Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 23(10): 4019-4028, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28657206

RESUMEN

Oxygen concentrations are hypothesized to decrease in many areas of the ocean as a result of anthropogenically driven climate change, resulting in habitat compression for pelagic animals. The oxygen partial pressure, pO2 , at which blood is 50% saturated (P50 ) is a measure of blood oxygen affinity and a gauge of the tolerance of animals for low ambient oxygen. Tuna species display a wide range of blood oxygen affinities (i.e., P50 values) and therefore may be differentially impacted by habitat compression as they make extensive vertical movements to forage on subdaily time scales. To project the effects of end-of-the-century climate change on tuna habitat, we calculate tuna P50 depths (i.e., the vertical position in the water column at which ambient pO2 is equal to species-specific blood P50 values) from 21st century Earth System Model (ESM) projections included in the fifth phase of the Climate Model Intercomparison Project (CMIP5). Overall, we project P50 depths to shoal, indicating likely habitat compression for tuna species due to climate change. Tunas that will be most impacted by shoaling are Pacific and southern bluefin tunas-habitat compression is projected for the entire geographic range of Pacific bluefin tuna and for the spawning region of southern bluefin tuna. Vertical shifts in P50 depths will potentially influence resource partitioning among Pacific bluefin, bigeye, yellowfin, and skipjack tunas in the northern subtropical and eastern tropical Pacific Ocean, the Arabian Sea, and the Bay of Bengal. By establishing linkages between tuna physiology and environmental conditions, we provide a mechanistic basis to project the effects of anthropogenic climate change on tuna habitats.


Asunto(s)
Cambio Climático , Atún , Migración Animal , Animales , Clima , Ecosistema , Oxígeno , Océano Pacífico , Dinámica Poblacional
2.
Ecology ; 96(4): 902-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26230011

RESUMEN

Extreme heat events cause patchy mortality in many habitats. We examine biophysical mechanisms responsible for patchy mortality in beds of the competitively dominant ecosystem engineer, the marine mussel Mytilus californianus, on the west coast of the United States. We used a biophysical model to predict daily fluctuations in body temperature at sites from southern California to Washington and used results of laboratory experiments on thermal tolerance to determine mortality rates from body temperature. In our model, we varied the rate of thermal conduction within mussel beds and found that this factor can account for large differences in body temperature and consequent mortality during heat waves. Mussel beds provide structural habitat for other species and increase local biodiversity, but, as sessile organisms, they are particularly vulnerable to extreme weather conditions. Identifying critical biophysical mechanisms related to mortality and ecological performance will improve our ability to predict the effects of climate change on these vulnerable ecosystems.


Asunto(s)
Calor/efectos adversos , Modelos Biológicos , Mytilus/fisiología , Animales , Cambio Climático , Ecosistema , Océanos y Mares , Estrés Fisiológico , Olas de Marea
3.
Ecol Appl ; 21(7): 2678-90, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22073652

RESUMEN

Gridded weather data were evaluated as sources of forcing variables for biophysical models of intertidal animal body temperature with model results obtained using local weather station data serving as the baseline of comparison. The objective of the study was to determine which gridded data are sufficient to capture observed patterns of thermal stress. Three coastal sites in western North America were included in this analysis: Boiler Bay, Oregon; Bodega Bay, California; and Pacific Grove, California. The gridded data with the highest spatial resolution, the 32-km North American Regional Reanalysis (NARR) and the 38-km Climate Forecasting System Reanalysis (CFSR), predicted daily maximum intertidal animal temperature most similarly to the local weather Station data. Time step size was important for variables that change rapidly throughout the day, such as solar radiation. There were site-based differences in the ability of the model to predict daily maximum intertidal animal temperature, with the gridded data predictions being the closest to local weather station predictions in Boiler Bay, Oregon. In a review of gridded data used as part of ecological studies, there was broad use of the data across subject areas and ecosystems so the recent improvements in the spatial (from 2 degrees to 32 km) and temporal scales (from 6 hours to 1 hour) of gridded data will further add to the applicability within the ecological community particularly for mechanistic studies.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Tiempo (Meteorología) , Animales , Bivalvos/fisiología , California , Océanos y Mares , Oregon , Temperatura , Factores de Tiempo
4.
J Exp Biol ; 213(6): 995-1003, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20190124

RESUMEN

Predicting when, where and with what magnitude climate change is likely to affect the fitness, abundance and distribution of organisms and the functioning of ecosystems has emerged as a high priority for scientists and resource managers. However, even in cases where we have detailed knowledge of current species' range boundaries, we often do not understand what, if any, aspects of weather and climate act to set these limits. This shortcoming significantly curtails our capacity to predict potential future range shifts in response to climate change, especially since the factors that set range boundaries under those novel conditions may be different from those that set limits today. We quantitatively examine a nine-year time series of temperature records relevant to the body temperatures of intertidal mussels as measured using biomimetic sensors. Specifically, we explore how a 'climatology' of body temperatures, as opposed to long-term records of habitat-level parameters such as air and water temperatures, can be used to extrapolate meaningful spatial and temporal patterns of physiological stress. Using different metrics that correspond to various aspects of physiological stress (seasonal means, cumulative temperature and the return time of extremes) we show that these potential environmental stressors do not always occur in synchrony with one another. Our analysis also shows that patterns of animal temperature are not well correlated with simple, commonly used metrics such as air temperature. Detailed physiological studies can provide guidance to predicting the effects of global climate change on natural ecosystems but only if we concomitantly record, archive and model environmental signals at appropriate scales.


Asunto(s)
Cambio Climático , Ambiente , Meteorología , Estrés Fisiológico , Animales , Temperatura Corporal , Clima , Humanos , Estaciones del Año , Transducción de Señal/fisiología
5.
Sci Adv ; 4(12): eaau5180, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30585291

RESUMEN

Oxygen minimum zones (OMZs), large midwater regions of very low oxygen, are expected to expand as a result of climate change. While oxygen is known to be important in structuring midwater ecosystems, a precise and mechanistic understanding of the effects of oxygen on zooplankton is lacking. Zooplankton are important components of midwater food webs and biogeochemical cycles. Here, we show that, in the eastern tropical North Pacific OMZ, previously undescribed submesoscale oxygen variability has a direct effect on the distribution of many major zooplankton groups. Despite extraordinary hypoxia tolerance, many zooplankton live near their physiological limits and respond to slight (≤1%) changes in oxygen. Ocean oxygen loss (deoxygenation) may, thus, elicit major unanticipated changes to midwater ecosystem structure and function.


Asunto(s)
Oxígeno/química , Agua de Mar/química , Zooplancton/fisiología , Adaptación Fisiológica , Animales , Respiración de la Célula , Cambio Climático , Ecosistema , Cadena Alimentaria , Hipoxia , Océanos y Mares , Oxígeno/metabolismo
6.
Trends Ecol Evol ; 31(1): 4-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26704455

RESUMEN

Code is increasingly central to ecological research but often remains unpublished and insufficiently recognized. Making code available allows analyses to be more easily reproduced and can facilitate research by other scientists. We evaluate journal handling of code, discuss barriers to its publication, and suggest approaches for promoting and archiving code.


Asunto(s)
Acceso a la Información , Ecología , Publicaciones Periódicas como Asunto , Programas Informáticos , Lenguajes de Programación , Informe de Investigación
7.
Sci Data ; 3: 160087, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27727238

RESUMEN

At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0-2.5 °C, during daily fluctuations that often exceeded 15°-20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on 'habitat-level' measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.


Asunto(s)
Bivalvos/fisiología , Temperatura Corporal , Animales , Cambio Climático , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA