Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 157(6): 1253-1254, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24906143

RESUMEN

The generation of piRNAs from long primary transcripts requires specialized factors that distinguish these precursors from canonical RNA polymerase II transcripts. Mohn et al. and Zhang et al. provide evidence that in Drosophila melanogaster noncanonical transcription coupled with splicing inhibition differentiates piRNA precursors from mRNAs and ensures their correct processing.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Empalme del ARN , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Animales , Femenino
2.
Mol Cell ; 80(6): 1067-1077.e5, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33259809

RESUMEN

The Coronaviridae is a family of positive-strand RNA viruses that includes SARS-CoV-2, the etiologic agent of the COVID-19 pandemic. Bearing the largest single-stranded RNA genomes in nature, coronaviruses are critically dependent on long-distance RNA-RNA interactions to regulate the viral transcription and replication pathways. Here we experimentally mapped the in vivo RNA-RNA interactome of the full-length SARS-CoV-2 genome and subgenomic mRNAs. We uncovered a network of RNA-RNA interactions spanning tens of thousands of nucleotides. These interactions reveal that the viral genome and subgenomes adopt alternative topologies inside cells and engage in different interactions with host RNAs. Notably, we discovered a long-range RNA-RNA interaction, the FSE-arch, that encircles the programmed ribosomal frameshifting element. The FSE-arch is conserved in the related MERS-CoV and is under purifying selection. Our findings illuminate RNA structure-based mechanisms governing replication, discontinuous transcription, and translation of coronaviruses and will aid future efforts to develop antiviral strategies.


Asunto(s)
COVID-19/metabolismo , Sistema de Lectura Ribosómico , Genoma Viral/fisiología , ARN Viral/biosíntesis , SARS-CoV-2/fisiología , Replicación Viral/fisiología , Animales , COVID-19/genética , Chlorocebus aethiops , Humanos , Biosíntesis de Proteínas , ARN Viral/genética , Transcripción Genética , Células Vero
3.
Mol Cell ; 78(5): 862-875.e8, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32348780

RESUMEN

Nuclear RNA interference (RNAi) pathways work together with histone modifications to regulate gene expression and enact an adaptive response to transposable RNA elements. In the germline, nuclear RNAi can lead to trans-generational epigenetic inheritance (TEI) of gene silencing. We identified and characterized a family of nuclear Argonaute-interacting proteins (ENRIs) that control the strength and target specificity of nuclear RNAi in C. elegans, ensuring faithful inheritance of epigenetic memories. ENRI-1/2 prevent misloading of the nuclear Argonaute NRDE-3 with small RNAs that normally effect maternal piRNAs, which prevents precocious nuclear translocation of NRDE-3 in the early embryo. Additionally, they are negative regulators of nuclear RNAi triggered from exogenous sources. Loss of ENRI-3, an unstable protein expressed mostly in the male germline, misdirects the RNAi response to transposable elements and impairs TEI. The ENRIs determine the potency and specificity of nuclear RNAi responses by gating small RNAs into specific nuclear Argonautes.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Silenciador del Gen/fisiología , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Células Germinativas/metabolismo , Proteínas Nucleares/metabolismo , Interferencia de ARN/fisiología , ARN Bicatenario/metabolismo , ARN Nuclear/metabolismo , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética
4.
Cell ; 150(1): 88-99, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22738725

RESUMEN

Transgenerational effects have wide-ranging implications for human health, biological adaptation, and evolution; however, their mechanisms and biology remain poorly understood. Here, we demonstrate that a germline nuclear small RNA/chromatin pathway can maintain stable inheritance for many generations when triggered by a piRNA-dependent foreign RNA response in C. elegans. Using forward genetic screens and candidate approaches, we find that a core set of nuclear RNAi and chromatin factors is required for multigenerational inheritance of environmental RNAi and piRNA silencing. These include a germline-specific nuclear Argonaute HRDE1/WAGO-9, a HP1 ortholog HPL-2, and two putative histone methyltransferases, SET-25 and SET-32. piRNAs can trigger highly stable long-term silencing lasting at least 20 generations. Once established, this long-term memory becomes independent of the piRNA trigger but remains dependent on the nuclear RNAi/chromatin pathway. Our data present a multigenerational epigenetic inheritance mechanism induced by piRNAs.


Asunto(s)
Caenorhabditis elegans/genética , Epigenómica , Interferencia de ARN , ARN de Helminto/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Femenino , Células Germinativas/metabolismo , Masculino , Transgenes
5.
Genes Dev ; 33(1-2): 90-102, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30567997

RESUMEN

Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and nonself nucleic acids and maintain genome integrity and are essential for fertility in a variety of organisms. In Caenorhabditis elegans, most piRNA precursors are transcribed from two genomic clusters that contain thousands of individual piRNA transcription units. While a few genes have been shown to be required for piRNA biogenesis, the mechanism of piRNA transcription remains elusive. Here we used functional proteomics approaches to identify an upstream sequence transcription complex (USTC) that is essential for piRNA biogenesis. The USTC contains piRNA silencing-defective 1 (PRDE-1), SNPC-4, twenty-one-U fouled-up 4 (TOFU-4), and TOFU-5. The USTC forms unique piRNA foci in germline nuclei and coats the piRNA cluster genomic loci. USTC factors associate with the Ruby motif just upstream of type I piRNA genes. USTC factors are also mutually dependent for binding to the piRNA clusters and forming the piRNA foci. Interestingly, USTC components bind differentially to piRNAs in the clusters and other noncoding RNA genes. These results reveal the USTC as a striking example of the repurposing of a general transcription factor complex to aid in genome defense against transposons.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica/genética , ARN Interferente Pequeño/genética , Secuencias de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/genética , Genoma de los Helmintos/genética , Unión Proteica , Proteómica , ARN Interferente Pequeño/biosíntesis
6.
Nat Rev Mol Cell Biol ; 15(8): 525-35, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25053358

RESUMEN

Small RNAs that function in a non-cell autonomous manner are becoming increasingly recognized as regulatory molecules with the potential to transmit information between cells, organisms and species. In plants and nematodes, small RNA mobility can be genetically dissected to provide information about the nature of the mobile RNA species, their distribution in the organism and inside cells, as well as the cellular machinery required for mobility, including channel proteins and cellular trafficking factors. Mobile RNAs function in antiviral defence, cell signalling and gene expression regulation, and might also mediate transgenerational epigenetic inheritance.


Asunto(s)
ARN Pequeño no Traducido/metabolismo , Animales , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Epigénesis Genética , Humanos , Inmunidad/genética , Plantas/genética , Plantas/metabolismo , ARN Interferente Pequeño , ARN Pequeño no Traducido/genética , Transducción de Señal/genética , Virosis/genética , Virosis/inmunología
7.
Nucleic Acids Res ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808663

RESUMEN

pre-mRNA splicing is a critical feature of eukaryotic gene expression. Both cis- and trans-splicing rely on accurately recognising splice site sequences by spliceosomal U snRNAs and associated proteins. Spliceosomal snRNAs carry multiple RNA modifications with the potential to affect different stages of pre-mRNA splicing. Here, we show that the conserved U6 snRNA m6A methyltransferase METT-10 is required for accurate and efficient cis- and trans-splicing of C. elegans pre-mRNAs. The absence of METT-10 in C. elegans and METTL16 in humans primarily leads to alternative splicing at 5' splice sites with an adenosine at +4 position. In addition, METT-10 is required for splicing of weak 3' cis- and trans-splice sites. We identified a significant overlap between METT-10 and the conserved splicing factor SNRNP27K in regulating 5' splice sites with +4A. Finally, we show that editing endogenous 5' splice site +4A positions to +4U restores splicing to wild-type positions in a mett-10 mutant background, supporting a direct role for U6 snRNA m6A modification in 5' splice site recognition. We conclude that the U6 snRNA m6A modification is important for accurate and efficient pre-mRNA splicing.

8.
Proc Natl Acad Sci U S A ; 120(5): e2217992120, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36689659

RESUMEN

SWItch/sucrose non-fermenting (SWI/SNF) complexes are a family of chromatin remodelers that are conserved across eukaryotes. Mutations in subunits of SWI/SNF cause a multitude of different developmental disorders in humans, most of which have no current treatment options. Here, we identify an alanine-to-valine-causing mutation in the SWI/SNF subunit snfc-5 (SMARCB1 in humans) that prevents embryonic lethality in Caenorhabditis elegans nematodes harboring a loss-of-function mutation in the SWI/SNF subunit swsn-1 (SMARCC1/2 in humans). Furthermore, we found that the combination of this specific mutation in snfc-5 and a loss-of-function mutation in either of the E3 ubiquitin ligases ubr-5 (UBR5 in humans) or hecd-1 (HECTD1 in humans) can restore development to adulthood in swsn-1 loss-of-function mutants that otherwise die as embryos. Using these mutant models, we established a set of 335 genes that are dysregulated in SWI/SNF mutants that arrest their development embryonically but exhibit near wild-type levels of expression in the presence of suppressor mutations that prevent embryonic lethality, suggesting that SWI/SNF promotes development by regulating some subset of these 335 genes. In addition, we show that SWI/SNF protein levels are reduced in swsn-1; snfc-5 double mutants and partly restored to wild-type levels in swsn-1; snfc-5; ubr-5 triple mutants, consistent with a model in which UBR-5 regulates SWI/SNF levels by tagging the complex for proteasomal degradation. Our findings establish a link between two E3 ubiquitin ligases and SWI/SNF function and suggest that UBR5 and HECTD1 could be potential therapeutic targets for the many developmental disorders caused by missense mutations in SWI/SNF subunits.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ubiquitinas/metabolismo
9.
Trends Genet ; 38(6): 529-553, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35307201

RESUMEN

Transposable element (TE)-derived sequences are ubiquitous in most eukaryotic genomes known to date. Because their expression and mobility can lead to genomic instability, several pathways have evolved to control TEs. Nevertheless, TEs represent an important source of genomic novelty and are often co-opted for novel functions that are relevant for phenotypic divergence and adaptation. Here, we review how animals, in particular vertebrates, mitigate TE mobility and expression, alongside known examples of TE domestication. We argue that the next frontier is to understand the determinants and dynamics of TE domestication: how they shift from 'non-self' targets of epigenetic silencing to 'self' genetic elements. New technologies enable avenues of research that may close the gap between epigenetic silencing and domestication of TEs.


Asunto(s)
Elementos Transponibles de ADN , Domesticación , Animales , Elementos Transponibles de ADN/genética , Epigénesis Genética/genética , Eucariontes/genética , Evolución Molecular , Vertebrados/genética
10.
EMBO J ; 40(5): e105565, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33533030

RESUMEN

PIWI-interacting RNAs (piRNAs) are genome-encoded small RNAs that regulate germ cell development and maintain germline integrity in many animals. Mature piRNAs engage Piwi Argonaute proteins to silence complementary transcripts, including transposable elements and endogenous genes. piRNA biogenesis mechanisms are diverse and remain poorly understood. Here, we identify the RNA polymerase II (RNA Pol II) core subunit RPB-9 as required for piRNA-mediated silencing in the nematode Caenorhabditis elegans. We show that rpb-9 initiates heritable piRNA-mediated gene silencing at two DNA transposon families and at a subset of somatic genes in the germline. We provide genetic and biochemical evidence that RPB-9 is required for piRNA biogenesis by recruiting the Integrator complex at piRNA genes, hence promoting transcriptional termination. We conclude that, as a part of its rapid evolution, the piRNA pathway has co-opted an ancient machinery for high-fidelity transcription.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Silenciador del Gen , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/metabolismo , Transcripción Genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células Germinativas , Regiones Promotoras Genéticas , Subunidades de Proteína , ARN Polimerasa II/genética , ARN Interferente Pequeño/genética
11.
EMBO J ; 40(6): e105496, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33283887

RESUMEN

Methylation of carbon-5 of cytosines (m5 C) is a post-transcriptional nucleotide modification of RNA found in all kingdoms of life. While individual m5 C-methyltransferases have been studied, the impact of the global cytosine-5 methylome on development, homeostasis and stress remains unknown. Here, using Caenorhabditis elegans, we generated the first organism devoid of m5 C in RNA, demonstrating that this modification is non-essential. Using this genetic tool, we determine the localisation and enzymatic specificity of m5 C sites in the RNome in vivo. We find that NSUN-4 acts as a dual rRNA and tRNA methyltransferase in C. elegans mitochondria. In agreement with leucine and proline being the most frequently methylated tRNA isoacceptors, loss of m5 C impacts the decoding of some triplets of these two amino acids, leading to reduced translation efficiency. Upon heat stress, m5 C loss leads to ribosome stalling at UUG triplets, the only codon translated by an m5 C34-modified tRNA. This leads to reduced translation efficiency of UUG-rich transcripts and impaired fertility, suggesting a role of m5 C tRNA wobble methylation in the adaptation to higher temperatures.


Asunto(s)
5-Metilcitosina/metabolismo , Adaptación Fisiológica/genética , Caenorhabditis elegans/genética , Respuesta al Choque Térmico/genética , Procesamiento Postranscripcional del ARN/genética , Animales , Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/fisiología , Citosina/química , Edición Génica , Calor , Leucina/química , Metiltransferasas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Prolina/química , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , ARN/química , ARN/genética , Ribosomas/metabolismo
12.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38597883

RESUMEN

SUMMARY: RNA (ribonucleic acid) molecules have secondary and tertiary structures in vivo which play a crucial role in cellular processes such as the regulation of gene expression, RNA processing and localization. The ability to investigate these structures will enhance our understanding of their function and contribute to the diagnosis and treatment of diseases caused by RNA dysregulation. However, there are no mature pipelines or packages for processing and analyzing complex in vivo RNA structural data. Here, we present rnaCrosslinkOO (RNA Crosslink Object-Oriented), a novel software package for the comprehensive analysis of data derived from the COMRADES (Crosslinking of Matched RNA and Deep Sequencing) method. rnaCrosslinkOO offers a comprehensive pipeline from raw sequencing reads to the identification and comparison of RNA structural features. It includes read processing and alignment, clustering of duplexes, data exploration, folding and comparisons of RNA structures. rnaCrosslinkOO also enables comparisons between conditions, the identification of inter-RNA interactions, and the incorporation of reactivity data to improve structure prediction. AVAILABILITY AND IMPLEMENTATION: rnaCrosslinkOO is freely available to noncommercial users and implemented in R, with the source code and documentation accessible at https://CRAN.R-project.org/package=rnaCrosslinkOO. The software is supported on Linux, macOS, and Windows platforms.


Asunto(s)
Conformación de Ácido Nucleico , ARN , Análisis de Secuencia de ARN , Programas Informáticos , ARN/química , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
13.
EMBO J ; 39(23): e104579, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33034389

RESUMEN

Environmental factors can change phenotypes in exposed individuals and offspring and involve the germline, likely via biological signals in the periphery that communicate with germ cells. Here, using a mouse model of paternal exposure to traumatic stress, we identify circulating factors involving peroxisome proliferator-activated receptor (PPAR) pathways in the effects of exposure to the germline. We show that exposure alters metabolic functions and pathways, particularly lipid-derived metabolites, in exposed fathers and their offspring. We collected data in a human cohort exposed to childhood trauma and observed similar metabolic alterations in circulation, suggesting conserved effects. Chronic injection of serum from trauma-exposed males into controls recapitulates metabolic phenotypes in the offspring. We identify lipid-activated nuclear receptors PPARs as potential mediators of the effects from father to offspring. Pharmacological PPAR activation in vivo reproduces metabolic dysfunctions in the offspring and grand-offspring of injected males and affects the sperm transcriptome in fathers and sons. In germ-like cells in vitro, both serum and PPAR agonist induce PPAR activation. Together, these results highlight the role of circulating factors as potential communication vectors between the periphery and the germline.


Asunto(s)
Células Germinativas/metabolismo , Exposición Paterna , Animales , Sangre , Epigénesis Genética , Epigenómica , Padre , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Reproducción/fisiología , Espermatozoides , Transcriptoma , Heridas y Lesiones
14.
Genome Res ; 31(12): 2290-2302, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34772700

RESUMEN

Arbuscular mycorrhizal (AM) fungi form mutualistic relationships with most land plant species. AM fungi have long been considered as ancient asexuals. Long-term clonal evolution would be remarkable for a eukaryotic lineage and suggests the importance of alternative mechanisms to promote genetic variability facilitating adaptation. Here, we assessed the potential of transposable elements for generating such genomic diversity. The dynamic expression of TEs during Rhizophagus irregularis spore development suggests ongoing TE activity. We find Mutator-like elements located near genes belonging to highly expanded gene families. Whole-genome epigenomic profiling of R. irregularis provides direct evidence of DNA methylation and small RNA production occurring at TE loci. Our results support a model in which TE activity shapes the genome, while DNA methylation and small RNA-mediated silencing keep their overproliferation in check. We propose that a well-controlled TE activity directly contributes to genome evolution in AM fungi.

15.
RNA ; 28(3): 353-370, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34949722

RESUMEN

The human terminal uridyl transferases TUT4 and TUT7 (TUT4/7) catalyze the additions of uridines at the 3' end of RNAs, including the precursors of the tumor suppressor miRNA let-7 upon recruitment by the oncoprotein LIN28A. As a consequence, let-7 family miRNAs are down-regulated. Disruption of this TUT4/7 activity inhibits tumorigenesis. Hence, targeting TUT4/7 could be a potential anticancer therapy. In this study, we investigate TUT4/7-mediated RNA regulation in two cancer cell lines by establishing catalytic knockout models. Upon TUT4/7 mutation, we observe a significant reduction in miRNA uridylation, which results in defects in cancer cell properties such as cell proliferation and migration. With the loss of TUT4/7-mediated miRNA uridylation, the uridylated miRNA variants are replaced by adenylated isomiRs. Changes in miRNA modification profiles are accompanied by deregulation of expression levels in specific cases. Unlike let-7s, most miRNAs do not depend on LIN28A for TUT4/7-mediated regulation. Additionally, we identify TUT4/7-regulated cell-type-specific miRNA clusters and deregulation in their corresponding mRNA targets. Expression levels of miR-200c-3p and miR-141-3p are regulated by TUT4/7 in a cancer cell-type-specific manner. Subsequently, BCL2, which is a well-established target of miR-200c is up-regulated. Therefore, TUT4/7 loss causes deregulation of miRNA-mRNA networks in a cell-type-specific manner. Understanding of the underlying biology of such cell-type-specific deregulation will be an important aspect of targeting TUT4/7 for potential cancer therapies.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Neoplasias/metabolismo , ARN Nucleotidiltransferasas/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , MicroARNs/genética , Neoplasias/genética , ARN Nucleotidiltransferasas/genética , Procesamiento Postranscripcional del ARN
16.
Mol Syst Biol ; 19(11): e11835, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37850520

RESUMEN

How do the same mechanisms that faithfully regenerate complex developmental programmes in spite of environmental and genetic perturbations also allow responsiveness to environmental signals, adaptation and genetic evolution? Using the nematode Caenorhabditis elegans as a model, we explore the phenotypic space of growth and development in various genetic and environmental contexts. Our data are growth curves and developmental parameters obtained by automated microscopy. Using these, we show that among the traits that make up the developmental space, correlations within a particular context are predictive of correlations among different contexts. Furthermore, we find that the developmental variability of this animal can be captured on a relatively low-dimensional phenotypic manifold and that on this manifold, genetic and environmental contributions to plasticity can be deconvolved independently. Our perspective offers a new way of understanding the relationship between robustness and flexibility in complex systems, suggesting that projection and concentration of dimension can naturally align these forces as complementary rather than competing.


Asunto(s)
Caenorhabditis elegans , Evolución Molecular , Animales , Caenorhabditis elegans/genética , Fenotipo
17.
Nucleic Acids Res ; 50(11): e64, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35234904

RESUMEN

Most genomes harbor a large number of transposons, and they play an important role in evolution and gene regulation. They are also of interest to clinicians as they are involved in several diseases, including cancer and neurodegeneration. Although several methods for transposon identification are available, they are often highly specialised towards specific tasks or classes of transposons, and they lack common standards such as a unified taxonomy scheme and output file format. We present TransposonUltimate, a powerful bundle of three modules for transposon classification, annotation, and detection of transposition events. TransposonUltimate comes as a Conda package under the GPL-3.0 licence, is well documented and it is easy to install through https://github.com/DerKevinRiehl/TransposonUltimate. We benchmark the classification module on the large TransposonDB covering 891,051 sequences to demonstrate that it outperforms the currently best existing solutions. The annotation and detection modules combine sixteen existing softwares, and we illustrate its use by annotating Caenorhabditis elegans, Rhizophagus irregularis and Oryza sativa subs. japonica genomes. Finally, we use the detection module to discover 29 554 transposition events in the genomes of 20 wild type strains of C. elegans. Databases, assemblies, annotations and further findings can be downloaded from (https://doi.org/10.5281/zenodo.5518085).


Asunto(s)
Elementos Transponibles de ADN , Programas Informáticos , Animales , Benchmarking , Caenorhabditis elegans/genética , Hongos/genética , Genoma , Anotación de Secuencia Molecular , Oryza/genética , Estándares de Referencia
18.
Mol Biol Evol ; 39(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36376993

RESUMEN

Rapid ecological speciation along depth gradients has taken place repeatedly in freshwater fishes, yet molecular mechanisms facilitating such diversification are typically unclear. In Lake Masoko, an African crater lake, the cichlid Astatotilapia calliptera has diverged into shallow-littoral and deep-benthic ecomorphs with strikingly different jaw structures within the last 1,000 years. Using genome-wide transcriptome data, we explore two major regulatory transcriptional mechanisms, expression and splicing-QTL variants, and examine their contributions to differential gene expression underpinning functional phenotypes. We identified 7,550 genes with significant differential expression between ecomorphs, of which 5.4% were regulated by cis-regulatory expression QTLs, and 9.2% were regulated by cis-regulatory splicing QTLs. We also found strong signals of divergent selection on differentially expressed genes associated with craniofacial development. These results suggest that large-scale transcriptome modification plays an important role during early-stage speciation. We conclude that regulatory variants are important targets of selection driving ecologically relevant divergence in gene expression during adaptive diversification.


Asunto(s)
Cíclidos , Especiación Genética , Animales , Cíclidos/genética , Lagos , Fenotipo , Sitios de Carácter Cuantitativo
19.
PLoS Genet ; 16(6): e1008864, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32584820

RESUMEN

Cytosine methylation is an ancient epigenetic modification yet its function and extent within genomes is highly variable across eukaryotes. In mammals, methylation controls transposable elements and regulates the promoters of genes. In insects, DNA methylation is generally restricted to a small subset of transcribed genes, with both intergenic regions and transposable elements (TEs) depleted of methylation. The evolutionary origin and the function of these methylation patterns are poorly understood. Here we characterise the evolution of DNA methylation across the arthropod phylum. While the common ancestor of the arthropods had low levels of TE methylation and did not methylate promoters, both of these functions have evolved independently in centipedes and mealybugs. In contrast, methylation of the exons of a subset of transcribed genes is ancestral and widely conserved across the phylum, but has been lost in specific lineages. A similar set of genes is methylated in all species that retained exon-enriched methylation. We show that these genes have characteristic patterns of expression correlating to broad transcription initiation sites and well-positioned nucleosomes, providing new insights into potential mechanisms driving methylation patterns over hundreds of millions of years.


Asunto(s)
Artrópodos/genética , Metilación de ADN , Epigénesis Genética , Evolución Molecular , Animales , Islas de CpG/genética , Elementos Transponibles de ADN/genética , Exones/genética , Filogenia , Regiones Promotoras Genéticas/genética
20.
PLoS Genet ; 15(2): e1007905, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30735500

RESUMEN

RNA interference (RNAi) related pathways are essential for germline development and fertility in metazoa and can contribute to inter- and trans-generational inheritance. In the nematode Caenorhabditis elegans, environmental double-stranded RNA provided by feeding can lead to heritable changes in phenotype and gene expression. Notably, transmission efficiency differs between the male and female germline, yet the underlying mechanisms remain elusive. Here we use high-throughput sequencing of dissected gonads to quantify sex-specific endogenous piRNAs, miRNAs and siRNAs in the C. elegans germline and the somatic gonad. We identify genes with exceptionally high levels of secondary 22G RNAs that are associated with low mRNA expression, a signature compatible with silencing. We further demonstrate that contrary to the hermaphrodite germline, the male germline, but not male soma, is resistant to environmental RNAi triggers provided by feeding, in line with previous work. This sex-difference in silencing efficacy is associated with lower levels of gonadal RNAi amplification products. Moreover, this tissue- and sex-specific RNAi resistance is regulated by the germline, since mutant males with a feminized germline are RNAi sensitive. This study provides important sex- and tissue-specific expression data of miRNA, piRNA and siRNA as well as mechanistic insights into sex-differences of gene regulation in response to environmental cues.


Asunto(s)
ARN Interferente Pequeño/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Femenino , Regulación de la Expresión Génica/genética , Células Germinativas/fisiología , Gónadas/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , MicroARNs/genética , Interferencia de ARN/fisiología , ARN Bicatenario/genética , ARN Mensajero/genética , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA