dihydroethidium fluorescence: sham, 1.6×108±6.1×107, banding, 2.6×108±4.5×107, P<0.001) and augmented mitochondrial function. After 8 to 9 weeks, half of the banding animals underwent overload relief by an aortic debanding surgery (n=10). RESULTS: Two weeks later, hypertrophy decreased with the decline of oxidative stress (dihydroethidium fluorescence: banding, 2.6×108±4.5×107, debanding, 1.96×108±6.8×107, P<0.001) and diastolic dysfunction improved simultaneously (E/E': banding, 18.5±4.1, debanding, 15.1±1.8, P=0.029). The reduction of energetic demands imposed by overload relief allowed the mitochondria to reduce its activity and myocardial levels of phosphocreatine, phosphocreatine/ATP, and ATP/ADP to normalize in debanding towards sham values (phosphocreatine: sham, 38.4±7.4, debanding, 35.6±8.7, P=0.71; phosphocreatine/ATP: sham, 1.22±0.23 debanding, 1.11±0.24, P=0.59; ATP/ADP: sham, 6.2±0.9, debanding, 5.6±1.6, P=0.66). Despite the decreased mitochondrial area, complex III and V expression increased in debanding compared with sham or banding. Autophagy and mitophagy-related markers increased in banding and remained higher in debanding rats. CONCLUSIONS: During compensatory and maladaptive hypertrophy, mitochondria become more active. However, as the disease progresses, the myocardial energetic demands increase and the myocardium becomes energy deficient. During reverse remodeling, the concomitant attenuation of cardiac hypertrophy and oxidative stress allowed myocardial energetics, left ventricle hypertrophy, and diastolic dysfunction to recover. Autophagy and mitophagy are probably involved in the myocardial adaptation to overload and to unload. We conclude that these mitochondrial reversible changes underlie diastolic function adaptations during myocardial (reverse) remodeling.


Asunto(s)
Metabolismo Energético , Hipertrofia Ventricular Izquierda/metabolismo , Mitocondrias Cardíacas/genética , Función Ventricular Izquierda , Remodelación Ventricular , Adaptación Fisiológica , Animales , Diástole , Modelos Animales de Enfermedad , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Mitocondrias Cardíacas/patología , Dinámicas Mitocondriales , Mitofagia , Estrés Oxidativo , Ratas Wistar , Recuperación de la Función
14.
Acta Physiol (Oxf) ; 228(3): e13378, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31520455

RESUMEN

AIM: Calcium ions play a pivotal role in matching energy supply and demand in cardiac muscle. Mitochondrial calcium concentration is lower in animal models of heart failure with reduced ejection fraction (HFrEF), but limited information is available about mitochondrial calcium handling in heart failure with preserved ejection fraction (HFpEF). METHODS: We assessed mitochondrial Ca2+ handling in intact cardiomyocytes from Zucker/fatty Spontaneously hypertensive F1 hybrid (ZSF1)-lean (control) and ZSF1-obese rats, a metabolic risk-related model of HFpEF. A mitochondrially targeted Ca2+ indicator (MitoCam) was expressed in cultured adult rat cardiomyocytes. Cytosolic and mitochondrial Ca2+ transients were measured at different stimulation frequencies. Mitochondrial respiration and swelling, and expression of key proteins were determined ex vivo. RESULTS: At rest, mitochondrial Ca2+ concentration in ZSF1-obese was larger than in ZSF1-lean. The diastolic and systolic mitochondrial Ca2+ concentrations increased with stimulation frequency, but the steady-state levels were larger in ZSF1-obese. The half-widths of the contractile responses, the resting cytosolic Ca2+ concentration and the decay half-times of the cytosolic Ca2+ transients were higher in ZSF1-obese, likely because of a lower SERCA2a/phospholamban ratio. Mitochondrial respiration was lower, particularly with nicotinamide adenine dinucleotide (NADH) (complex I) substrates, and mitochondrial swelling was larger in ZSF1-obese. CONCLUSION: The free mitochondrial calcium concentration is higher in HFpEF owing to alterations in mitochondrial and cytosolic Ca2+ handling. This coupling between cytosolic and mitochondrial Ca2+ levels may compensate for myocardial ATP supply in vivo under conditions of mild mitochondrial dysfunction. However, if mitochondrial Ca2+ concentration is sustainedly increased, it might trigger mitochondrial permeability transition pore opening.


Asunto(s)
Calcio/metabolismo , Citosol/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Mitocondrias Cardíacas/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Mitocondrias Cardíacas/patología , Obesidad/metabolismo , Ratas , Ratas Zucker , Volumen Sistólico
15.
Sci Rep ; 9(1): 2956, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814653

RESUMEN

Aortic Stenosis (AS) is the most frequent valvulopathy in the western world. Traditionally aortic valve replacement (AVR) has been recommended immediately after the onset of heart failure (HF) symptoms. However, recent evidence suggests that AVR outcome can be improved if performed earlier. After AVR, the process of left ventricle (LV) reverse remodelling (RR) is variable and frequently incomplete. In this study, we aimed at detecting mechanism underlying the process of LV RR regarding myocardial structural, functional and molecular changes before the onset of HF symptoms. Wistar-Han rats were subjected to 7-weeks of ascending aortic-banding followed by a 2-week period of debanding to resemble AS-induced LV remodelling and the early events of AVR-induced RR, respectively. This resulted in 3 groups: Sham (n = 10), Banding (Ba, n = 15) and Debanding (Deb, n = 10). Concentric hypertrophy and diastolic dysfunction (DD) were patent in the Ba group. Aortic-debanding induced RR, which promoted LV functional recovery, while cardiac structure did not normalise. Cardiac parameters of RV dysfunction, assessed by echocardiography and at the cardiomyocyte level prevailed altered after debanding. After debanding, these alterations were accompanied by persistent changes in pathways associated to myocardial hypertrophy, fibrosis and LV inflammation. Aortic banding induced pulmonary arterial wall thickness to increase and correlates negatively with effort intolerance and positively with E/e' and left atrial area. We described dysregulated pathways in LV and RV remodelling and RR after AVR. Importantly we showed important RV-side effects of aortic constriction, highlighting the impact that LV-reverse remodelling has on both ventricles.


Asunto(s)
Ventrículos Cardíacos/fisiopatología , Hipertrofia Ventricular Izquierda/fisiopatología , Remodelación Ventricular/fisiología , Animales , Aorta/fisiopatología , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/cirugía , Ecocardiografía , Insuficiencia Cardíaca/fisiopatología , Prótesis Valvulares Cardíacas , Implantación de Prótesis de Válvulas Cardíacas/métodos , Masculino , Miocardio , Miocitos Cardíacos , Ratas , Ratas Wistar , Función Ventricular Izquierda/fisiología
16.
Cardiovasc Res ; 114(5): 656-667, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29401264

RESUMEN

Aims: The heart is constantly challenged with acute bouts of stretching or overload. Systolic adaptations to these challenges are known but adaptations in diastolic stiffness remain unknown. We evaluated adaptations in myocardial stiffness due to acute stretching and characterized the underlying mechanisms. Methods and results: Left ventricles (LVs) of intact rat hearts, rabbit papillary muscles and myocardial strips from cardiac surgery patients were stretched. After stretching, there was a sustained >40% decrease in end-diastolic pressure (EDP) or passive tension (PT) for 15 min in all species and experimental preparations. Stretching by volume loading in volunteers and cardiac surgery patients resulted in E/E' and EDP decreases, respectively, after sustained stretching. Stretched samples had increased myocardial cGMP levels, increased phosphorylated vasodilator-stimulated phosphoprotein phosphorylation, as well as, increased titin phosphorylation, which was reduced by prior protein kinase G (PKG) inhibition (PKGi). Skinned cardiomyocytes from stretched and non-stretched myocardia were studied. Skinned cardiomyocytes from stretched hearts showed decreased PT, which was abrogated by protein phosphatase incubation; whereas those from non-stretched hearts decreased PT after PKG incubation. Pharmacological studies assessed the role of nitric oxide (NO) and natriuretic peptides (NPs). PT decay after stretching was significantly reduced by combined NP antagonism, NO synthase inhibition and NO scavenging, or by PKGi. Response to stretching was remarkably reduced in a rat model of LV hypertrophy, which also failed to increase titin phosphorylation. Conclusions: We describe and translate to human physiology a novel adaptive mechanism, partly mediated by titin phosphorylation through cGMP-PKG signalling, whereby myocardial compliance increases in response to acute stretching. This mechanism may not function in the hypertrophic heart.


Asunto(s)
Hipertrofia Ventricular Izquierda/metabolismo , Mecanorreceptores/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Músculos Papilares/metabolismo , Función Ventricular Izquierda , Adaptación Fisiológica , Animales , Estudios de Casos y Controles , Moléculas de Adhesión Celular/metabolismo , Adaptabilidad , Conectina/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Humanos , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Preparación de Corazón Aislado , Masculino , Mecanotransducción Celular , Proteínas de Microfilamentos/metabolismo , Miocitos Cardíacos/patología , Músculos Papilares/fisiopatología , Fosfoproteínas/metabolismo , Fosforilación , Conejos , Ratas Wistar , Sistemas de Mensajero Secundario , Presión Ventricular
17.
Drug Discov Today ; 17(15-16): 880-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22561894

RESUMEN

Formerly regarded purely as passive energy storage, adipose tissue is now recognized as a vital endocrine organ. Adipocytes secrete diverse peptide hormones named adipokines, which act in a autocrine, paracrine or endocrine way to influence several biological functions. Adipokines comprise diverse bioactive substances, including cytokines, growth, and complement factors, which perform essential regulatory functions related to energy balance, satiety and immunity. Presently adipokines have been widely implicated in obesity, diabetes, hypertension and cardiovascular diseases. In this article we aim to present a brief description of the roles and potential therapeutic modulation of adipokines, such as leptin, resistin, adiponectin, apelin, visfatin, FABP-4, tumor necrosis factor-α (TNF-α), interleukin-6 and plasminogen activator inhibitor-1 (PAI-1).


Asunto(s)
Adipoquinas/fisiología , Tejido Adiposo/fisiología , Adipoquinas/uso terapéutico , Animales , Citocinas/metabolismo , Humanos , Sistema Renina-Angiotensina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA