Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Bacteriol ; 206(6): e0017224, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38809006

RESUMEN

The EnvZ-OmpR two-component system of Escherichia coli regulates the expression of the ompF and ompC porin genes in response to medium osmolarity. However, certain mutations in envZ confer pleiotropy by affecting the expression of genes of the iron and maltose regulons not normally controlled by EnvZ-OmpR. In this study, we obtained two novel envZ and ompR pleiotropic alleles, envZT15P and ompRL19Q, among revertants of a mutant with heightened envelope stress and an outer membrane (OM) permeability defect. Unlike envZ, pleiotropic mutations in ompR have not been described previously. The mutant alleles reduced the expression of several outer membrane proteins (OMPs), overcame the temperature-sensitive growth defect of a protease-deficient (ΔdegP) strain, and lowered envelope stress and OM permeability defects in a background lacking the BamB protein of an essential ß-barrel assembly machinery complex. Biochemical analysis showed OmpRL19Q, like wild-type OmpR, is readily phosphorylated by EnvZ, but the EnvZ-dependent dephosphorylation of OmpRL19Q~P was drastically impaired compared to wild-type OmpR. This defect would lead to a prolonged half-life for OmpRL19Q~P, an outcome remarkably similar to what we had previously described for EnvZR397L, resulting in pleiotropy. By employing null alleles of the OMP genes, it was determined that the three pleiotropic alleles lowered envelope stress by reducing OmpF and LamB levels. The absence of LamB was principally responsible for lowering the OM permeability defect, as assessed by the reduced sensitivity of a ΔbamB mutant to vancomycin and rifampin. Possible mechanisms by which novel EnvZ and OmpR mutants influence EnvZ-OmpR interactions and activities are discussed.IMPORTANCEMaintenance of the outer membrane (OM) integrity is critical for the survival of Gram-negative bacteria. Several envelope homeostasis systems are activated when OM integrity is perturbed. Through the isolation and characterization of novel pleiotropic ompR/envZ alleles, this study highlights the involvement of the EnvZ-OmpR two-component system in lowering envelope stress and the OM permeability defect caused by the loss of proteins that are involved in OM biogenesis, envelope homeostasis, and structural integrity.


Asunto(s)
Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Antibacterianos/farmacología , Alelos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Porinas/genética , Porinas/metabolismo , Mutación , Estrés Fisiológico , Fosforilación , Complejos Multienzimáticos , Transactivadores
2.
J Bacteriol ; 203(14): e0010921, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33972351

RESUMEN

Mutations are one of the common means by which bacteria acquire resistance to antibiotics. In an Escherichia coli mutant lacking major antibiotic efflux pumps AcrAB and AcrEF, mutations can activate alternative pathways that lead to increased antibiotic resistance. In this work, we isolated and characterized compensatory mutations of this nature mapping in four different regulatory genes, baeS, crp, hns, and rpoB. The gain-of-function mutations in baeS constitutively activated the BaeSR two-component regulatory system to increase the expression of the MdtABC efflux pump. Missense or insertion mutations in crp and hns caused derepression of an operon coding for the MdtEF efflux pump. Interestingly, despite the dependence of rpoB missense mutations on MdtABC for their antibiotic resistance phenotype, neither the expression of the mdtABCD-baeSR operon nor that of other known antibiotic efflux pumps went up. Instead, the transcriptome sequencing (RNA-seq) data revealed a gene expression profile resembling that of a "stringent" RNA polymerase where protein and DNA biosynthesis pathways were downregulated but pathways to combat various stresses were upregulated. Some of these activated stress pathways are also controlled by the general stress sigma factor RpoS. The data presented here also show that compensatory mutations can act synergistically to further increase antibiotic resistance to a level similar to the efflux pump-proficient parental strain. Together, the findings highlight a remarkable genetic ability of bacteria to circumvent antibiotic assault, even in the absence of a major intrinsic antibiotic resistance mechanism. IMPORTANCE Antibiotic resistance among bacterial pathogens is a chronic health concern. Bacteria possess or acquire various mechanisms of antibiotic resistance, and chief among them is the ability to accumulate beneficial mutations that often alter antibiotic targets. Here, we explored E. coli's ability to amass mutations in a background devoid of a major constitutively expressed efflux pump and identified mutations in several regulatory genes that confer resistance by activating specific or pleiotropic mechanisms.


Asunto(s)
Antibacterianos/farmacología , Proteínas de Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Mutación , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/metabolismo
3.
J Bacteriol ; 202(18)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32540932

RESUMEN

LpxC is a deacetylase that catalyzes the first committed step of lipid A biosynthesis in Escherichia coli LpxC competes for a common precursor, R-3-hydroxymyristoyl-UDP-GlcNAc, with FabZ, whose dehydratase activity catalyzes the first committed step of phospholipid biosynthesis. To maintain the optimum flow of the common precursor to these two competing pathways, the LpxC level is controlled by FtsH/YciM-mediated proteolysis. It is not known whether this complex or another protein senses the status of lipid A synthesis to control LpxC proteolysis. The work carried out in this study began with a novel mutation, yejM1163, which causes hypersensitivity to large antibiotics such as vancomycin and erythromycin. Isolates resistant to these antibiotics carried suppressor mutations in the ftsH and yciM genes. Western blot analysis showed a dramatically reduced LpxC level in the yejM1163 background, while the presence of ftsH or yciM suppressor mutations restored LpxC levels to different degrees. Based on these observations, it is proposed that YejM is a sensor of lipid A synthesis and controls LpxC levels by modulating the activity of the FtsH/YciM complex. The truncation of the periplasmic domain in the YejM1163 protein causes unregulated proteolysis of LpxC, thus diverting a greater pool of R-3-hydroxymyristoyl-UDP-GlcNAc toward phospholipid synthesis. This imbalance in lipid synthesis perturbs the outer membrane permeability barrier, causing hypersensitivity toward vancomycin and erythromycin. yejM1163 suppressor mutations in ftsH and yciM lower the proteolytic activity toward LpxC, thus restoring lipid homeostasis and the outer membrane permeability barrier.IMPORTANCE Lipid homeostasis is critical for proper envelope functions. The level of LpxC, which catalyzes the first committed step of lipopolysaccharide (LPS) synthesis, is controlled by an essential protease complex comprised of FtsH and YciM. Work carried out here suggests YejM, an essential envelope protein, plays a central role in sensing the state of LPS synthesis and controls LpxC levels by regulating the activity of FtsH/YciM. All four essential proteins are attractive targets of therapeutic development.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Amidohidrolasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Lipopolisacáridos/metabolismo
4.
J Bacteriol ; 201(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31235517

RESUMEN

The intake of certain nutrients, including ferric ion, is facilitated by the outer membrane-localized transporters. Due to ferric insolubility at physiological pH, Escherichia coli secretes a chelator, enterobactin, outside the cell and then transports back the enterobactin-ferric complex via an outer membrane receptor protein, FepA, whose activity is dependent on the proton motive force energy transduced by the TonB-ExbBD complex of the inner membrane. Consequently, ΔtonB mutant cells grow poorly on a medium low in iron. Prolonged incubation of ΔtonB cells on low-iron medium yields faster-growing colonies that acquired suppressor mutations in the yejM (pbgA) gene, which codes for a putative inner-to-outer membrane cardiolipin transporter. Further characterization of suppressors revealed that they display hypersusceptibility to vancomycin, a large hydrophilic antibiotic normally precluded from entering E. coli cells, and leak periplasmic proteins into the culture supernatant, indicating a compromised outer membrane permeability barrier. All phenotypes were reversed by supplying the wild-type copy of yejM on a plasmid, suggesting that yejM mutations are solely responsible for the observed phenotypes. The deletion of all known cardiolipin synthase genes (clsABC) did not produce the phenotypes similar to mutations in the yejM gene, suggesting that the absence of cardiolipin from the outer membrane per se is not responsible for increased outer membrane permeability. Elevated lysophosphatidylethanolamine levels and the synthetic growth phenotype without pldA indicated that defective lipid homeostasis in the yejM mutant compromises outer membrane lipid asymmetry and permeability barrier to allow enterobactin intake, and that YejM has additional roles other than transporting cardiolipin.IMPORTANCE The work presented here describes a positive genetic selection strategy for isolating mutations that destabilize the outer membrane permeability barrier of E. coli Given the importance of the outer membrane in restricting the entry of antibiotics, characterization of the genes and their products that affect outer membrane integrity will enhance the understanding of bacterial membranes and the development of strategies to bypass the outer membrane barrier for improved drug efficacy.


Asunto(s)
Membrana Externa Bacteriana/fisiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Antibacterianos/farmacología , Membrana Externa Bacteriana/química , Transporte Biológico , Cromatografía Liquida , ADN Bacteriano/genética , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Hierro/farmacología , Lípidos/química , Proteínas de la Membrana/genética , Mutación , Permeabilidad , Supresión Genética , Espectrometría de Masas en Tándem
5.
J Bacteriol ; 201(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30858298

RESUMEN

In Escherichia coli, the periplasmic protease DegP plays a critical role in degrading misfolded outer membrane proteins (OMPs). Consequently, mutants lacking DegP display a temperature-sensitive growth defect, presumably due to the toxic accumulation of misfolded OMPs. The Tol-Pal complex plays a poorly defined but an important role in envelope biogenesis, since mutants defective in this complex display a classical periplasmic leakage phenotype. Double mutants lacking DegP and an intact Tol-Pal complex display exaggerated temperature-sensitive growth defects and the leaky phenotype. Two revertants that overcome the temperature-sensitive growth phenotype carry missense mutations in the degS gene, resulting in D102V and D320A substitutions. D320 and E317 of the PDZ domain of DegS make salt bridges with R178 of DegS's protease domain to keep the protease in the inactive state. However, weakening of the tripartite interactions by D320A increases DegS's basal protease activity. Although the D102V substitution is as effective as D320A in suppressing the temperature-sensitive growth phenotype, the molecular mechanism behind its effect on DegS's protease activity is unclear. Our data suggest that the two DegS variants modestly activate RseA-controlled, σE-mediated envelope stress response pathway and elevate periplasmic protease activity to restore envelope homeostasis. Based on the release of a cytoplasmic enzyme in the culture supernatant, we conclude that the conditional lethal phenotype of ΔtolB ΔdegP mutants stems from a grossly destabilized envelope structure that causes excessive cell lysis. Together, the data point to a critical role for periplasmic proteases when the Tol-Pal complex-mediated envelope structure and/or functions are compromised.IMPORTANCE The Tol-Pal complex plays a poorly defined role in envelope biogenesis. The data presented here show that DegP's periplasmic protease activity becomes crucial in mutants lacking the intact Tol-Pal complex, but this requirement can be circumvented by suppressor mutations that activate the basal protease activity of a regulatory protease, DegS. These observations point to a critical role for periplasmic proteases when Tol-Pal-mediated envelope structure and/or functions are perturbed.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas Periplasmáticas/genética , Serina Endopeptidasas/genética , Sustitución de Aminoácidos , Pared Celular/genética , Pared Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Mutación , Proteínas Periplasmáticas/metabolismo , Fenotipo , Unión Proteica , Estructura Secundaria de Proteína , Serina Endopeptidasas/deficiencia , Factor sigma/genética , Factor sigma/metabolismo , Estrés Fisiológico , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Circulation ; 134(19): 1456-1466, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27702773

RESUMEN

BACKGROUND: There are few contemporary data on the mortality and morbidity associated with rheumatic heart disease or information on their predictors. We report the 2-year follow-up of individuals with rheumatic heart disease from 14 low- and middle-income countries in Africa and Asia. METHODS: Between January 2010 and November 2012, we enrolled 3343 patients from 25 centers in 14 countries and followed them for 2 years to assess mortality, congestive heart failure, stroke or transient ischemic attack, recurrent acute rheumatic fever, and infective endocarditis. RESULTS: Vital status at 24 months was known for 2960 (88.5%) patients. Two-thirds were female. Although patients were young (median age, 28 years; interquartile range, 18-40), the 2-year case fatality rate was high (500 deaths, 16.9%). Mortality rate was 116.3/1000 patient-years in the first year and 65.4/1000 patient-years in the second year. Median age at death was 28.7 years. Independent predictors of death were severe valve disease (hazard ratio [HR], 2.36; 95% confidence interval [CI], 1.80-3.11), congestive heart failure (HR, 2.16; 95% CI, 1.70-2.72), New York Heart Association functional class III/IV (HR, 1.67; 95% CI, 1.32-2.10), atrial fibrillation (HR, 1.40; 95% CI, 1.10-1.78), and older age (HR, 1.02; 95% CI, 1.01-1.02 per year increase) at enrollment. Postprimary education (HR, 0.67; 95% CI, 0.54-0.85) and female sex (HR, 0.65; 95% CI, 0.52-0.80) were associated with lower risk of death. Two hundred and four (6.9%) patients had new congestive heart failure (incidence, 38.42/1000 patient-years), 46 (1.6%) had a stroke or transient ischemic attack (8.45/1000 patient-years), 19 (0.6%) had recurrent acute rheumatic fever (3.49/1000 patient-years), and 20 (0.7%) had infective endocarditis (3.65/1000 patient-years). Previous stroke and older age were independent predictors of stroke/transient ischemic attack or systemic embolism. Patients from low- and lower-middle-income countries had significantly higher age- and sex-adjusted mortality than patients from upper-middle-income countries. Valve surgery was significantly more common in upper-middle-income than in lower-middle- or low-income countries. CONCLUSIONS: Patients with clinical rheumatic heart disease have high mortality and morbidity despite being young; those from low- and lower-middle-income countries had a poorer prognosis associated with advanced disease and low education. Programs focused on early detection and the treatment of clinical rheumatic heart disease are required to improve outcomes.


Asunto(s)
Endocarditis/mortalidad , Insuficiencia Cardíaca/mortalidad , Sistema de Registros , Cardiopatía Reumática/mortalidad , Accidente Cerebrovascular/mortalidad , Adolescente , Adulto , África/epidemiología , Factores de Edad , Asia/epidemiología , Países en Desarrollo , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad
7.
Mol Cell ; 30(1): 114-21, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18406332

RESUMEN

Drugs and certain proteins are transported across the membranes of Gram-negative bacteria by energy-activated pumps. The outer membrane component of these pumps is a channel that opens from a sealed resting state during the transport process. We describe two crystal structures of the Escherichia coli outer membrane protein TolC in its partially open state. Opening is accompanied by the exposure of three shallow intraprotomer grooves in the TolC trimer, where our mutagenesis data identify a contact point with the periplasmic component of a drug efflux pump, AcrA. We suggest that the assembly of multidrug efflux pumps is accompanied by induced fit of TolC driven mainly by accommodation of the periplasmic component.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Farmacorresistencia Microbiana/fisiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Conformación Proteica , Proteínas de la Membrana Bacteriana Externa/genética , Transporte Biológico/fisiología , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Lipoproteínas , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación Puntual
8.
Eur Heart J ; 36(18): 1115-22a, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25425448

RESUMEN

AIMS: Rheumatic heart disease (RHD) accounts for over a million premature deaths annually; however, there is little contemporary information on presentation, complications, and treatment. METHODS AND RESULTS: This prospective registry enrolled 3343 patients (median age 28 years, 66.2% female) presenting with RHD at 25 hospitals in 12 African countries, India, and Yemen between January 2010 and November 2012. The majority (63.9%) had moderate-to-severe multivalvular disease complicated by congestive heart failure (33.4%), pulmonary hypertension (28.8%), atrial fibrillation (AF) (21.8%), stroke (7.1%), infective endocarditis (4%), and major bleeding (2.7%). One-quarter of adults and 5.3% of children had decreased left ventricular (LV) systolic function; 23% of adults and 14.1% of children had dilated LVs. Fifty-five percent (n = 1761) of patients were on secondary antibiotic prophylaxis. Oral anti-coagulants were prescribed in 69.5% (n = 946) of patients with mechanical valves (n = 501), AF (n = 397), and high-risk mitral stenosis in sinus rhythm (n = 48). However, only 28.3% (n = 269) had a therapeutic international normalized ratio. Among 1825 women of childbearing age (12-51 years), only 3.6% (n = 65) were on contraception. The utilization of valvuloplasty and valve surgery was higher in upper-middle compared with lower-income countries. CONCLUSION: Rheumatic heart disease patients were young, predominantly female, and had high prevalence of major cardiovascular complications. There is suboptimal utilization of secondary antibiotic prophylaxis, oral anti-coagulation, and contraception, and variations in the use of percutaneous and surgical interventions by country income level.


Asunto(s)
Cardiopatía Reumática/terapia , Administración Oral , Adulto , Distribución por Edad , Antibacterianos/uso terapéutico , Profilaxis Antibiótica , Anticoagulantes/administración & dosificación , Estudios Transversales , Países en Desarrollo , Medicina Basada en la Evidencia , Femenino , Salud Global , Enfermedades de las Válvulas Cardíacas/epidemiología , Enfermedades de las Válvulas Cardíacas/etiología , Enfermedades de las Válvulas Cardíacas/terapia , Humanos , Masculino , Penicilinas/uso terapéutico , Proyectos Piloto , Estudios Prospectivos , Cardiopatía Reumática/complicaciones , Cardiopatía Reumática/epidemiología , Distribución por Sexo
9.
J Bacteriol ; 197(15): 2479-88, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25962916

RESUMEN

UNLABELLED: The constitutively expressed AcrAB multidrug efflux system of Escherichia coli shows a high degree of homology with the normally silent AcrEF system. Exposure of a strain with acrAB deleted to antibiotic selection pressure frequently leads to the insertion sequence-mediated activation of the homologous AcrEF system. In this study, we used strains constitutively expressing either AcrAB or AcrEF from their normal chromosomal locations to resolve a controversy about whether phenylalanylarginine ß-naphthylamide (PAßN) inhibits the activities of AcrAB and AcrEF and/or acts synergistically with antibiotics by destabilizing the outer membrane permeability barrier. Real-time efflux assays allowed a clear distinction between the efflux pump-inhibiting activity of PAßN and the outer membrane-destabilizing action of polymyxin B nonapeptide (PMXBN). When added in equal amounts, PAßN, but not PMXBN, strongly inhibited the efflux activities of both AcrAB and AcrEF pumps. In contrast, when outer membrane destabilization was assessed by the nitrocefin hydrolysis assay, PMXBN exerted a much greater damaging effect than PAßN. Strong action of PAßN in inhibiting efflux activity compared to its weak action in destabilizing the outer membrane permeability barrier suggests that PAßN acts mainly by inhibiting efflux pumps. We concluded that at low concentrations, PAßN acts specifically as an inhibitor of both AcrAB and AcrEF efflux pumps; however, at high concentrations, PAßN in the efflux-proficient background not only inhibits efflux pump activity but also destabilizes the membrane. The effects of PAßN on membrane integrity are compounded in cells unable to extrude PAßN. IMPORTANCE: The increase in multidrug-resistant bacterial pathogens at an alarming rate has accelerated the need for implementation of better antimicrobial stewardship, discovery of new antibiotics, and deeper understanding of the mechanism of drug resistance. The work carried out in this study highlights the importance of employing real-time fluorescence-based assays in differentiating multidrug efflux-inhibitory and outer membrane-destabilizing activities of antibacterial compounds.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/fisiología , Membrana Celular/fisiología , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Genes MDR/fisiología , Proteínas de Transporte de Membrana/fisiología , Animales , Antibacterianos/farmacología , Dipéptidos/farmacología , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes MDR/genética , Humanos , Pruebas de Sensibilidad Microbiana , Permeabilidad , Fenotipo , Polimixina B/análogos & derivados , Polimixina B/farmacología , Conejos
10.
J Bacteriol ; 197(20): 3255-64, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26240069

RESUMEN

UNLABELLED: The AcrB protein of Escherichia coli, together with TolC and AcrA, forms a contiguous envelope conduit for the capture and extrusion of diverse antibiotics and cellular metabolites. In this study, we sought to expand our knowledge of AcrB by conducting genetic and functional analyses. We began with an AcrB mutant bearing an F610A substitution in the drug binding pocket and obtained second-site substitutions that overcame the antibiotic hypersusceptibility phenotype conferred by the F610A mutation. Five of the seven unique single amino acid substitutions--Y49S, V127A, V127G, D153E, and G288C--mapped in the periplasmic porter domain of AcrB, with the D153E and G288C mutations mapping near and at the distal drug binding pocket, respectively. The other two substitutions--F453C and L486W--were mapped to transmembrane (TM) helices 5 and 6, respectively. The nitrocefin efflux kinetics data suggested that all periplasmic suppressors significantly restored nitrocefin binding affinity impaired by the F610A mutation. Surprisingly, despite increasing MICs of tested antibiotics and the efflux of N-phenyl-1-naphthylamine, the TM suppressors did not improve the nitrocefin efflux kinetics. These data suggest that the periplasmic substitutions act by influencing drug binding affinities for the distal binding pocket, whereas the TM substitutions may indirectly affect the conformational dynamics of the drug binding domain. IMPORTANCE: The AcrB protein and its homologues confer multidrug resistance in many important human bacterial pathogens. A greater understanding of how these efflux pump proteins function will lead to the development of effective inhibitors against them. The research presented in this paper investigates drug binding pocket mutants of AcrB through the isolation and characterization of intragenic suppressor mutations that overcome the drug susceptibility phenotype of mutations affecting the drug binding pocket. The data reveal a remarkable structure-function plasticity of the AcrB protein pertaining to its drug efflux activity.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Sustitución de Aminoácidos , Antibacterianos/farmacología , Sitios de Unión , Cefalosporinas/metabolismo , Biología Computacional , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación , Conformación Proteica
11.
Mol Microbiol ; 91(5): 965-75, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24386963

RESUMEN

The tripartite AcrAB-TolC multidrug efflux pump of Escherichia coli is the central conduit for cell-toxic compounds and contributes to antibiotic resistance. While high-resolution structures of all three proteins have been solved, much remains to be learned as to how the individual components come together to form a functional complex. In this study, we investigated the importance of the AcrB ß-hairpins belonging to the DN and DC subdomains, which are presumed to dock with TolC, in complex stability and activity of the complete pump. Our data show that the DN subdomain ß-hairpin residues play a more critical role in complex stability and activity than the DC subdomain hairpin residues. The failure of the AcrB DN ß-hairpin deletion mutant to engage with TolC leads to the drug hypersensitivity phenotype, which is reversed by compensatory alterations in the lipoyl and ß-barrel domains of AcrA. Moreover, AcrA and TolC mutants that induce TolC opening also reverse the drug hypersensitivity phenotype of the AcrB ß-hairpin mutants, indicating a failure by the AcrB mutant to interact and thus induce TolC opening on its own. Together, these data suggest that both AcrB ß-hairpins and AcrA act to stabilize the tripartite complex and induce TolC opening for drug expulsion.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Aminoácidos/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Western Blotting , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estabilidad Proteica , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Supresión Genética
12.
J Bacteriol ; 194(2): 317-24, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22037403

RESUMEN

BamA interacts with the BamBCDE lipoproteins, and together they constitute the essential ß-barrel assembly machine (BAM) of Escherichia coli. The simultaneous absence of BamB and BamE confers a conditional lethal phenotype and a severe ß-barrel outer membrane protein (OMP) biogenesis defect. Without BamB and BamE, wild-type BamA levels are significantly reduced, and the folding of the BamA ß-barrel, as assessed by the heat-modifiability assay, is drastically compromised. Single-amino-acid substitutions in the ß-barrel domain of BamA improve both bacterial growth and OMP biogenesis in a bamB bamE mutant and restore BamA levels close to the BamB(+) BamE(+) level. The substitutions alter BamA ß-barrel folding, and folding in the mutants becomes independent of BamB and BamE. Remarkably, BamA ß-barrel alterations also improve OMP biogenesis in cells lacking the major periplasmic chaperone, SurA, which, together with BamB, is thought to facilitate the transfer of partially folded OMPs to the soluble POTRA (polypeptide-transport-associated) domain of BamA. Unlike the bamB bamE mutant background, the absence of BamB or SurA does not affect BamA ß-barrel folding. Thus, substitutions in the outer membrane-embedded BamA ß-barrel domain overcome OMP biogenesis defects that occur at the POTRA domain of BamA in the periplasm. Based on the structure of FhaC, the altered BamA residues are predicted to lie on a highly conserved loop that folds inside the ß-barrel and in regions pointing outside the ß-barrel, suggesting that they influence BamA function by both direct and indirect mechanisms.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutación , Fenotipo , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína
13.
J Bacteriol ; 194(17): 4662-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22753067

RESUMEN

Many members of the Omp85 family of proteins form essential ß-barrel outer membrane protein (OMP) biogenesis machinery in Gram-negative bacteria, chloroplasts, and mitochondria. In Escherichia coli, BamA, a member of the Omp85 family, folds into an outer membrane-embedded ß-barrel domain and a soluble periplasmic polypeptide-transport-associated (POTRA) domain. Although the high-resolution structures of only the BamA POTRA domain of E. coli are available, the crystal structure of FhaC, an Omp85 family member and a component of the two-partner secretion system in Bordetella pertussis, suggests that the BamA ß-barrel likely folds into a 16-stranded ß-barrel. The FhaC ß-barrel is occluded by an N-terminal α-helix and a large ß-barrel loop, L6, which carries residues that are highly conserved among the Omp85 family members. Deletion of L6 in FhaC did not affect its biogenesis but abolished its secretion function. In this study, we tested the hypothesis that the conserved residues of the putative L6 loop, which presumably folds back into the lumen of the BamA ß-barrel like the FhaC counterpart, play an important role in OMP and/or BamA biogenesis. The conserved (641)RGF(643) residues of L6 were either deleted or replaced with alanine in various permutations. Phenotypic and biochemical characterization of various BamA L6 mutants revealed that the conserved RGF residues are critical for OMP biogenesis. Moreover, three BamA L6 alterations, ΔRGF, AAA, and AGA, produced a conditional lethal phenotype, concomitant with severely reduced BamA levels and folding defects. Thus, the conserved (641)RGF(643) residues of the BamA L6 loop are important for BamA folding and biogenesis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sustitución de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Fenotipo , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Eliminación de Secuencia
14.
J Bacteriol ; 194(13): 3512-21, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22544271

RESUMEN

The BamA protein of Escherichia coli plays a central role in the assembly of ß-barrel outer membrane proteins (OMPs). The C-terminal domain of BamA folds into an integral outer membrane ß-barrel, and the N terminus forms a periplasmic polypeptide transport-associated (POTRA) domain for OMP reception and assembly. We show here that BamA misfolding, caused by the deletion of the R44 residue from the α2 helix of the POTRA 1 domain (ΔR44), can be overcome by the insertion of alanine 2 residues upstream or downstream from the ΔR44 site. This highlights the importance of the side chain orientation of the α2 helix residues for normal POTRA 1 activity. The ΔR44-mediated POTRA folding defect and its correction by the insertion of alanine were further demonstrated by using a construct expressing just the soluble POTRA domain. Besides misfolding, the expression of BamA(ΔR44) from a low-copy-number plasmid confers a severe drug hypersensitivity phenotype. A spontaneous drug-resistant revertant of BamA(ΔR44) was found to carry an A18S substitution in the α1 helix of POTRA 1. In the BamA(ΔR44, A18S) background, OMP biogenesis improved dramatically, and this correlated with improved BamA folding, BamA-SurA interactions, and LptD (lipopolysaccharide transporter) biogenesis. The presence of the A18S substitution in the wild-type BamA protein did not affect the activity of BamA. The discovery of the A18S substitution in the α1 helix of the POTRA 1 domain as a suppressor of the folding defect caused by ΔR44 underscores the importance of the helix 1 and 2 regions in BamA folding.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Péptidos/metabolismo , Estructura Terciaria de Proteína , Sustitución de Aminoácidos , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Periplasma/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas
15.
Mol Microbiol ; 77(5): 1153-71, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20598079

RESUMEN

BamA of Escherichia coli is an essential component of the hetero-oligomeric machinery that mediates ß-barrel outer membrane protein (OMP) assembly. The C- and N-termini of BamA fold into trans-membrane ß-barrel and five soluble POTRA domains respectively. Detailed characterization of BamA POTRA 1 missense and deletion mutants revealed two competing OMP assembly pathways, one of which is followed by the archetypal trimeric ß-barrel OMPs, OmpF and LamB, and is dependent on POTRA 1. Interestingly, our data suggest that BamA also requires its POTRA 1 domain for proper assembly. The second pathway is independent of POTRA 1 and is exemplified by TolC. Site-specific cross-linking analysis revealed that the POTRA 1 domain of BamA interacts with SurA, a periplasmic chaperone required for the assembly of OmpF and LamB, but not that of TolC and BamA. The data suggest that SurA and BamA POTRA 1 domain function in concert to assist folding and assembly of most ß-barrel OMPs except for TolC, which folds into a unique soluble α-helical barrel and an OM-anchored ß-barrel. The two assembly pathways finally merge at some step beyond POTRA 1 but presumably before membrane insertion, which is thought to be catalysed by the trans-membrane ß-barrel domain of BamA.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Isomerasa de Peptidilprolil/metabolismo , Estructura Terciaria de Proteína , Eliminación de Secuencia
16.
Mol Microbiol ; 75(4): 1033-46, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20487295

RESUMEN

The Cpx and sigma(E) regulons help maintain outer membrane integrity; the Cpx pathway monitors the biogenesis of cell surface structures, such as pili, while the sigma(E) pathway monitors the biogenesis of beta-barrel outer membrane proteins (OMPs). In this study we revealed the importance of the Cpx regulon in the event of beta-barrel OMP mis-assembly, by utilizing mutants expressing either a defective beta-barrel OMP assembly machinery (Bam) or assembly defective beta-barrel OMPs. Analysis of specific mRNAs showed that Delta cpxR bam double mutants failed to induce degP expression beyond the wild type level, despite activation of the sigma(E) pathway. The synthetic conditional lethal phenotype of Delta cpxR in mutant Bam or beta-barrel OMP backgrounds was reversed by wild type DegP expressed from a heterologous plasmid promoter. Consistent with the involvement of the Cpx regulon in the event of aberrant beta-barrel OMP assembly, the expression of cpxP, the archetypal member of the cpx regulon, was upregulated in defective Bam backgrounds or in cells expressing a single assembly-defective beta-barrel OMP species. Together, these results showed that both the Cpx and sigma(E) regulons are required to reduce envelope stress caused by aberrant beta-barrel OMP assembly, with the Cpx regulon principally contributing by controlling degP expression.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Regulón , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Periplasmáticas/metabolismo , Proteínas Quinasas/metabolismo , Serina Endopeptidasas/metabolismo , Factor sigma/metabolismo , Transcripción Genética
17.
Mol Microbiol ; 75(6): 1468-83, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20132445

RESUMEN

In Escherichia coli, the TolC-AcrAB complex forms a major antibiotic efflux system with broad substrate specificity. During the complex assembly, the periplasmic helices and bottom turns of TolC are thought to interact with a hairpin helix of AcrA and hairpin loops of AcrB respectively. In the present study we show that a four-residue substitution in TolC's turn 1, which connects outer helices 3 and 4 proximal to TolC's periplasmic aperture, confers antibiotic hypersensitivity, without affecting TolC-mediated phage or colicin infection. However, despite the null-like drug sensitivity phenotype, chemical cross-linking analysis revealed no apparent defects in the ability of the mutant TolC protein to physically interact with AcrA and AcrB. A role for TolC turn 1 residues in the functional assembly of the tripartite efflux pump complex was uncovered through isolating suppressor mutations of the mutant TolC protein that mapped within acrA and by utilizing a labile AcrA protein. The data showed that AcrA-mediated suppression of antibiotic sensitivity was achieved by dilating the TolC aperture/channel in an AcrB-dependent manner. The results underscore the importance of the periplasmic turn 1 of TolC in the functional assembly of the tripartite efflux complex and AcrA in transitioning TolC from its closed to open state.


Asunto(s)
Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Lipoproteínas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sustitución de Aminoácidos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Bacteriófagos/crecimiento & desarrollo , Colicinas/toxicidad , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , Proteínas de Transporte de Membrana/genética , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/genética , Estructura Terciaria de Proteína , Supresión Genética , Acoplamiento Viral
18.
J Bacteriol ; 192(23): 6271-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20889743

RESUMEN

MzrA was identified as a modulator of the EnvZ/OmpR two-component signal transduction system. Previous evidence indicated that MzrA interacts with EnvZ and modulates its enzymatic activities to influence OmpR phosphate (OmpR∼P) levels. Moreover, MzrA was shown to connect the bacterial envelope stress response systems CpxA/CpxR and σ(E) to EnvZ/OmpR to widen the defensive response regulatory network. In this study, experiments were carried out to establish whether the membrane or periplasmic domain of MzrA is critical for MzrA-EnvZ interactions and to reveal MzrA residues that play an important role in these interactions. Data obtained from chimeric constructs, in which the transmembrane domain of MzrA was replaced with the unrelated transmembrane domain of NarX or signal sequence of PhoA, showed that the transmembrane domain residues of MzrA do not play a critical role in MzrA-EnvZ interactions. The importance of the periplasmic domain of MzrA in MzrA-EnvZ interactions was revealed by characterizing bifunctional, fully soluble, and periplasmically localized MalE::MzrA chimeras. This was further corroborated through the isolation of loss-of-function, single-amino-acid substitutions in the conserved periplasmic domain of MzrA that interfered with MzrA-EnvZ binding in a bacterial two-hybrid system. Together, the data suggest that the binding of MzrA to EnvZ influences the ability of EnvZ to receive and/or respond to environmental signals in the periplasm and modulate its biochemical output to OmpR.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Complejos Multienzimáticos/metabolismo , Periplasma/metabolismo , Mapeo de Interacción de Proteínas , Regulón , Transactivadores/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Sustitución de Aminoácidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Mutagénesis Insercional , Mutación Missense , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
19.
Biochim Biophys Acta ; 1794(5): 817-25, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19289182

RESUMEN

Multidrug efflux (MDR) pumps remove a variety of compounds from the cell into the external environment. There are five different classes of MDR pumps in bacteria, and quite often a single bacterial species expresses multiple classes of pumps. Although under normal circumstances MDR pumps confer low-level intrinsic resistance to drugs, the presence of drugs and mutations in regulatory genes lead to high level expression of MDR pumps that can pose problems with therapeutic treatments. This review focuses on the resistance nodulation cell division (RND)-class of MDR pumps that assemble from three proteins. Significant recent advancement in structural aspects of the three pump components has shed new light on the mechanism by which the tripartite efflux pumps extrude drugs. This new information will be critical in developing inhibitors against MDR pumps to improve the potency of prescribed drugs.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/fisiología , Proteínas de Transporte de Membrana/metabolismo , Antígenos Bacterianos/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/química , Transporte Biológico , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Proteínas de la Fusión de la Membrana/química , Proteínas de la Fusión de la Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Estructura Terciaria de Proteína
20.
Mol Microbiol ; 72(6): 1408-22, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19432797

RESUMEN

Analysis of suppressors that alleviate the acute envelope stress phenotype of a DeltabamB DeltadegP strain of Escherichia coli identified a novel protein MzrA and pleiotropic envZ mutations. Genetic evidence shows that overexpression of MzrA--formerly known as YqjB and EcfM--modulates the activity of EnvZ/OmpR similarly to pleiotropic EnvZ mutants and alter porin expression. However, porin expression in strains devoid of MzrA or overexpressing it is still sensitive to medium osmolarity, pH and procaine, all of which modulate EnvZ/OmpR activities. Thus, MzrA appears to alter the output of the EnvZ/OmpR system but not its ability to receive and respond to various environmental signals. Localization and topology experiments indicate that MzrA is a type II membrane protein, with its N-terminus exposed in the cytoplasm and C-terminus in the periplasm. Bacterial two-hybrid experiments determined that MzrA specifically interacts with EnvZ but not with OmpR or the related membrane sensor kinase, CpxA. This and additional genetic and biochemical evidence suggest that the interaction of MzrA with EnvZ would either enhance EnvZ's kinase activity or reduce its phosphatase activity, thus elevating the steady state levels of OmpR approximately P. Furthermore, our data show that MzrA links the two-component envelope stress response regulators, CpxA/CpxR and EnvZ/OmpR.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Complejos Multienzimáticos/metabolismo , Transactivadores/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Genes Reguladores , Concentración de Iones de Hidrógeno , Complejos Multienzimáticos/genética , Concentración Osmolar , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Porinas/metabolismo , Procaína/farmacología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Regulón , Especificidad por Sustrato , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA