Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2314747121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315853

RESUMEN

Macrophages are integral components of the innate immune system, playing a dual role in host defense during infection and pathophysiological states. Macrophages contribute to immune responses and aid in combatting various infections, yet their production of abundant proinflammatory cytokines can lead to uncontrolled inflammation and worsened tissue damage. Therefore, reducing macrophage-derived proinflammatory cytokine release represents a promising approach for treating various acute and chronic inflammatory disorders. However, limited macrophage-specific delivery vehicles have hindered the development of macrophage-targeted therapies. In this study, we screened a pool of 112 lipid nanoparticles (LNPs) to identify an optimal LNP formulation for efficient siRNA delivery. Subsequently, by conjugating the macrophage-specific antibody F4/80 to the LNP surface, we constructed MacLNP, an enhanced LNP formulation designed for targeted macrophage delivery. In both in vitro and in vivo experiments, MacLNP demonstrated a significant enhancement in targeting macrophages. Specifically, delivery of siRNA targeting TAK1, a critical kinase upstream of multiple inflammatory pathways, effectively suppressed the phosphorylation/activation of NF-kB. LNP-mediated inhibition of NF-kB, a key upstream regulator in the classic inflammatory signaling pathway, in the murine macrophage cell line RAW264.7 significantly reduced the release of proinflammatory cytokines after stimulation with the viral RNA mimic Poly(I:C). Finally, intranasal administration of MacLNP-encapsulated TAK1 siRNA markedly ameliorated lung injury induced by influenza infection. In conclusion, our findings validate the potential of targeted macrophage interventions in attenuating inflammatory responses, reinforcing the potential of LNP-mediated macrophage targeting to treat pulmonary inflammatory disorders.


Asunto(s)
Liposomas , Nanopartículas , Neumonía Viral , Ratones , Humanos , Animales , FN-kappa B/metabolismo , Lípidos/farmacología , Macrófagos/metabolismo , ARN Interferente Pequeño/metabolismo , Citocinas/metabolismo , Neumonía Viral/metabolismo
2.
PLoS Biol ; 21(4): e3002105, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37093850

RESUMEN

The promise of therapeutic nucleic acids has long been tempered by difficulty in overcoming biological barriers to their delivery. The past two decades have seen the development of ionizable lipid nanoparticles as a vehicle for nucleic acid delivery and their translation to the clinic.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Liposomas
3.
Proc Natl Acad Sci U S A ; 120(33): e2303567120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37556502

RESUMEN

Lipid nanoparticles (LNPs) are a potent delivery technology that have made it possible for the recent clinical breakthroughs in mRNA therapeutics and vaccines. A key challenge to the broader implementation of mRNA therapeutics and vaccines is the development of technology to produce precisely defined LNP formulations, with throughput that can scale from discovery to commercial manufacturing and meet the stringent manufacturing standards of the pharmaceutical industry. To address these challenges, we have developed a microfluidic chip that incorporates 1×, 10×, or 256× LNP-generating units that achieve scalable production rates of up to 17 L/h of precisely defined LNPs. Using these chips, we demonstrate that LNP physical properties and potency in vivo are unchanged as throughput is scaled. Our chips are fabricated out of silicon and glass substrates, which have excellent solvent compatibility, compatibility with pharmaceutical manufacturing, and can be fully reset and reused. SARS-CoV-2 mRNA-LNP vaccines formulated by our chips triggered potent antibody responses in a preclinical study. These results demonstrate the feasibility of directly translating microfluidic-generated LNPs to the scale necessary for commercial production.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Liposomas , ARN Mensajero/genética
4.
Proc Natl Acad Sci U S A ; 120(25): e2215711120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37310997

RESUMEN

Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effective MM therapeutics. Insights suggest that endothelial cells within the bone marrow microenvironment play a critical role. Specifically, cyclophilin A (CyPA), a homing factor secreted by bone marrow endothelial cells (BMECs), is critical to MM homing, progression, survival, and chemotherapeutic resistance. Thus, inhibition of CyPA provides a potential strategy to simultaneously inhibit MM progression and sensitize MM to chemotherapeutics, improving therapeutic response. However, inhibiting factors from the bone marrow endothelium remains challenging due to delivery barriers. Here, we utilize both RNA interference (RNAi) and lipid-polymer nanoparticles to engineer a potential MM therapy, which targets CyPA within blood vessels of the bone marrow. We used combinatorial chemistry and high-throughput in vivo screening methods to engineer a nanoparticle platform for small interfering RNA (siRNA) delivery to bone marrow endothelium. We demonstrate that our strategy inhibits CyPA in BMECs, preventing MM cell extravasation in vitro. Finally, we show that siRNA-based silencing of CyPA in a murine xenograft model of MM, either alone or in combination with the Food and Drug Administration (FDA)-approved MM therapeutic bortezomib, reduces tumor burden and extends survival. This nanoparticle platform may provide a broadly enabling technology to deliver nucleic acid therapeutics to other malignancies that home to bone marrow.


Asunto(s)
Mieloma Múltiple , Estados Unidos , Humanos , Animales , Ratones , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Médula Ósea , ARN Interferente Pequeño/genética , Células Endoteliales , Ciclofilina A , Lípidos , Microambiente Tumoral
5.
Circ Res ; 132(3): 339-354, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36625267

RESUMEN

BACKGROUND: During long-term antiplatelet agents (APAs) administration, patients with thrombotic diseases take a fairly high risk of life-threatening bleeding, especially when in need of urgent surgery. Rapid functional reversal of APAs remains an issue yet to be efficiently resolved by far due to the lack of any specific reversal agent in the clinic, which greatly restricts the use of APAs. METHODS: Flow cytometry analysis was first applied to assess the dose-dependent reversal activity of platelet-mimicking perfluorocarbon-based nanosponges (PLT-PFCs) toward ticagrelor. The tail bleeding time of mice treated with APAs followed by PLT-PFCs was recorded at different time points, along with corresponding pharmacokinetic analysis of ticagrelor and tirofiban. A hemorrhagic transformation model was established in experimental stroke mice with thrombolytic/antiplatelet therapy. Magnetic resonance imaging was subsequently applied to observe hemorrhage and thrombosis in vivo. Further evaluation of the spontaneous clot formation activity of PLT-PFCs was achieved by clot retraction assay in vitro. RESULTS: PLT-PFCs potently reversed the antiplatelet effect of APAs by competitively binding with APAs. PLT-PFCs showed high binding affinity comparable to fresh platelets in vitro with first-line APAs, ticagrelor and tirofiban, and efficiently reversed their function in both tail bleeding and postischemic-reperfusion models. Moreover, the deficiency of platelet intrinsic thrombotic activity diminished the risk of thrombogenesis. CONCLUSIONS: This study demonstrated the safety and effectiveness of platelet-mimicking nanosponges in ameliorating the bleeding risk of different APAs, which offers a promising strategy for the management of bleeding complications induced by antiplatelet therapy.


Asunto(s)
Inhibidores de Agregación Plaquetaria , Trombosis , Animales , Ratones , Inhibidores de Agregación Plaquetaria/efectos adversos , Plaquetas , Ticagrelor/efectos adversos , Tirofibán/efectos adversos , Hemorragia/inducido químicamente , Trombosis/tratamiento farmacológico , Trombosis/prevención & control , Trombosis/inducido químicamente
6.
Nano Lett ; 24(5): 1477-1486, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38259198

RESUMEN

Lipid nanoparticle (LNP)-mediated nucleic acid therapies, including mRNA protein replacement and gene editing therapies, hold great potential in treating neurological disorders including neurodegeneration, brain cancer, and stroke. However, delivering LNPs across the blood-brain barrier (BBB) after systemic administration remains underexplored. In this work, we engineered a high-throughput screening transwell platform for the BBB (HTS-BBB), specifically optimized for screening mRNA LNPs. Unlike most transwell assays, which only assess transport across an endothelial monolayer, HTS-BBB simultaneously measures LNP transport and mRNA transfection of the endothelial cells themselves. We then use HTS-BBB to screen a library of 14 LNPs made with structurally diverse ionizable lipids and demonstrate it is predictive of in vivo performance by validating lead candidates for mRNA delivery to the mouse brain after intravenous injection. Going forward, this platform could be used to screen large libraries of brain-targeted LNPs for a range of protein replacement and gene editing applications.


Asunto(s)
Barrera Hematoencefálica , Liposomas , Nanopartículas , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , ARN Mensajero/genética , Lípidos , Transfección , ARN Interferente Pequeño/genética
7.
Small ; 20(11): e2304378, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38072809

RESUMEN

With six therapies approved by the Food and Drug Association, chimeric antigen receptor (CAR) T cells have reshaped cancer immunotherapy. However, these therapies rely on ex vivo viral transduction to induce permanent CAR expression in T cells, which contributes to high production costs and long-term side effects. Thus, this work aims to develop an in vivo CAR T cell engineering platform to streamline production while using mRNA to induce transient, tunable CAR expression. Specifically, an ionizable lipid nanoparticle (LNP) is utilized as these platforms have demonstrated clinical success in nucleic acid delivery. Though LNPs often accumulate in the liver, the LNP platform used here achieves extrahepatic transfection with enhanced delivery to the spleen, and it is further modified via antibody conjugation (Ab-LNPs) to target pan-T cell markers. The in vivo evaluation of these Ab-LNPs confirms that targeting is necessary for potent T cell transfection. When using these Ab-LNPs for the delivery of CAR mRNA, antibody and dose-dependent CAR expression and cytokine release are observed along with B cell depletion of up to 90%. In all, this work conjugates antibodies to LNPs with extrahepatic tropism, evaluates pan-T cell markers, and develops Ab-LNPs capable of generating functional CAR T cells in vivo.


Asunto(s)
Nanopartículas , Receptores Quiméricos de Antígenos , Receptores Quiméricos de Antígenos/genética , Liposomas , Transfección , Anticuerpos , Ingeniería Celular , ARN Interferente Pequeño
8.
Nat Mater ; 22(12): 1571-1580, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37696939

RESUMEN

Chimeric antigen receptor T (CAR T) cell immunotherapy is successful at treating many cancers. However, it often induces life-threatening cytokine release syndrome (CRS) and neurotoxicity. Here, we show that in situ conjugation of polyethylene glycol (PEG) to the surface of CAR T cells ('PEGylation') creates a polymeric spacer that blocks cell-to-cell interactions between CAR T cells, tumour cells and monocytes. Such blockage hinders intensive tumour lysing and monocyte activation by CAR T cells and, consequently, decreases the secretion of toxic cytokines and alleviates CRS-related symptoms. Over time, the slow expansion of CAR T cells decreases PEG surface density and restores CAR T cell-tumour-cell interactions to induce potent tumour killing. This occurs before the restoration of CAR T cell-monocyte interactions, opening a therapeutic window for tumour killing by CAR T cells before monocyte overactivation. Lethal neurotoxicity is also lower when compared with treatment with the therapeutic antibody tocilizumab, demonstrating that in situ PEGylation of CAR T cells provides a materials-based strategy for safer cellular immunotherapy.


Asunto(s)
Neoplasias , Síndromes de Neurotoxicidad , Receptores Quiméricos de Antígenos , Humanos , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/uso terapéutico , Inmunoterapia Adoptiva , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/metabolismo , Linfocitos T
9.
Clin Genet ; 105(4): 364-375, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38129135

RESUMEN

Biallelic loss-of-function mutation of NUP210L, encoding a testis-specific nucleoporin, has been reported in an infertile man whose spermatozoa show uncondensed heads and histone retention. Mice with a homozygous transgene intronic insertion in Nup210l were infertile but spermatozoa had condensed heads. Expression from this insertion allele is undefined, however, and residual NUP210L production could underlie the milder phenotype. To resolve this issue, we have created Nup210lem1Mjmm , a null allele of Nup210l, in the mouse. Nup210lem1Mjmm homozygotes show uniform mild anomalies of sperm head morphology and decreased motility, but nuclear compaction and histone removal appear unaffected. Thus, our mouse model does not support that NUP210L loss alone blocks spermatid nuclear compaction. Re-analyzing the patient's exome data, we identified a rare, potentially pathogenic, heterozygous variant in nucleoporin gene NUP153 (p.Pro485Leu), and showed that, in mouse and human, NUP210L and NUP153 colocalize at the caudal nuclear pole in elongating spermatids and spermatozoa. Unexpectedly, in round spermatids, NUP210L and NUP153 localisation differs between mouse (nucleoplasm) and human (nuclear periphery). Our data suggest two explanations for the increased phenotypic severity associated with NUP210L loss in human compared to mouse: a genetic variant in human NUP153 (p.Pro485Leu), and inter-species divergence in nuclear pore function in round spermatids.


Asunto(s)
Histonas , Infertilidad Masculina , Masculino , Ratones , Humanos , Animales , Histonas/genética , Histonas/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Espermatogénesis/genética , Semen/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Infertilidad Masculina/genética
10.
Nano Lett ; 23(22): 10179-10188, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37906000

RESUMEN

Cell-based therapies for autoimmune diseases have gained significant traction, with several approaches centered around the regulatory T (Treg) cell─a well-known immunosuppressive cell characterized by its expression of the transcription factor Foxp3. Unfortunately, due to low numbers of Treg cells available in circulation, harvesting and culturing Treg cells remains a challenge. It has been reported that engineering Foxp3 expression in CD4+ T cells can result in a Treg-like phenotype; however, current methods result in the inefficient engineering of these cells. Here, we develop an ionizable lipid nanoparticle (LNP) platform to effectively deliver Foxp3 mRNA to CD4+ T cells. We successfully engineer CD4+ T cells into Foxp3-T (FP3T) cells that transiently exhibit an immunosuppressive phenotype and functionally suppress the proliferation of effector T cells. These results demonstrate the promise of an LNP platform for engineering immunosuppressive T cells with potential applications in autoimmunity therapies.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos T Reguladores , Humanos , Linfocitos T Reguladores/metabolismo , Autoinmunidad , Enfermedades Autoinmunes/terapia , Enfermedades Autoinmunes/genética , Inmunosupresores/uso terapéutico , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
11.
J Am Chem Soc ; 145(8): 4691-4706, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36789893

RESUMEN

Ionizable lipid nanoparticles (LNPs) are the most clinically advanced nonviral platform for mRNA delivery. While they have been explored for applications including vaccines and gene editing, LNPs have not been investigated for placental insufficiency during pregnancy. Placental insufficiency is caused by inadequate blood flow in the placenta, which results in increased maternal blood pressure and restricted fetal growth. Therefore, improving vasodilation in the placenta can benefit both maternal and fetal health. Here, we engineered ionizable LNPs for mRNA delivery to the placenta with applications in mediating placental vasodilation. We designed a library of ionizable lipids to formulate LNPs for mRNA delivery to placental cells and identified a lead LNP that enables in vivo mRNA delivery to trophoblasts, endothelial cells, and immune cells in the placenta. Delivery of this top LNP formulation encapsulated with VEGF-A mRNA engendered placental vasodilation, demonstrating the potential of mRNA LNPs for protein replacement therapy during pregnancy to treat placental disorders.


Asunto(s)
Nanopartículas , Insuficiencia Placentaria , Femenino , Embarazo , Humanos , Placenta/metabolismo , ARN Mensajero/metabolismo , Células Endoteliales/metabolismo , Lípidos , Nanopartículas/metabolismo , ARN Interferente Pequeño/genética
12.
Small ; : e2300852, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37191231

RESUMEN

The placenta is a transient organ that forms during pregnancy and acts as a biological barrier, mediating exchange between maternal and fetal circulation. Placental disorders, such as preeclampsia, fetal growth restriction, placenta accreta spectrum, and gestational trophoblastic disease, originate in dysfunctional placental development during pregnancy and can lead to severe complications for both the mother and fetus. Unfortunately, treatment options for these disorders are severely lacking. Challenges in designing therapeutics for use during pregnancy involve selectively delivering payloads to the placenta while protecting the fetus from potential toxic side effects. Nanomedicine holds great promise in overcoming these barriers; the versatile and modular nature of nanocarriers, including prolonged circulation times, intracellular delivery, and organ-specific targeting, can control how therapeutics interact with the placenta. In this review, nanomedicine strategies are discussed to treat and diagnose placental disorders with an emphasis on understanding the unique pathophysiology behind each of these diseases. Finally, prior study of the pathophysiologic mechanisms underlying these placental disorders has revealed novel disease targets. These targets are highlighted here to motivate the rational design of precision nanocarriers to improve therapeutic options for placental disorders.

13.
Small ; : e2303568, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537704

RESUMEN

During healthy pregnancy, the placenta develops to allow for exchange of nutrients and oxygen between the mother and the fetus. However, placental dysregulation can lead to several pregnancy disorders, such as preeclampsia and fetal growth restriction. Recently, lipid nanoparticle (LNP)-mediated delivery of messenger RNA (mRNA) has been explored as a promising approach to treat these disorders. Here, iterative libraries of LNPs with varied excipient molar ratios are screened in vitro for enhanced mRNA delivery to placental cells with minimal cytotoxicity when compared to an LNP formulation with a standard excipient molar ratio. LNP C5, the top formulation identified by these screens, demonstrates a fourfold increase in mRNA delivery in vitro compared to the standard formulation. Intravenous administration of LNP C5 to pregnant mice achieves improved in vivo placental mRNA delivery compared to the standard formulation and mediates mRNA delivery to placental trophoblasts, endothelial cells, and immune cells. These results identify LNP C5 as a promising optimized LNP formulation for placental mRNA delivery and further validates the design of experiments strategy for LNP excipient optimization to enhance mRNA delivery to cell types and organs of interest.

14.
Nano Lett ; 22(1): 533-542, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34669421

RESUMEN

Viral engineered chimeric antigen receptor (CAR) T cell therapies are potent, targeted cancer immunotherapies, but their permanent CAR expression can lead to severe adverse effects. Nonviral messenger RNA (mRNA) CAR T cells are being explored to overcome these drawbacks, but electroporation, the most common T cell transfection method, is limited by cytotoxicity. As a potentially safer nonviral delivery strategy, here, sequential libraries of ionizable lipid nanoparticle (LNP) formulations with varied excipient compositions were screened in comparison to a standard formulation for improved mRNA delivery to T cells with low cytotoxicity, revealing B10 as the top formulation with a 3-fold increase in mRNA delivery. When compared to electroporation in primary human T cells, B10 LNPs induced comparable CAR expression with reduced cytotoxicity while demonstrating potent cancer cell killing. These results demonstrate the impact of excipient optimization on LNP performance and support B10 LNPs as a potent mRNA delivery platform for T cell engineering.


Asunto(s)
Nanopartículas , Humanos , Liposomas/metabolismo , ARN Mensajero/farmacología , Linfocitos T/metabolismo
15.
J Am Chem Soc ; 144(22): 9926-9937, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35616998

RESUMEN

The development of lipid nanoparticle (LNP) formulations for targeting the bone microenvironment holds significant potential for nucleic acid therapeutic applications including bone regeneration, cancer, and hematopoietic stem cell therapies. However, therapeutic delivery to bone remains a significant challenge due to several biological barriers, such as low blood flow in bone, blood-bone marrow barriers, and low affinity between drugs and bone minerals, which leads to unfavorable therapeutic dosages in the bone microenvironment. Here, we construct a series of bisphosphonate (BP) lipid-like materials possessing a high affinity for bone minerals, as a means to overcome biological barriers to deliver mRNA therapeutics efficiently to the bone microenvironment in vivo. Following in vitro screening of BP lipid-like materials formulated into LNPs, we identified a lead BP-LNP formulation, 490BP-C14, with enhanced mRNA expression and localization in the bone microenvironment of mice in vivo compared to 490-C14 LNPs in the absence of BPs. Moreover, BP-LNPs enhanced mRNA delivery and secretion of therapeutic bone morphogenetic protein-2 from the bone microenvironment upon intravenous administration. These results demonstrate the potential of BP-LNPs for delivery to the bone microenvironment, which could potentially be utilized for a range of mRNA therapeutic applications including regenerative medicine, protein replacement, and gene editing therapies.


Asunto(s)
Lípidos , Nanopartículas , Animales , Difosfonatos/farmacología , Liposomas , Ratones , ARN Mensajero/genética , ARN Interferente Pequeño/genética
16.
Mol Pharm ; 19(4): 1104-1116, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35225618

RESUMEN

The ability to deliver small protein scaffolds intracellularly could enable the targeting and inhibition of many therapeutic targets that are not currently amenable to inhibition with small-molecule drugs. Here, we report the engineering of small protein scaffolds with anionic polypeptides (ApPs) to promote electrostatic interactions with positively charged nonviral lipid-based delivery systems. Proteins fused with ApPs are either complexed with off-the-shelf cationic lipids or encapsulated within ionizable lipid nanoparticles for highly efficient cytosolic delivery (up to 90%). The delivery of protein inhibitors is used to inhibit two common proto-oncogenes, Ras and Myc, in two cancer cell lines. This report demonstrates the feasibility of combining minimally engineered small protein scaffolds with tractable nanocarriers to inhibit intracellular proteins that are generally considered "undruggable" with current small molecule drugs and biologics.


Asunto(s)
Nanopartículas , Neoplasias , Citosol , Humanos , Liposomas/química , Nanopartículas/química
17.
Nano Lett ; 21(13): 5671-5680, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34189917

RESUMEN

A major challenge to advance lipid nanoparticles (LNPs) for RNA therapeutics is the development of formulations that can be produced reliably across the various scales of drug development. Microfluidics can generate LNPs with precisely defined properties, but have been limited by challenges in scaling throughput. To address this challenge, we present a scalable, parallelized microfluidic device (PMD) that incorporates an array of 128 mixing channels that operate simultaneously. The PMD achieves a >100× production rate compared to single microfluidic channels, without sacrificing desirable LNP physical properties and potency typical of microfluidic-generated LNPs. In mice, we show superior delivery of LNPs encapsulating either Factor VII siRNA or luciferase-encoding mRNA generated using a PMD compared to conventional mixing, with a 4-fold increase in hepatic gene silencing and 5-fold increase in luciferase expression, respectively. These results suggest that this PMD can generate scalable and reproducible LNP formulations needed for emerging clinical applications, including RNA therapeutics and vaccines.


Asunto(s)
Dispositivos Laboratorio en un Chip , Nanopartículas , Animales , Lípidos , Ratones , ARN Mensajero , ARN Interferente Pequeño/genética
18.
J Am Chem Soc ; 143(31): 12315-12327, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34324336

RESUMEN

Efficient viral or nonviral delivery of nucleic acids is the key step of genetic nanomedicine. Both viral and synthetic vectors have been successfully employed for genetic delivery with recent examples being DNA, adenoviral, and mRNA-based Covid-19 vaccines. Viral vectors can be target specific and very efficient but can also mediate severe immune response, cell toxicity, and mutations. Four-component lipid nanoparticles (LNPs) containing ionizable lipids, phospholipids, cholesterol for mechanical properties, and PEG-conjugated lipid for stability represent the current leading nonviral vectors for mRNA. However, the segregation of the neutral ionizable lipid as droplets in the core of the LNP, the "PEG dilemma", and the stability at only very low temperatures limit their efficiency. Here, we report the development of a one-component multifunctional ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA that exhibits high activity at a low concentration of ionizable amines organized in a sequence-defined arrangement. Six libraries containing 54 sequence-defined IAJDs were synthesized by an accelerated modular-orthogonal methodology and coassembled with mRNA into dendrimersome nanoparticles (DNPs) by a simple injection method rather than by the complex microfluidic technology often used for LNPs. Forty four (81%) showed activity in vitro and 31 (57%) in vivo. Some, exhibiting organ specificity, are stable at 5 °C and demonstrated higher transfection efficiency than positive control experiments in vitro and in vivo. Aside from practical applications, this proof of concept will help elucidate the mechanisms of packaging and release of mRNA from DNPs as a function of ionizable amine concentration, their sequence, and constitutional isomerism of IAJDs.


Asunto(s)
Dendrímeros/química , Portadores de Fármacos/química , Nanopartículas/química , ARN Mensajero/metabolismo , Tensoactivos/química , Animales , Dendrímeros/síntesis química , Portadores de Fármacos/síntesis química , Liberación de Fármacos , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Prueba de Estudio Conceptual , Tensoactivos/síntesis química
19.
Am J Hum Genet ; 103(3): 413-420, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30122541

RESUMEN

Flagella and motile cilia share a 9 + 2 microtubule-doublet axoneme structure, and asthenozoospermia (reduced spermatozoa motility) is found in 76% of men with primary ciliary dyskinesia (PCD). Nevertheless, causal genetic variants in a conserved axonemal component have been found in cases of isolated asthenozoospermia: 30% of men with multiple morphological anomalies of sperm flagella (MMAF) carry bi-allelic mutations in DNAH1, encoding one of the seven inner-arm dynein heavy chains of the 9 + 2 axoneme. To further understand the basis for isolated asthenozoospermia, we used whole-exome and Sanger sequencing to study two brothers and two independent men with MMAF. In three men, we found bi-allelic loss-of-function mutations in WDR66, encoding cilia- and flagella-associated protein 251 (CFAP251): the two brothers were homozygous for the frameshift chr12: g.122359334delA (p.Asp42Metfs∗4), and the third individual was compound heterozygous for chr12: g.122359542G>T (p.Glu111∗) and chr12: g.122395032_122395033delCT (p.Leu530Valfs∗4). We show that CFAP251 is normally located along the flagellum but is absent in men carrying WDR66 mutations and reveal a spermatozoa-specific isoform probably generated during spermatozoon maturation. CFAP251 is a component of the calmodulin- and radial-spoke- associated complex, located adjacent to DNAH1, on the inner surface of the peripheral microtubule doublets of the axoneme. In Tetrahymena, the CFAP251 ortholog is necessary for efficient coordinated ciliary beating. Using immunofluorescent and transmission electron microscopy, we provide evidence that loss of CFAP251 affects the formation of the mitochondrial sheath. We propose that CFAP251 plays a structural role during biogenesis of the spermatozoon flagellum in vertebrates.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Calmodulina/genética , Infertilidad Masculina/genética , Mitocondrias/genética , Mutación/genética , Motilidad Espermática/genética , Espermatozoides/patología , Axonema/genética , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Cilios/genética , Dineínas/genética , Exoma/genética , Femenino , Células HeLa , Humanos , Masculino , Cola del Espermatozoide/patología , Tetrahymena/genética
20.
Nano Lett ; 20(3): 1578-1589, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-31951421

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy relies on the ex vivo manipulation of patient T cells to create potent, cancer-targeting therapies, shown to be capable of inducing remission in patients with acute lymphoblastic leukemia and large B cell lymphoma. However, current CAR T cell engineering methods use viral delivery vectors, which induce permanent CAR expression and could lead to severe adverse effects. Messenger RNA (mRNA) has been explored as a promising strategy for inducing transient CAR expression in T cells to mitigate the adverse effects associated with viral vectors, but it most commonly requires electroporation for T cell mRNA delivery, which can be cytotoxic. Here, ionizable lipid nanoparticles (LNPs) were designed for ex vivo mRNA delivery to human T cells. A library of 24 ionizable lipids was synthesized, formulated into LNPs, and screened for luciferase mRNA delivery to Jurkat cells, revealing seven formulations capable of enhanced mRNA delivery over lipofectamine. The top-performing LNP formulation, C14-4, was selected for CAR mRNA delivery to primary human T cells. This platform induced CAR expression at levels equivalent to electroporation, with substantially reduced cytotoxicity. CAR T cells engineered via C14-4 LNP treatment were then compared to electroporated CAR T cells in a coculture assay with Nalm-6 acute lymphoblastic leukemia cells, and both CAR T cell engineering methods elicited potent cancer-killing activity. These results demonstrate the ability of LNPs to deliver mRNA to primary human T cells to induce functional protein expression, and indicate the potential of LNPs to enhance mRNA-based CAR T cell engineering methods.


Asunto(s)
Ingeniería Celular , Sistemas de Liberación de Medicamentos , Lípidos , Nanopartículas/química , ARN Mensajero , Receptores Quiméricos de Antígenos , Linfocitos T/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Humanos , Lípidos/química , Lípidos/farmacología , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/farmacología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA